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Many applications require a model whose form is dictated by physical principles. For
example, the force-extension model of a spring must pass through the origin (0, 0)
because the spring exerts no force when it is not stretched. Thus a linear model y =
mx + b sometimes must have a zero value for 5. However, in general the least-squares
method will give a nonzero value for b because of the scatter or measurement error that
is usually present in the data.

To obtain a zero-intercept model of the form y = mx, we must derive the equation
for m from basic principles. The sum of the squared residuals in this case is

J =Y (mx; — y)°
1=1

Computing the derivative d //dm and setting it equal to zero gives the result

n n
§ : 2 E :
m Xf — X1 Vi
1=1 =1

which can be easily solved for m.
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If the model is required to pass through a point not at the origin, say the point
(x0, o), subtract xp from all the x values, subtract yy from all the y values, and then

find the coefficient m. The resulting equation will be of the form

y =m(x — xp) + Jo
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Problem
Consider the data given
X | 0 5 10
y|l2 6 11

We found that the best-fit line is y = (9/10)x + 11/6. Find the best-fit line that passes through
the point x = 10, y = 11.
Solution

Subtracting 10 from all the x values and 11 from all the y values, we obtain a new set of data in
terms of the new variables X = x — 10and ¥ = y — 11.

X|-10 -5 0
Y[-9 -5 0
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3
> X7 = (—10)* + 5% + 0 =125

i=1

3
D XY = (—10)(—9) + (—5)(—5) + 0 =115

=1

Thus, m=115/125=23/25 and the best-fit line is ¥=(23/25)X. In terms of the original
variables, this line is expressed as y — 11 = (23/25)(x — 10) or y = (23/25)x + 9/5.
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Sometimes we know from physical theory that the data can be described by a function
with a specified form and specified values of one or more of its coefficients. In such cases,
we can modify the least-squares method to find the best-fit function of a specified form.

Problem

Fit the power function y = bx™ to the data y;. The value of m is known.
Solution

The least-squares criterion is J = Z( bx™ — y;)?
=1

To obtain the value of b that minimizes J, we must solve a8 J/9b = 0.
aJ -
55 zfzhl:ffn(b"fﬂ _J"f) =0

This gives . Z?:l X7y,
Zf:l xfm
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Problem

A hole 6 mm in diameter was made in a translucent milk container. A series of marks 1 cm apart
was made above the hole. While adjusting the tap flow to keep the water height constant,
the time for the outflow to fill a 250 ml cup was measured (1 ml = 10—% m?®). This was repeated

for several heights. The data are given in the following table.

Height h(cm) [11 10 9 8 7 6 5 4 3 2 1
Time ¢ (s) |7 75 8 85 9 95 11 12 14 19 26

Obtain a functional description of the volume outflow rate f as a function of water height &

abowve the hole.
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Solution

First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:
250
ot
We learned that the following power function can describe the data:
f= bi™

We can find the values of mand bby using p=polyfit(loglO(x) ,loglO(y) ,1).The
first element p; of the vector p will be m, and the second element p; will be log 5. We can find
b from b = 10#2. The following MATLAB program performs the calculations.
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h = (1:11); 0.5499
time =26, 19, 14, 12,11, 9.5, 9, 8.5, 8, 7.5, 7]; b=
flow = 250./time; 9.4956
logflow = log10(flow);logheight = log10(h); )=
p = polyfit(logheight,logflow, 1); 2.5011
m = p(1),b = 107p(2) S=
F =b*h.Am; 698.2203
J = sum((F - flow)."2) r2 =
S = sum((flow - mean(flow)).A2) 0.9964

r2=1-J/S

The results are m = 0.5499 and b = 9.4956, and the corresponding function is
f = bh™ = 9.4956,">*%

