

Calculus 1

Dr. Yamar Hamwi

Al-Manara University

2024-2025

Calculus 1

Lecture 1

Functions

Chapter 1

Functions

1.1 Functions and Their Graphs

1.2 Some Important Functions

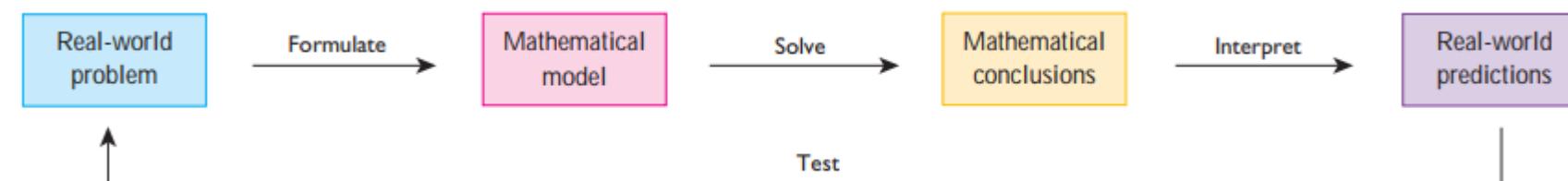
introduction

The temperature at which water boils depends on the elevation above sea level. The interest paid on a cash investment depends on the length of time the investment is held. The area of a circle depends on the radius of the circle. The distance an object travels depends on the elapsed time.

In each case, the value of one variable quantity, say y , depends on the value of another variable quantity, which we often call x . We say that “ y is a function of x ” and write this symbolically as

$$y = f(x) \quad (\text{"y equals } f \text{ of } x\text{"}).$$

The symbol f represents the function, the letter x is the **independent variable** representing the input value to f , and y is the **dependent variable** or output value of f at x .



DEFINITION A **function f** from a set D to a set Y is a rule that assigns a *unique* value $f(x)$ in Y to each x in D .

FIGURE 1.1 A diagram showing a function as a kind of machine.

It's helpful to think of a function as a **machine** (see Figure 1.1)

Functions

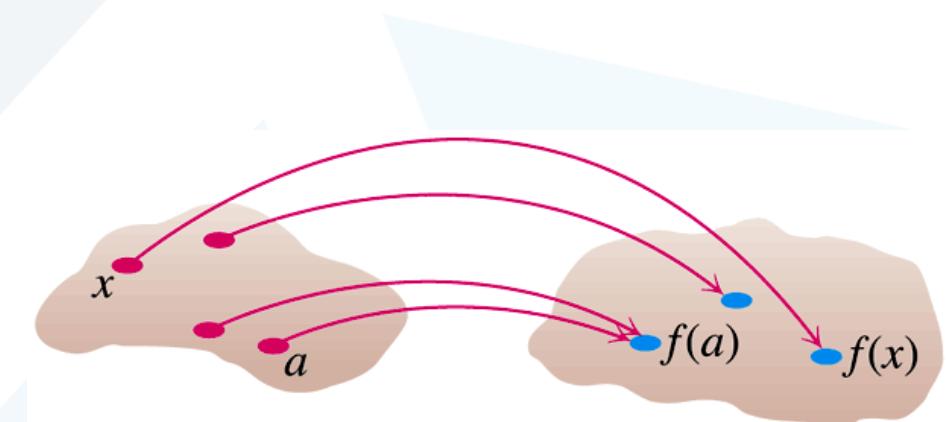
The **domain** of f is the set X .

The number y is the **image** of x under f and is denoted by $f(x)$, which is called the **value of f at x** . The **range** of f is a subset of Y and consists of all images of numbers in (s) .

f : is a function

x : is element in the domain

$f(x)$: is called the value of the function at x



D = domain set

Y = set containing the range

FIGURE 1.2 A function from a set D to a set Y assigns a unique element of Y to each element in D .

EXAMPLE 3

Evaluating a Function Let f be the function with domain all real numbers x and defined by the formula

$$f(x) = 3x^3 - 4x^2 - 3x + 7.$$

Find $f(2)$ and $f(-2)$.

SOLUTION To find $f(2)$, we substitute 2 for every occurrence of x in the formula for $f(x)$:

$$\begin{aligned} f(2) &= 3(2)^3 - 4(2)^2 - 3(2) + 7 && \text{Substitute 2 for } x. \\ &= 3(8) - 4(4) - 3(2) + 7 && \text{Evaluate exponents.} \\ &= 24 - 16 - 6 + 7 && \text{Multiply.} \\ &= 9. && \text{Add and subtract.} \end{aligned}$$

To find $f(-2)$, we substitute (-2) for each occurrence of x in the formula for $f(x)$. The parentheses ensure that the -2 is substituted correctly. For instance, x^2 must be replaced by $(-2)^2$, not -2^2 :

$$\begin{aligned} f(-2) &= 3(-2)^3 - 4(-2)^2 - 3(-2) + 7 && \text{Substitute } (-2) \text{ for } x. \\ &= 3(-8) - 4(4) - 3(-2) + 7 && \text{Evaluate exponents.} \\ &= -24 - 16 + 6 + 7 && \text{Multiply.} \\ &= -27. && \text{Add and subtract.} \end{aligned}$$

EXAMPLE

Evaluating a Function If $f(x) = (4 - x)/(x^2 + 3)$, what is (a) $f(a)$? (b) $f(a + 1)$?

SOLUTION

(a) Here, a represents some number. To find $f(a)$, we substitute a for x wherever x appears in the formula defining $f(x)$:

$$f(a) = \frac{4 - a}{a^2 + 3}.$$

(b) To evaluate $f(a + 1)$, substitute $a + 1$ for each occurrence of x in the formula for $f(x)$:

$$f(a + 1) = \frac{4 - (a + 1)}{(a + 1)^2 + 3}.$$

We can simplify the expression for $f(a + 1)$ using the fact that $(a + 1)^2 = (a + 1)(a + 1) = a^2 + 2a + 1$:

Expand Add and Subtract

$$f(a + 1) = \frac{4 - (a + 1)}{(a + 1)^2 + 3} = \frac{4 - a - 1}{a^2 + 2a + 1 + 3} = \frac{3 - a}{a^2 + 2a + 4}.$$

«

Functions

EXAMPLE 7

Domains of Functions Find the domains of the following functions:

(a) $f(x) = \sqrt{4 + x}$

(b) $g(x) = \frac{1}{\sqrt{1 + 2x}}$

(c) $h(x) = \sqrt{1 + x} - \sqrt{1 - x}$

SOLUTION

(a) Since we cannot take the square root of a negative number, we must have $4 + x \geq 0$, or equivalently, $x \geq -4$. So the domain of f is $[-4, \infty)$.

