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Chapter 1

Functions of a Complex Variable

1. Complex Numbers

2. Powers and Roots

3. Sets in the Complex Plane

4. Functions of a Complex Variable

5. Cauchy-Riemann Equations

6. Exponential and Logarithmic Functions

7. Trigonometric and Hyperbolic Functions

8. Inverse Trigonometric and Hyperbolic Functions
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1. Complex Numbers

▪ Definition: A number of the form z = x + iy, where x and y are real numbers 

and              (imaginary unit), is called a complex number. 

x is called the real part of z and is written as Re(z) and y is called the imaginary 

part and is written as Im(z). 

i = −1

For example, if z = 4 + 9i, then Re(z) = 4 and Im(z) = 9

A real constant multiple of the imaginary unit is called a pure imaginary 

number

▪ Definition: Complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal, z1 = z2, if 

Re(z1) = Re(z2) and Im(z1) = Im(z2).

A complex number z = x + iy = 0 if x = 0 and y = 0.
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Arithmetic Operations

▪ If z1 = x1 + iy1 and z2 = x2 + iy2 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

z z x iy x iy x x i y y

z z x iy x iy x x i y y

z z x iy x iy x x y y i y x x y

z x iy x x y y y x x y
i

z x iy x y x y

+ = + + + = + + +

− = + − + = − + −

= + + = − + +

+ + −
= = +

+ + +

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2

1 2 1 1 2 2 1 2 1 2 1 2 1 2

1 1 1 1 2 1 2 1 2 1 2
2 2 2 2

2 2 2 2 2 2 2

Addition:

Subtraction:

Multiplication:

Division:

( ) ( )

( ) ( )

z z z z
z z z z

z z z z z z
z z z z z z

+ = +
 =

+ + = + +
 =

1 2 2 1

1 2 2 1

1 2 3 1 2 3

1 2 3 1 2 3

Commutative laws:

Associative laws:
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( )z z z z z z z+ = +1 2 3 1 2 1 3Distributive law:

▪ If z = x + iy is a complex number, then the complex number                 is called 

the complex conjugate or, simply, the conjugate of z.

z x iy= −

,

,

z z z z z z z z

z z
z z z z

z z

+ = + − = −

 
= = 

 

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2

( ) ( ) ( )

( ) ( ) ( )

z z x iy x iy x Re z

z z x iy x iy iy Im z

+ = + + − = =

− = + − − = =

2 2

2 2
( ) , ( )

z z z z
Re z Im z

i

+ −
 = =

2 2

( )( )zz x iy x iy x y= + − = +2 2

For example, if z = 4 + 9i, then z i= −4 9
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Geometric Interpretation

A complex number z = x + iy can be viewed as a vector whose 

initial point is the origin and whose terminal point is (x, y). The 

coordinate plane is called the complex plane or simply the 

z-plane. The horizontal or x-axis is called the real axis and the 

vertical or y-axis is called the imaginary axis.

▪ Definition: The modulus or absolute value of z = x + iy, denoted by |z|, is the 

real number
z x y zz= + =2 2

z z z z+  +1 2 1 2 the triangle inequality 1 2 1 2z z z z+  −

For example, if z = 2 − 3i, then ( )z = + − =2 22 3 13
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( ) ( )− = − + −z z x x y y2 2
2 1 2 1 2 1

▪ Example 1: Set of Points in the Complex Plane

Describe the set of points z in the complex plane that satisfy |z| = |z − i|.

▪ Note: The distance between two points z1 = x1 + iy1 and z2 = 

x2 + iy2 is given by |z| = |z2 − z1| = |(x2 − x1) + i(y2 − y1)| or 

The distance from a point z to the origin equals the 

distance from z to the point i.

( ) ( )+ = + −  + = + −  =x y x y x y x y y2 2 2 2 2 2 2 2 1
21 1

Complex numbers satisfying |z| = |z − i| can then be 

written as z = x + ½ i.
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2. Powers and Roots

Polar Form

▪ A nonzero complex number z = x + iy can be written as 

z = (r cos ) + i(r sin ) or (cos sin )z r i = + polar form

r = |z| arg tan ( / )z y x −= = 1

 measured in radians is called an argument of z (arg z).