The quality-of-fit values are J = 2.5011, S = 698.2203, and r* = 0.9964, which indicates a
very good fit.
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Sometimes we know from physical theory that the data can be described by a
power function with a specified exponent. For example, Torricelli’s principle of hy-
draulic resistance states that the volume flow rate f of a liquid through a restriction
is proportional to the square root of the pressure drop p across the restriction; that is,

f=c/p = cp'/?. In many applications, the pressure drop is due to the weight of
liquid in a container. )
In such situations, Torricelli’s principle states that the flow rate is proportional to the
square root of the height /4 of the liquid above the orifice. Thus,

f = b/h = bh'/?

where b is a constant that must be determined from data.
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Problem

Determine the best-fit value of the coefficient b in the square-root function

f = bhr''?
Height A(cm) [11 10 9 8 7 6 5 4 3 2 1
Time ¢ (s) | 7 75 8 85 9 95 11 12 14 19 26
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Solution

First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:
250

[ = —

t
Referring to Example, whose model is y = bx™, we see herethat y = f, h = x, m = 0.5,

From Equation of that example, - Y2 K0Sy,

Y}
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h=(1:11); b=
time = [26, 19, 14,12, 11, 9.5, 9, 8.5, 8, 7.5, 7]; 10.4605
flow = 250./time; =
b = sum(sqrt(h).*flow)/sum(h) 5.5495
f = b*sqrt(h); =
J = sum((f - flow).A2) 698.2203
S = sum((flow - mean(flow)).A2) r2 =
r2=1-J/S 0.9921

The result is h =10.4604 and the flow model is = 10.4604+/h. The quality-of-fit values are
J =5.5495, § = 698.2203, and r* = 0.9921, which indicates a very good fit.
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Parameter Estimation using the Free Response of the First Order Model

The free and the step response can be used to estimate one or more of the parameters
of a dynamic model. For example, consider the first-order model

dv
m— 4 cv = (1)
dt

where f(t) is the input. The time constant is T = m/c, and the free response is
v(t) = v(0)e /"

If we take the natural logarithm of both sides we obtain

Inv(t) = Inv(0) — !
T
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By defining V(¢) = In v(¢), we can transform this equation into the equation of a
straight line, as follows:

[

This describes a straight line in terms of V(¢) and ¢. Its slope is —1/t and its intercept
is V(0). These quantities may be estimated by drawing a straight line through the
tranformed data points | V (), ;] if the scatter in the data is not too large. Otherwise
we can use the least-squares method to estimate the parameters.

If the measurement of v(0) is subject to random measurement error, then V/(0) is
not known precisely, and we can use the least squares method to compute estimates of
the coefficients 7 and V'(0). Using the least-squares equations for a first-order
polynomial, we can derive the following equations:
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n n

1 i1
—=> 4+ VO Y u=) Vi
=1

23 4+ VO =)V,
T =1

These are two linear algebraic equations, which can be solved for T and V(0).
On the other hand, in many applications the starting value v(0) can be mea-
sured without significant error. In this case, we can transform the data by using z(t) =

V(t) — V(0) so that the model becomes z(t) = —t/t, which is a linear equa-
tion constrained to pass through the origin. We can then use

1 n i
— Z f? = Z [Z;
T =1 =1

to find the time constant T.
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Example

The temperature of liquid cooling in a porcelain mug at room temperature (68°F) was measured
at various times. The data are given below.

Time f (sec) Temperature T (°F)
0 145
620 130
2200 103
3482 90

Develop a model of the liquid temperature as a function of time, and use it to estimate how long
it takes the temperature to reach 120°F.
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Solution

We will model the liquid as a single lumped thermal mass with a representative temperature T.
From conservation of heat energy we have

dE T-T,

dt R

where F is the heat energy in the liquid, 7, = 68°F is the temperature of the air surrounding the
cup, and K is the total thermal resistance of the cup. We have £ = mc,(T — T,) = C(T — T,),
where m is the liquid mass, ¢, is its specific heat, and C = mc, is the thermal capacitance.
Assuming that m, ¢, and 7, are constant, we obtain

dT Ir—1,

— =—
dt R
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Ifwelet AT = T — T, and note that
d(AT) B dT

dt dt

we obtain

d(AT)
dt

RC + AT =0

The time constant is Tt = K, and the solution has the form
AT(t) = AT(e "
Thus,

In AT(6) = In AT(0) — ~

T

(2)
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The transformed data In A T'(¢) are plotted in Figurea. Because they fall near a straight line,

we can use equation (2) to fit the data. The values obtained are In AT(0) = 4.35 and T = 2792
sec. This gives A T(0) = 77°E. Thus the model is