(b) Here, the domain consists of all x for which

$$1 + 2x > 0$$

$$2x > -1 \quad \text{Subtract 1 from both sides.}$$

$$x > -\frac{1}{2} \quad \text{Divide both sides by 2.}$$

The domain is the open interval $(-\frac{1}{2}, \infty)$.

(c) In order to be able to evaluate both square roots that appear in the expression of $h(x)$, we must have

$$1 + x \geq 0 \quad \text{and} \quad 1 - x \geq 0.$$

The first inequality is equivalent to $x \geq -1$, and the second inequality to $x \leq 1$. Since x must satisfy both inequalities, it follows that the domain of h consists of the closed interval $[-1, 1]$.

Functions; Domain and Range

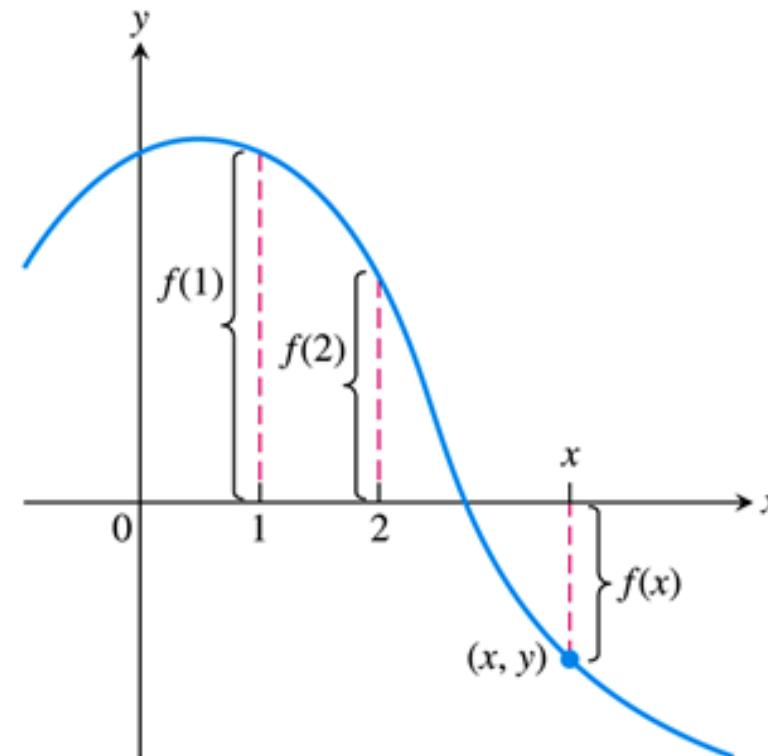
EXAMPLE 1 Verify the natural domains and associated ranges of some simple functions. The domains in each case are the values of x for which the formula makes sense.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	$[0, \infty)$
$y = 1/x$	$(-\infty, 0) \cup (0, \infty)$	$(-\infty, 0) \cup (0, \infty)$
$y = \sqrt{x}$	$[0, \infty)$	$[0, \infty)$
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0, \infty)$
$y = \sqrt{1 - x^2}$	$[-1, 1]$	$[0, 1]$

Graphs of Functions

If f is a function with domain D , its **graph** consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f . In set notation, the graph is

$$\{(x, f(x)) \mid x \in D\}.$$

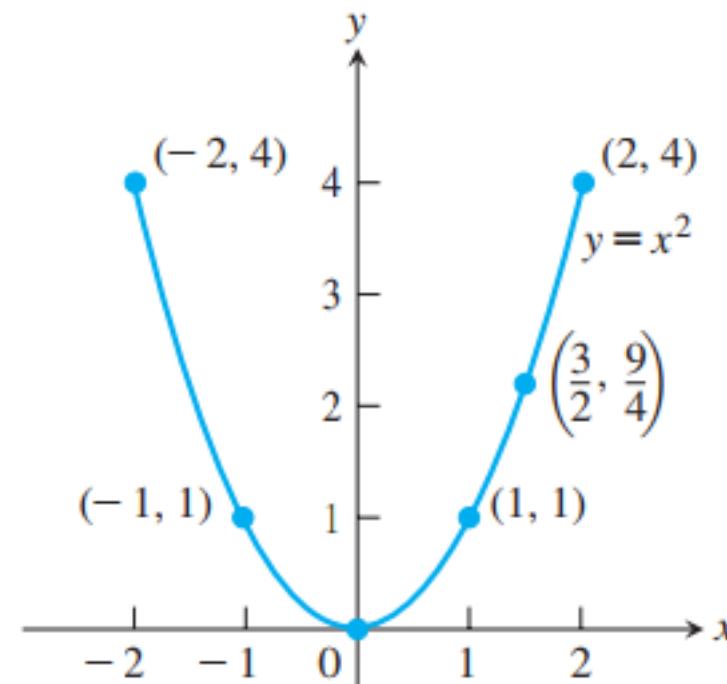


Graphs of Functions

EXAMPLE 2

Graph the function $y = x^2$ over the interval $[-2, 2]$.