▪ If 0 is an argument of z, then the angles 0 ± 2k, k  N are also arguments.

▪ Note: We have to choose  consistent with the quadrant in which z is located; 

since tan  has period , so that the arguments of z and −z have the same 

tangent. 

For example, if                   , then                                              and= − −z i3 ( ) ( )= − + − =z 2 23 1 2
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▪ The argument of a complex number in the interval −     is called the 

principal argument of z and is denoted by Arg z.

For example, if                  , thenz i= −1 3 ( ) ( )cos sin  = + z i5 5
3 32

tan ( / ) tan ( / ) tan ( / ) / − − −= = − − = =y x1 1 11 3 1 3 6 (calculator)

which is an angle whose terminal side is in the 

first quadrant. But since the point                    lies 

in the third quadrant ⇒  = 6 +  = 76.

( , )− −3 1

( ) ( )cos sin  = +
 

z i7 7
6 6

2

( ) ( )cos sin  = − + − z i3 32

in the interval (, ], the principal argument of z, is Arg z = −/3
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▪ If and (cos sin )z r i = +1 1 1 1 (cos sin )z r i = +2 2 2 2

[cos( ) sin( )]

[cos( ) sin( )]

z z r r i

z r
i

z r

   

   

= + + +

= − + −

1 2 1 2 1 2 1 2

1 1
1 2 1 2

2 2

arg( ) arg arg 

arg arg arg 

z z z z

zz

z z

z z z z

z
z z

z

=

=

= +

 
= − 

 

1 2 1 2

11

2 2

1 2 1 2

1
1 2

2
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Integer Powers of z
(cos sin )n nz r n i n = +

For example, if                  , then ( )( ) ( )( )cos / sin /  = − + − z i3 32 3 3 3 3z i= −1 3

▪ Note: It is not true, in general, that Arg(z1z2) = Arg z1 + Arg z2 and Arg(z1/z2) = 

Arg z1 − Arg z2 (although it may be true for some complex numbers).

For example, if z1 = −1 and z2 = 5i, then

Arg(z1) = , Arg(z2) = 2, Arg(z1z2) = −2, Arg z1 + Arg z2 = 32  Arg(z1z2)

If z1 = −1 and z2 = −5i, then

Arg(z1) = , Arg(z2) = −2, Arg(z1/z2) = −2, Arg z1 − Arg z2 = 32  Arg(z1/z2)

( ) ( )cos sinz i  = − + − = − 
3 32 8
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DeMoivre’s Formula

(cos sin ) cos sin ni n i n   + = +

Roots

▪ A number w is said to be an nth root of a nonzero complex number z if wn = z.

(cos sin )z r i = + 

/ cos sinn
k

k k
w r i

n n

    + +   
= +    

    

1 2 2

where k = 0, 1, 2, ..., n − 1

For example, the three cube roots of z = i are:

/ / /
cos sin , , , k

k k
w i k

    + +   
= + =    

    

1 3 2 2 2 2
1 0 1 2

3 3
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i+3 1
2 2i− +3 1

2 2

i−

, cos sin

, cos sin

, cos sin

 

 

 

= = + = +

= = + = − +

= = + = −

k w i i

k w i i

k w i i

0

1

2

3 1
0

6 6 2 2

5 5 3 1
1

6 6 2 2
3 3

2
2 2

Principal nth Root

▪ The root w of a complex number z obtained by using the principal argument of 

z with k = 0 is sometimes called the principal nth root of z.

In previous example we see that                      is the principal cube root of i.
The choice of Arg(z) and k = 0 guarantees us that when z is a positive real 

number r, the principal nth root is .

= +w i3 1
0 2 2

n r
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3. Sets in the Complex Plane

▪ Circles Suppose z0 = x0 + iy0. Since |z − z0| =                                 is the distance 

between the points z = x + iy and z0 = x0 + iy0, the points z = x + iy that satisfy 

the equation |z − z0| =    0, lie on a circle of radius  centered at the 

point z0.