T(t) = 68 + TTe /4192 (3)

The computed time to reach 120°F is

t = —27921n 12(1?; o8 _ 1112 sec

The plot of equation (3), along with the data and the estimated point (1112, 120) marked with a
“+" sign, is shown in part (b) of Figure . Because the graph of our model lies near the data
points, we can treat its prediction of 1112 sec with some confidence.
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Example

Commercially available resistors are marked with a color code that indicates their resistance
value. Suppose that the resistance in the circuit of Figureis 10° Q. A voltage is applied to the

circuit for ¢ < 0 and then is suddenly removed at time ¢ = 0. The voltage across the
capacitor as measured by a data acquisition system is plotted and given in the following table.

Use the data to estimate the value of the capacitance C.

Time 1 (s) Voltage v (V)

L

=] LN =] U1
h

n

Ne=—=—==0000
iy

CoODoO=NWen

B G obe 00 D & P LD
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The circuit model may be derived from Kirchhoftf's voltage law, which gives
vy — U
v, = Ri 4+ ve or == =
For the capacitor we have
1 dv i
dve Vg — VU dve
= or RC Ve = v
dt RC dr Tre= s

The free response has the form
ve(t) = ve(0)e™"HC = ve(0)e /"
where the time constant is Tt = K. Taking the natural logarithm of both sides gives

I
Inve-(t) =Inv-(0) — —
T
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When the logarithmic transformation is applied to the original data, we obtain the following table.

mi: sz +bi Z, =Z":1n(1'c)j 1,

Time # (s) In v¢

i=1 i=1 i=1
. . 0 1.609
0.25 1.194
mp t, +b*9 =2 In(vc), 0.5 0.789
i=1 i=1 0.75 0.337
n . n n n 1 —0.105
— — , P o— . — 1.25 —0.511
Zr,. 12.75 er e Zln(tc)f f, =-6.4991 Zln(u:')j 0.4176 1.2 —0.o11
j i i=1 i=1 i=l1 1.75 —1.204
m=-1.6217b=1.575 2 —1.609

ve = exp(1.575)e %71 =4 83216127t
r=1/1.621=0.6166

Because we know that R = 10° 2, we obtain C = r/R=0.617/10°=6.17T x 1075 F.
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time =[0:0.25:2];
voltage=[53.32.21.40.90.6 0.4 0.3 0.2];
logvoltage = log(voltage);

p = polyfit(time, logvoltage, 1);

m = p(1),b = exp(p(2))

T=-1/m;

C=T/(10"5)

vc = b*exp(time*m);

plot(time, vc, time, voltage ,'0'),

grid

J = sum((vc - voltage).n2)

S = sum((voltage - mean(voltage)).*2)
r2=1-J/S

21.4289
r2 =
0.9980
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Parameter Estimation using the Step Response of the First Order Model

The free response of the model mv + cv = f(¢) enables us to estimate t, but does not
give enough information to find both m and c separately. However, we may use the step
response if available. The step response for a step input of magnitude F'is

F F

v(f) = [um} - —] et 4

C C
Assume that we know [ and v(0) accurately and that we can measure the step response
long enough to estimate accurately the steady-state response vgs. Then we can compute ¢
from the steady-state response vgs = F/c; that is, ¢ = F/vs. To estimate m we

rearrange the step response as follows, using the fact that F/c = vs;.

[u{t} — L'55] t
In = ——

v(0) — vss T
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Transform the data v(¢) using
v(f) — Uss
) =1
0 nL" {]}_Uss]
This gives the zero-intercept, linear model: z(¢) = —¢/t, and we can find 7.

Assuming we have calculated ¢ from the steady-state response, we can find m from
m=ct.
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