x	$y = x^2$
-2	4
-1	1
0	0
1	1
$\frac{3}{2}$	$\frac{9}{4}$
2	4

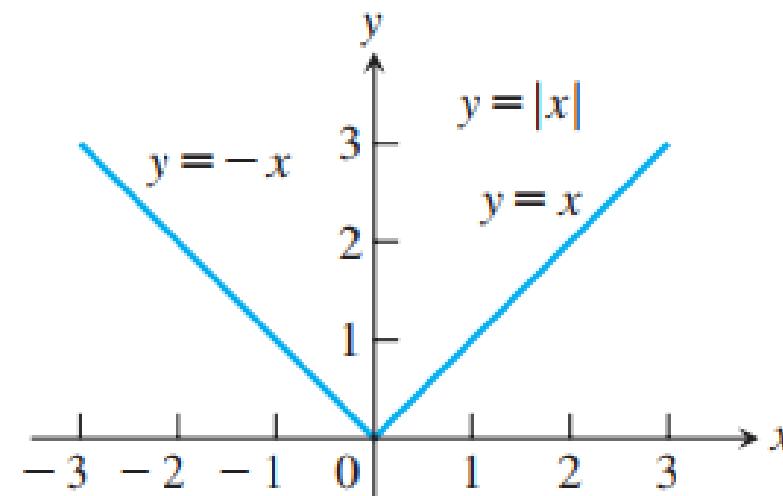


Graphs of Functions

One example is the **absolute value function**

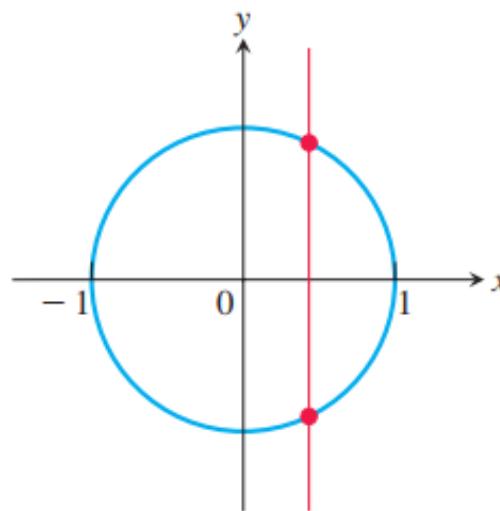
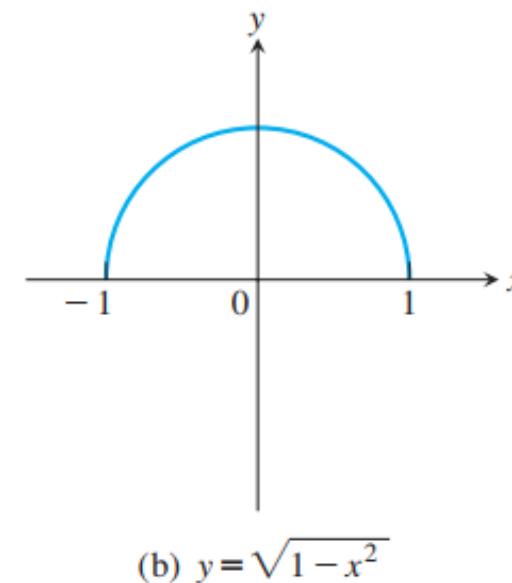
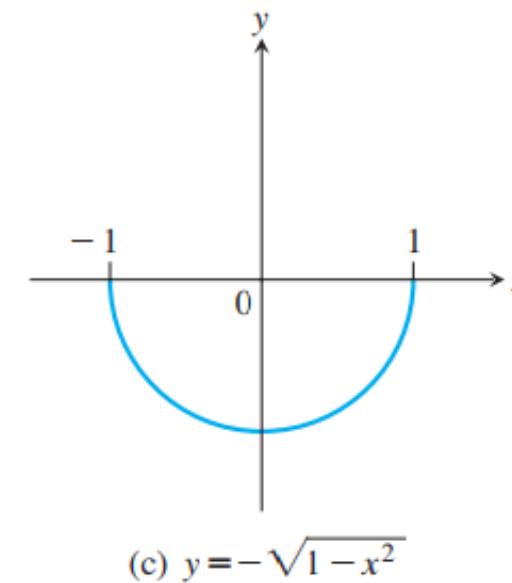
$$|x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}$$

First formula
Second formula



Graphs of Functions

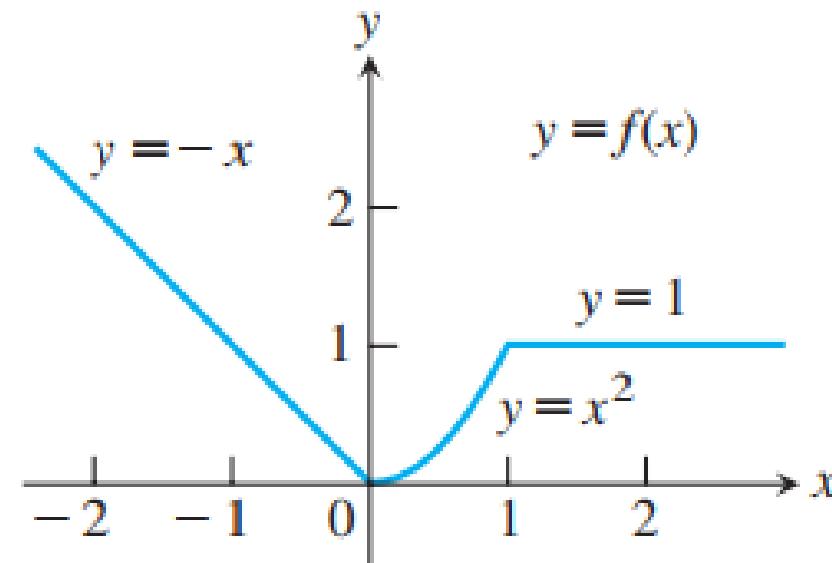
Exercise 1: (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of the function $f(x) = \sqrt{1 - x^2}$. (c) The lower semicircle is the graph of the function $g(x) = -\sqrt{1 - x^2}$.



EXAMPLE 4 The function

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \leq x \leq 1 \\ 1, & x > 1 \end{cases}$$

First formula
Second formula
Third formula



Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the function is ***increasing***. If the graph descends or falls as you move from left to right, the function is ***decreasing***.

DEFINITIONS Let f be a function defined on an interval I and let x_1 and x_2 be two distinct points in I .

1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be **increasing** on I .
2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be **decreasing** on I .