( ) ( )− + −x x y y2 2
0 0

▪ The points z satisfying the inequality               ,   0, lie within, 

but not on, a circle of radius  centered at the point z0. This set is 

called a neighborhood of z0 or an open disk. 

z z − 0

▪ A point z0 is said to be an interior point of a set S of the complex plane if there 

exists some neighborhood of z0 that lies entirely within S. If every point z of a 

set S is an interior point, then S is said to be an open set.
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▪ The set S of points in the complex plane defined by Re(z) ≥ 1 is not an open 

set.

Set S is not openOpen set magnified view of a point near x = 1

For example, the inequality Re(z)  1 is an open set.
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(a) Im(z)  0; lower half-plane (b) −1  Re(z)  1; infinite strip

(c) |z|  1; exterior of unit circle (d) 1  |z|  2; circular ring

Figure 1 Four examples of open sets
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▪ If every neighborhood of a point z0 contains at least one point that is in a set S 

and at least one point that is not in S, then z0 is said to be a boundary point 

of S. 

▪ The boundary of a set S is the set of all boundary points of S. 

▪ For the set of points defined by Re(z) ≥ 1, the points on the line x = 1 are 

boundary points. 

▪ The points on the circle |z − i| = 2 are boundary points for the disk |z − i|  2.

▪ point z that is neither an interior point nor a boundary 

point of a set S is said to be an exterior point of S; in 

other words, z0 is an exterior point of a set S if there 

exists some neighborhood of z0 that contains no 

points of S.
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▪ Domain: If any pair of points z1 and z2 in a set S can be 

connected by a polygonal line that lies entirely in the set, then 

the open set S is said to be connected. 

▪ An open connected set is called a domain. Each of the open 

sets in Figure 1 is connected and so are domains.

▪ The set of points satisfying Re(z)  4 is an open set but is not 

connected.

▪ Regions: A region is a domain in the complex plane with all, some, or none of 

its boundary points.

▪ Annulus: If 0  1  2, the set of points satisfying 1  |z − z0|  2 is called an 

open circular annulus. For 1 = 0, we obtain a deleted neighborhood of z0.
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▪ A region containing all its boundary points is said to be closed. The disk 

defined by |z − i|  2 is an example of a closed region and is referred to as a 

closed disk. 

▪ A region may be neither open nor closed; the annular region defined by 

1  |z − 5|  3 contains only some of its boundary points and so is neither open 

nor closed.

▪ Since an open connected set does not contain any boundary points, it is 

automatically a region.

▪ Note: Do not confuse the concept of “domain” defined here as open connected 

set with the concept of the “domain of a function.”
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4. Functions of a Complex Variable

▪ Definition: A complex function is a function f whose domain and range are 

subsets of the set C of complex numbers.

▪ A complex function is also called a complex-valued function of a complex 

variable.

▪ The image w of a complex number z = x + iy will be some complex number 

w = u + iv; that is, w = u(x, y) + iv(x, y) = f(z), where u, v are real functions of x 

and y.

▪ If to each value of z, there corresponds one and 

only one value of w, then w is said to be a single-

valued function of z otherwise a multi-valued 

function. 
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For example, w = 1/z is a single-valued function and            is a multi-valued 

function of z. The former is defined at all points of the z-plane except at z = 0 

and the latter assumes two values for each value of z except at z = 0. 

w z=

( ) ( ) ( ),

( ) , \{ , }

f z z z x y x i xy y z C
z

f z z C i i
z

= − = − − + − 

=  −
+

2 2 2

2

4 4 2 4

1

▪ Note: we cannot draw a graph of a complex function w = f(z). We, say that a 

curve C in the z-plane is mapped into the corresponding curve C ' in the 

w-plane by the function w = f(z) which defines a mapping or transformation of 

the z-plane into the w-plane. 