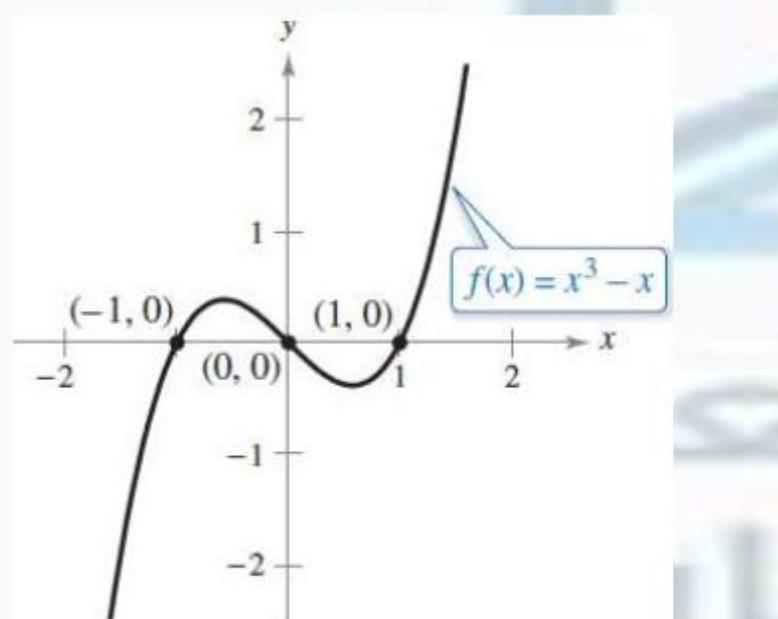
Even Functions and Odd Functions: Symmetry

DEFINITIONS A function $y = f(x)$ is an

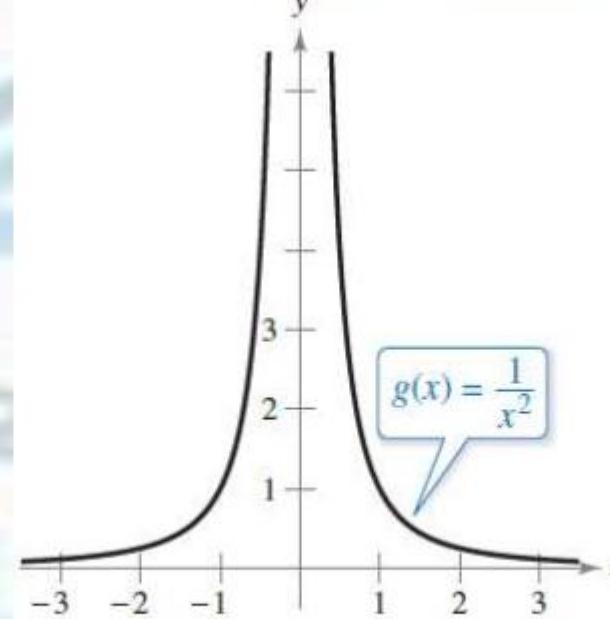
even function of x if $f(-x) = f(x)$,

odd function of x if $f(-x) = -f(x)$,

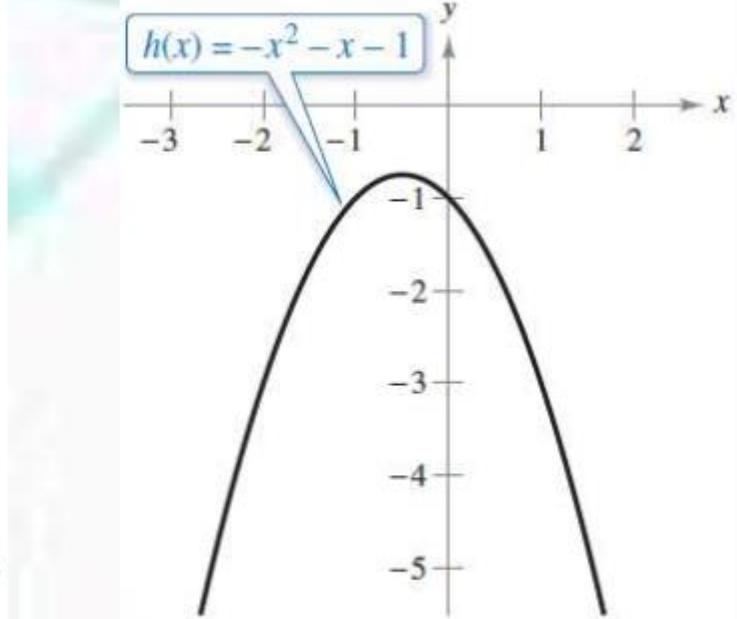
for every x in the function's domain.



Odd function



Even function



Neither even nor odd

Even Functions and Odd Functions: Symmetry

EXAMPLE 8

Here are several functions illustrating the definitions.

$$f(x) = x^2$$

Even function: $(-x)^2 = x^2$ for all x ; symmetry about y -axis. So $f(-3) = 9 = f(3)$. Changing the sign of x does not change the value of an even function.

$$f(x) = x^2 + 1$$

Even function: $(-x)^2 + 1 = x^2 + 1$ for all x ; symmetry about y -axis (Figure 1.13a).

$$f(x) = x$$

Odd function: $(-x) = -x$ for all x ; symmetry about the origin. So $f(-3) = -3$ while $f(3) = 3$. Changing the sign of x changes the sign of an odd function.

$$f(x) = x + 1$$

Not odd: $f(-x) = -x + 1$, but $-f(x) = -x - 1$. The two are not equal.

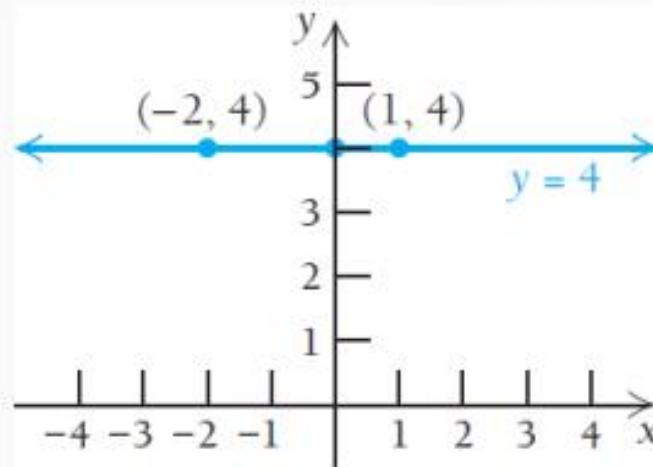
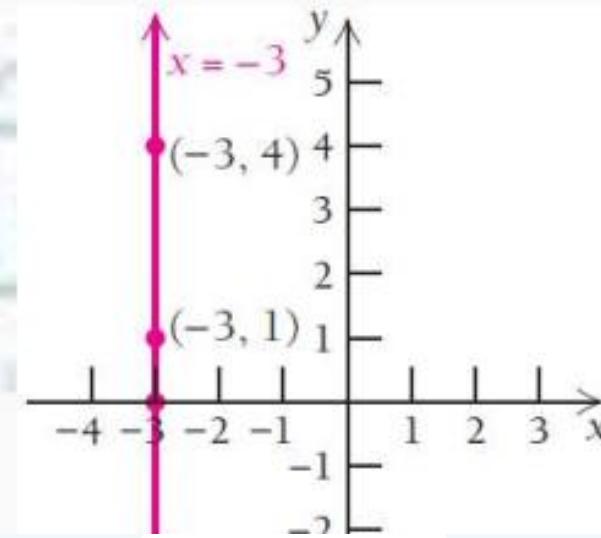
Not even: $(-x) + 1 \neq x + 1$ for all $x \neq 0$ (Figure 1.13b). ■

Linear Functions

Horizontal and Vertical Lines

The graph of $y = c$, or $f(x) = c$, a horizontal line, is the graph of a function.

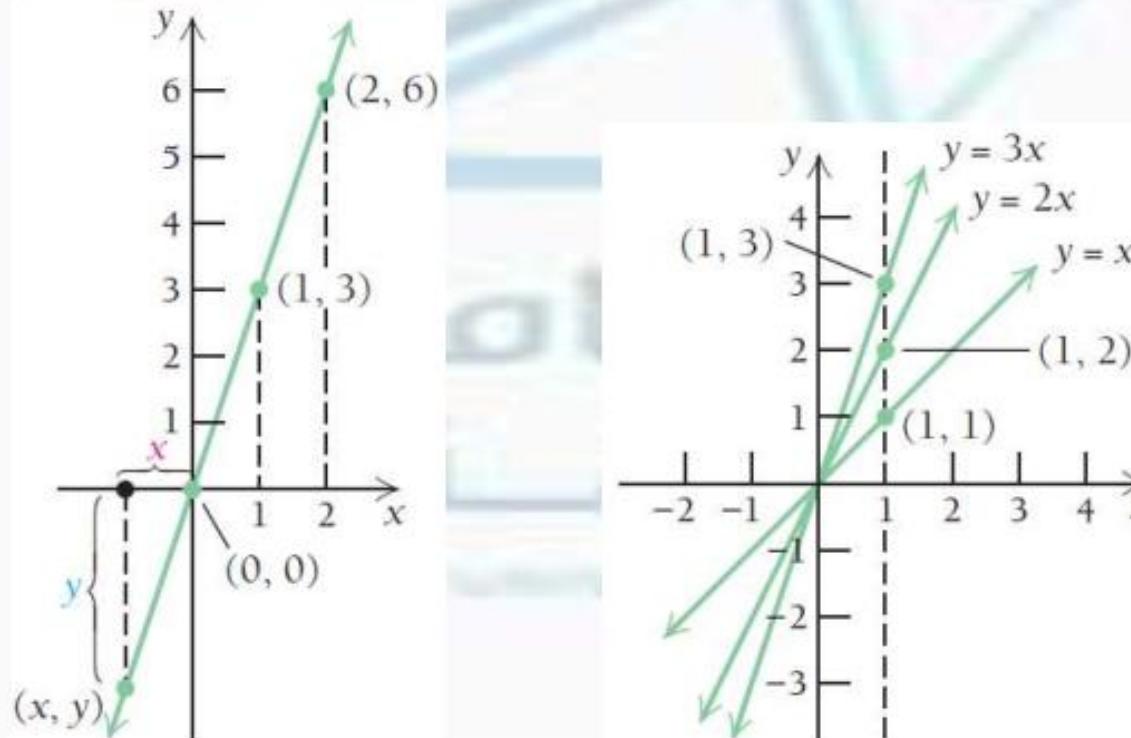
Such a function is referred to as a constant function. The graph of $x = a$ is a vertical line, and $x = a$ is not a function



Common Functions

The Equation $y = mx$

The graph of the function given by $y = mx$ or $f(x) = mx$ is the straight line through the origin $(0, 0)$ and the point $(1, m)$. The constant m is called the **slope** of the line. **We also say that y is directly proportional to x**