Some examples of functions of a complex variable are:

( ) ( ),f z z Re z z C= + 
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▪ Example 2: Image of the line Re(z) = 1 under the 

mapping f(z) = z2

( ) ( , )  and ( , )

( ) ( , )  and ( , )

/

=  = − =

= =  = − =

 = −

f z z u x y x y v x y xy

Re z x u x y y v x y y

u v

2 2 2

2

2

2

1 1 2

1 4

▪ Example 3: Image of the Half-Plane Re(z)  2 

under the mapping f(z) = iz

( ) ( , )   ( , )

, ,

( )

=  = − =

 −       −    

 

f z iz u x y y v x y x

x y v u

Im z

2 2

2

and
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Principal Square Root Function z1/2

The square root of a nonzero complex number z = r(cos + i sin) = rei is given 

by:
( )/cos sin , , 2 22 2

0 1
2 2

i kk k
r i re k     + + +   

+ = =    
    

By setting  = Arg(z) and k = 0, we can define a function that assigns to z the 

unique principal square root.

/ Arg( )/1 2 2i zz z e=▪ Definition: The function z1/2 defined by:                      is called the principal 

square root function.

▪ Example 4: Values of z1/2 for z = −2i
( /4)

/ ( / )/

( /4)
, 

( )


 



−
− +

=

 = −
− = = 

= − +

i
i k

ik

e i
i e

e i
1 2 2 2 2

30 1

2 1
2 2

2 1

principal square root
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if, for each   0, there exists a   0 such that 

|f(z) − L|   whenever 0  |z − z0|  .

▪ Complex and real limits have many common properties, 

but there is at least one very important difference.

lim ( )
z z
f z L

→
=

0

Limits and Continuity

▪ Definition: Suppose the function f is defined in some neighborhood of z0, 

except possibly at z0 itself. Then f is said to possess a limit at z0, written:

There are two directions from which x can approach x0 on the real line.

▪ For real functions,                      iff:lim ( )
x x
f x L

→
=

0

lim ( ) lim ( )
x x x x

f x f x L
+ −→ →

= =
0 0
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▪ For limits of complex functions, z is allowed to approach z0 from any direction 

in the complex plane, that is, along any path through z0.

▪ In order that               exists and equals L, we require that f(z) 

approach the same complex number L along every possible 

path through z0.

lim ( )
z z
f z

→ 0

▪ If f approaches two complex numbers L1  L2 for two different paths or paths 

through z0, then               does not exist.

Criterion for the Nonexistence of a Limit

lim ( )
z z
f z

→ 0

▪ Example 5: An Epsilon-Delta Proof of a Limit

Using the epsilon-delta definition, Prove that lim ( )
z i

i z i
→ +

+ = +
1
2 1 3
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▪ Example 6: A Limit That Does Not Exist

Show that            does not exist.lim
z

z

z→0

|(2 + i)z − (1 + 3i)|   whenever 0  |z − (1 + i)|  

( ) ( )

( ) ( )

 


 

+
+ − +   + − 

+

− +   − +  =

i
i z i i z

i

z i z i

1 3
2 1 3 2

2

5 1 1
5

⇔ if, for each   0, there exists a   0 such thatlim ( )
z i

i z i
→ +

+ = +
1
2 1 3

Given   0, let  =  If 0  |z − (1 + i)|   then |(2 + i)z − (1 + 3i)|   

So, according to Definition

/ 5

lim ( )
z i

i z i
→ +

+ = +
1
2 1 3
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lim lim
z x

z x i

z x i→ →

+
= =

−0 0

0
1

0
z approach 0 along the real axis

lim lim
z y

z iy

z iy→ →

+
= = −

−0 0

0
1

0
z approach 0 along the imaginary axis

▪ Theorem 1: Suppose that f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, and L = u0 + iv0. 