A **linear function** is given by $y = mx + b$ or $f(x) = mx + b$

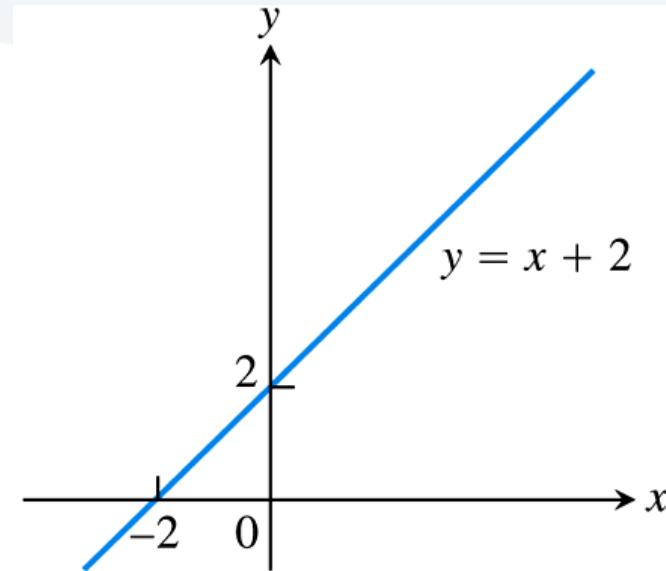
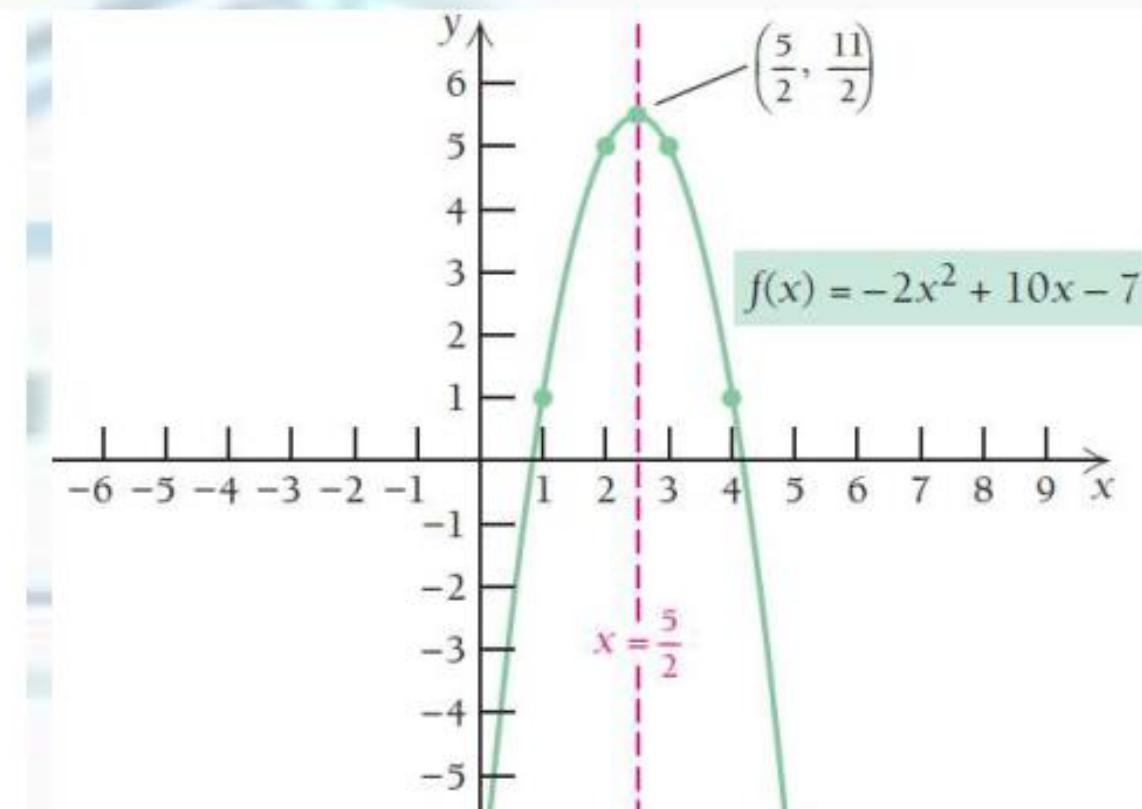


FIGURE 1.3 The graph of $f(x) = x + 2$ is the set of points (x, y) for which y has the value $x + 2$.

Non Linear Functions

Quadratic Functions

Definition: A quadratic function f is given by $f(x) = ax^2 + bx + c$, where $a \neq 0$



Polynomial Functions

Definition: A polynomial function f is given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where n is a nonnegative integer and $a_n, a_{n-1}, \dots, a_1, a_0$ are real numbers, called the **coefficients**

$$f(x) = -5 \quad (\text{Constant function})$$

$$f(x) = 4x + 3 \quad (\text{Linear function})$$

$$f(x) = -x^2 + 2x + 3 \quad (\text{Quadratic function})$$

$$f(x) = 2x^3 - 4x^2 + x + 1 \quad (\text{Cubic function})$$

Common Functions

Power Functions A function $f(x) = x^a$, where a is a constant, is called a **power function**. There are several important cases to consider.

(a) $f(x) = x^a$ with $a = n$, a positive integer.

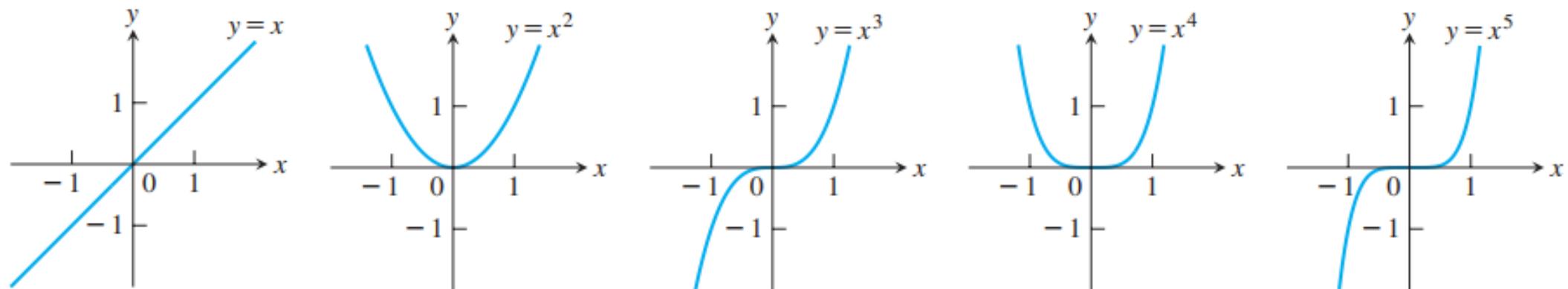


FIGURE Graphs of $f(x) = x^n$, $n = 1, 2, 3, 4, 5$, defined for $-\infty < x < \infty$.

(b) $f(x) = x^a$ with $a = -1$ or $a = -2$.

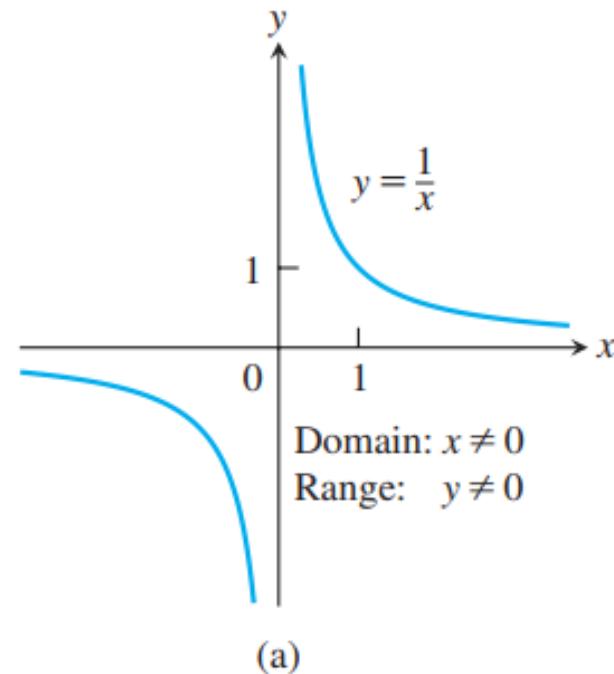
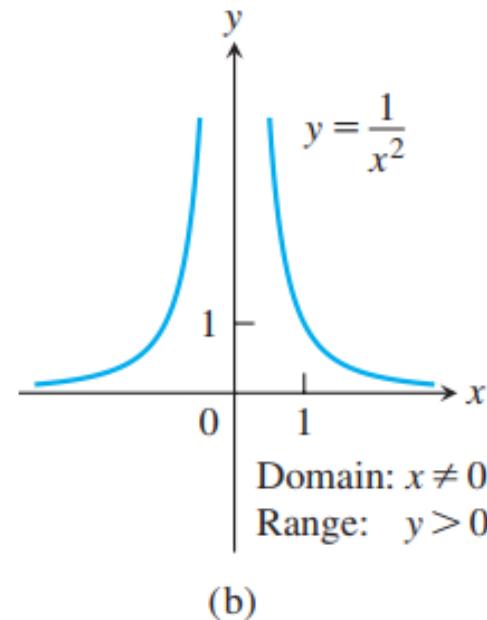


FIGURE . . . Graphs of the power functions $f(x) = x^a$. (a) $a = -1$,
(b) $a = -2$.

Common Functions

(c) $a = \frac{1}{2}, \frac{1}{3}, \frac{3}{2}$, and $\frac{2}{3}$.

The functions $f(x) = x^{1/2} = \sqrt{x}$ and $g(x) = x^{1/3} = \sqrt[3]{x}$ are the **square root** and **cube root** functions, respectively. The domain of the square root function is $[0, \infty)$, but the cube root function is defined for all real x . Their graphs are displayed in Figure 1.17, along with the graphs of $y = x^{3/2}$ and $y = x^{2/3}$. (Recall that $x^{3/2} = (x^{1/2})^3$ and $x^{2/3} = (x^{1/3})^2$.)

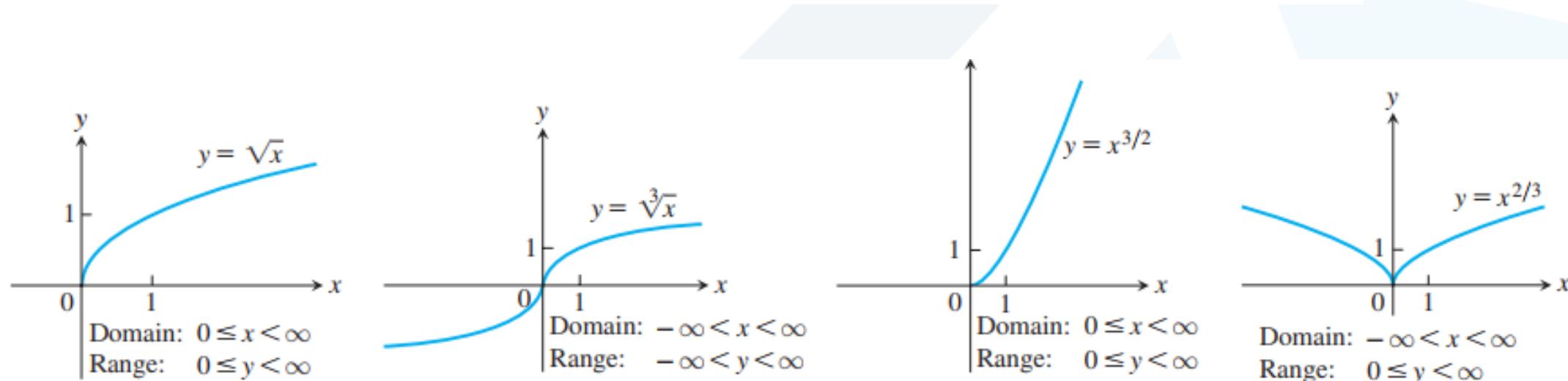
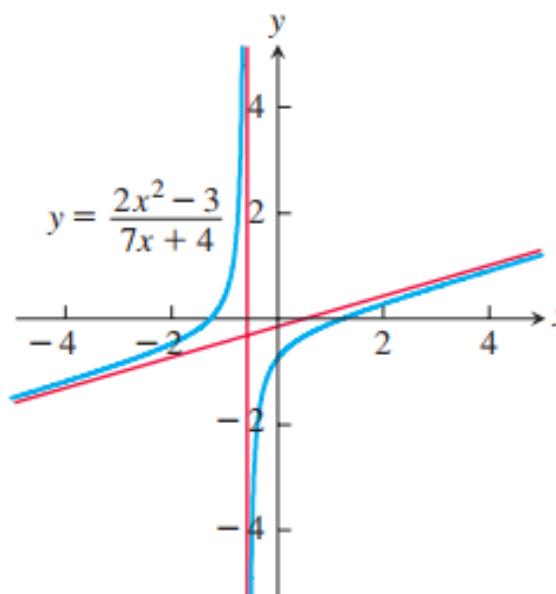


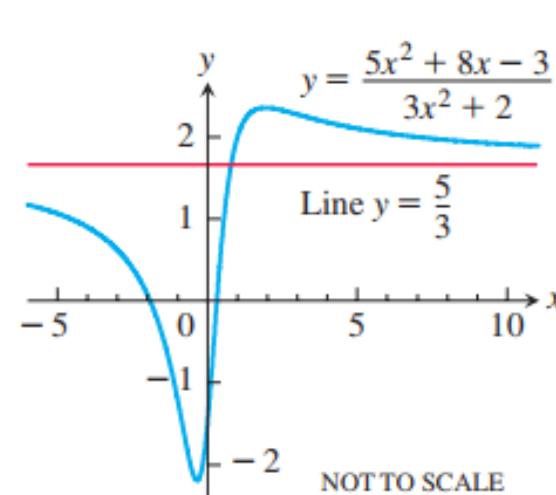
FIGURE 1.17 Graphs of the power functions $f(x) = x^a$ for $a = \frac{1}{2}, \frac{1}{3}, \frac{3}{2}$, and $\frac{2}{3}$.