Then                      if and only if:lim ( )
z z
f z L

→
=

0

( , ) ( , ) ( , ) ( , )
lim ( , ) and lim ( , )

x y x y x y x y
u x y u v x y v

→ →
= =

0 0 0 0
0 0

▪ Example 7: Using Theorem 1 to Compute the Limit lim ( )
z i

z i
→ +

+2
1

( , ) ( , ) ( , ) ( , )

( ) ( )

lim ( )   lim ( ) lim ( )
→ → → +

= + = − + +

= − = = + =  + =
x y x y z i

f z z i x y xy i

u x y v xy z i i

2 2 2

2 2 2
0 0

1 1 1 1 1

2 1

0 2 1 3 3and
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▪ Theorem 2: Suppose                       and                      . Then lim ( )
z z
f z L

→
=

0
1 lim ( )

z z
g z L

→
=

0
2

( )
lim [ ( ) ( )] lim [ ( ) ( )] lim ,

( )z z z z z z

Lf z
f z g z L L f z g z L L L

g z L→ → →
+ = + = = 

0 0 0

1
1 2 1 2 2

2

0

▪ Definition: A function f is continuous at a point z0 if lim ( ) ( )
z z
f z f z

→
=

0
0

▪ As a consequence, if two functions f and g are continuous at a point z0, then 

their sum and product are continuous at z0. The quotient of the two functions is 

continuous at z0 provided g(z0)  0.

▪ A polynomial of degree n > 0 ( ) −
−= + + + +n n

n nf z a z a z a z a z1
1 1 0

where, an ≠ 0, ai  C, i = 0, 1, …, n is continuous everywhere.

▪ A rational function f(z) = g(z)/h(z) , where g and h are polynomial functions, 

is continuous except at those points at which h(z) is zero.
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▪ Example 8: Discontinuity of Principal Square Root Function f(z) = z1/2 at z0 = −1 

/ Arg( )/ /lim lim lim lim (cos sin )1 2 2 2

1 1 2 2
i z i

z z
z z e e i

   

 

→− →− → →
= = = + =

z approaching −1 along the second quadrant. That is, 

z = ei, /2    , with  approaching 

z approaching −1 along the third quadrant. That is, 

z = ei, −    −/2, with  approaching −

/ Arg( )/ /lim lim lim lim (cos sin )1 2 2 2

1 1 2 2
i z i

z z
z z e e i

   

 

→− →− →− →−
= = = + = −

does not exist
/lim

→−

z
z1 2
1

 The principal SQRT function f(z) = z1/2 is discontinuous at z0 = −1
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▪ Theorem 3 (Real and Imaginary Parts of a Continuous Function): Suppose 

that f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0. Then the complex function f is 

continuous at the point z0 if and only if both real functions u and v are 

continuous at the point (x0, y0). 

The function               is continuous on C.( )f z z=

▪ Theorem 4 (Properties of Continuous Functions): If f and g are continuous at 

the point z0, then the following functions are continuous at the point z0: 

(i) cf, c a complex constant,

(ii) f ± g,

(iii) f.g, and

(iv) f/g provided g(z0)  0.
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▪ Branches: A branch of a multiple-valued function F is a function f1 that is 

continuous on some domain and that assigns exactly one of the multiple 

values of F to each point z in that domain.

▪ The requirement that a branch be continuous means that the domain of a 

branch is different from the domain of the multiple-valued function.

▪ Note: For the multiple-valued function F(z) = z1/2, and even though the principal 

SQRT function f(z) = z1/2 does assign exactly one value of F to each input z, f is 

not a branch of F (Example 8: f(z) is not continuous at z0 = −1).

▪ Note: The principal SQRT function f(z) = z1/2 is discontinuous at every point on 

the negative real axis.

▪ To obtain a branch of F(z) = z1/2 that agrees with the principal square root 

function, we must restrict the domain to exclude points on the negative real axis.
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/( ) , ,   =  −  if z re r2
1 0

We call the function f1 the principal branch of F(z) = z1/2.

Branch Cuts and Points

▪ A branch cut for a branch f1 of a multiple-valued function F 

is a portion of a curve that is excluded from the domain of F 

so that f1 is continuous on the remaining points.

▪ The nonpositive real axis, shown in color in figure above, is a branch cut for 

the principal branch f1 given above of the multiple-valued function F(z) = z1/2.

▪ A different branch of F with the same branch cut:
/( ) ,22 3if z re    =  

tan ( / )/ tan ( / ) tan ( / )
( ) cos sin

−
− −   

= + = + + +   
   

i y x y x y x
f z x y e x y i x y

1
1 1

2 2 2 2 2 2 24 4 4
1 2 2
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▪ These branches are distinct because for, say, z = i we have                        , but 

a                        .