Common Functions

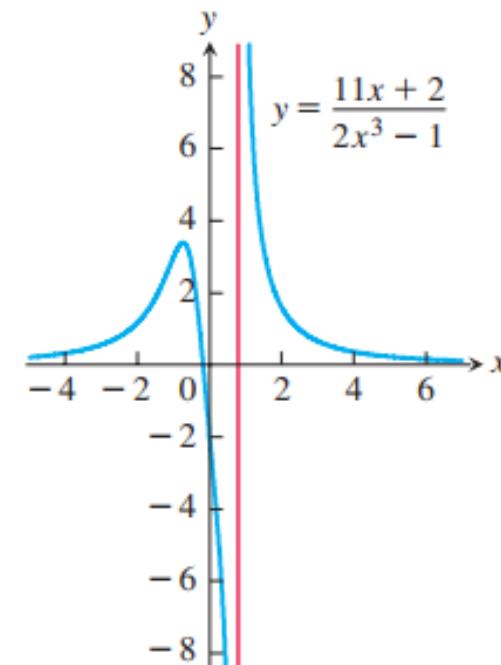
Rational Functions A **rational function** is a quotient or ratio $f(x) = p(x)/q(x)$, where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$. The graphs of several rational functions are shown in Figure .



(a)



(b)



(c)

Inequality	Geometric Description	Interval Notation
$a \leq x \leq b$		$[a, b]$
$a < x < b$		(a, b)
$a \leq x < b$		$[a, b)$
$a < x \leq b$		$(a, b]$
$a \leq x$		$[a, \infty)$
$a < x$		(a, ∞)
$x \leq b$		$(-\infty, b]$
$x < b$		$(-\infty, b)$

Exercises

Find the domain of each function

$$f(x) = \frac{7}{2x-10}$$

$$g(x) = \sqrt{x+6}$$

$$h(x) = \sqrt{x^2 + x + 10}$$

$$f(x) = \frac{x+3}{4-\sqrt{x^2-9}}$$

Find the domain and range of each function

$$f(x) = x^2 + 3$$

$$f(x) = \sqrt{6-x}$$

$$g(x) = 2 + \sqrt{9+x}$$

$$f(x) = -|x+1|$$

$$h(x) = \frac{2}{x+1}$$

Consider the function given by $f(x) = \begin{cases} -x^2+2, & \text{for } x < 1, \\ 4, & \text{for } 1 < x \leq 2, \\ \frac{1}{2}x, & \text{for } x \geq 2 \end{cases}$

a) Find $f(-1)$, $f(1.5)$, and $f(6)$

b) Graph the function

Graph the following functions

$$f(x) = -\frac{1}{2}x + 3 \quad g(x) = \sqrt{x} + 1$$

$$f(x) = -x^2 + 4 \quad h(x) = |x - 4| - 4$$

Graph the following functions

$$f(x) = \begin{cases} x, & 0 \leq x \leq 1 \\ 2 - x, & 1 < x \leq 2 \end{cases} \quad f(x) = \begin{cases} 4 - x^2, & x < 0 \\ 2 - x, & 0 \leq x \end{cases}$$

Determine whether the function is even, odd, or neither

$$f(x) = x^4 - x^2, \quad g(x) = \sqrt{x^3 + 1}$$

$$h(x) = x^4 + 3x^2 - 1, \quad g(t) = 2|t| + 1$$

$$f(x) = \frac{1}{x^2 - 1}, \quad f(x) = \frac{x}{x^2 - 1}$$

In Exercises 1–6, find the domain and range of each function.

$$1. f(x) = 1 + x^2$$

$$2. f(x) = 1 - \sqrt{x}$$

$$3. F(x) = \sqrt{5x + 10}$$

$$4. g(x) = \sqrt{x^2 - 3x}$$

$$5. f(t) = \frac{4}{3 - t}$$

$$6. G(t) = \frac{2}{t^2 - 16}$$

$$15. f(x) = 5 - 2x$$

$$16. f(x) = 1 - 2x - x^2$$

$$17. g(x) = \sqrt{|x|}$$

$$18. g(x) = \sqrt{-x}$$

$$19. F(t) = t/|t|$$

$$20. G(t) = 1/|t|$$

Find the domain of $y = \frac{x + 3}{4 - \sqrt{x^2 - 9}}$.

Graph the functions in Exercises 25–28.

$$25. \ f(x) = \begin{cases} x, & 0 \leq x \leq 1 \\ 2 - x, & 1 < x \leq 2 \end{cases}$$

$$26. \ g(x) = \begin{cases} 1 - x, & 0 \leq x \leq 1 \\ 2 - x, & 1 < x \leq 2 \end{cases}$$

$$27. \ F(x) = \begin{cases} 4 - x^2, & x \leq 1 \\ x^2 + 2x, & x > 1 \end{cases}$$

$$28. \ G(x) = \begin{cases} 1/x, & x < 0 \\ x, & 0 \leq x \end{cases}$$

Even and Odd Functions

In Exercises 47–58, say whether the function is even, odd, or neither. Give reasons for your answer.

47. $f(x) = 3$

49. $f(x) = x^2 + 1$

51. $g(x) = x^3 + x$

53. $g(x) = \frac{1}{x^2 - 1}$

55. $h(t) = \frac{1}{t - 1}$

57. $h(t) = 2t + 1$

59. $\sin 2x$

61. $\cos 3x$

48. $f(x) = x^{-5}$

50. $f(x) = x^2 + x$

52. $g(x) = x^4 + 3x^2 - 1$

54. $g(x) = \frac{x}{x^2 - 1}$

56. $h(t) = |t^3|$

58. $h(t) = 2|t| + 1$

60. $\sin x^2$

62. $1 + \cos x$

Thank you for your attention