▪ Note: If we set  =  − 2, then the branch f2 can be expressed as:

Thus, we have shown that f2 = − f1 We can think of these two branches of 

F(z) = z1/2 as being analogous to the positive and negative square roots of a 

positive real number.

▪ A point with the property that it is on the branch cut of every branch is called a 

branch point of F.

▪ The point z = 0 is on the branch cut for f1, f2 and on the branch cut of every 

branch of the multiple-valued function F(z) = z1/2.

( ) = +f i i1 1
1 2 2

( ) = − −f i i1 1
2 2 2

( )/ / /( ) ,       += = = − −  i i i if z re re e re2 2 2 2
2
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Derivative

▪ Definition: Suppose the complex function f is defined in a neighborhood of a 

point z0. The derivative of f at z0 is

( ) ( )
( ) lim

z

f z z f z
f z

z →

+  −
 =



0 0
0

0

provided this limit exists.

▪ If the limit exists, the function f is said to be differentiable at z0.

▪ As in real variables, If f is differentiable at z0, then f is continuous at z0.

Moreover, the rules of differentiation are the same as in the calculus of real 

variables.

▪ If f and g are differentiable at a point z, and c is a complex constant, then:
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, ( ) ( )

[ ( ) ( )] ( ) ( )

[ ( ) ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) [ ( )]

( ( )) ( ( )) ( )

,  −

= =

 + = +

 = +

   −
= 

 

 =

=n n

d d
c cf z cf z

dz dz
d
f z g z f z g z

dz
d
f z g z f z g z f z g z

dz
d f z f z g z f z g z

dz g z g z

d
f g z f g z g z

dz
d
z nz n

dz

2

1

0

an integer

Constant Rules:

Sum Rule:

Product Rule:

Quotient Rule:

Chain Rule:

Power Rule:
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▪ Note: In order for a complex function f to be differentiable at a point z0,

( ) ( )
lim
z

f z z f z

z →

+  −



0 0

0

must approach the same complex number from any direction.

▪ Example 9: A Function That Is Nowhere Differentiable.

Show that the function f(z) = x + 4iy is nowhere differentiable

z = x + iy ( ) ( ) ( ) ( )f z z f z x x i y y x iy x i y +  − = +  + +  − − =  + 4 4 4

( ) ( )
lim lim
z z

f z z f z x i y

z x i y →  →

+  −  + 
=

  + 0 0

4

z → 0 along a line ⫽ to x-axis (y = 0) ⇒ limit is 1.

z → 0 along a line ⫽ to y-axis (x = 0) ⇒ limit is 4.
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Analytic Functions

▪ Definition: A complex function w = f(z) is said to be analytic (holomorphic) at a 

point z0 if f is differentiable at z0 and at every point in some neighborhood of z0.

▪ A function f is analytic in a domain D if it is analytic at every point in D.

f(z) = |z|2 is differentiable at z = 0 but is differentiable nowhere else. Hence, 

f(z) = |z|2 is nowhere analytic.

In contrast, the simple polynomial f(z) = z2 is differentiable at every point z in 

the complex plane. Hence, f(z) = z2 is analytic everywhere.

▪ A function that is analytic at every point z is said to be an entire function.

▪ Polynomial functions are differentiable at every point z and so are entire 

functions.
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▪ A rational function f(z) = p(z)/q(z), where p and q are polynomial functions, is 

analytic in any domain D that contains no point z0 for which q(z0) = 0.

▪ The sum f(z) + g(z), difference f(z) − g(z), and product f(z)g(z) are analytic. The 

quotient f(z)/g(z) is analytic provided g(z) = 0 in D.

Analyticity of Sum, Product, and Quotient

▪ A rational function f(z) = p(z)/q(z), where p and q are polynomial functions, is 

analytic in any domain D that contains no point z0 for which q(z0) = 0.

An Alternative Definition of f(z)

( ) ( )
( ) lim

→

−
 =

−z z

f z f z
f z

z z0

0
0

0
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5. Cauchy–Riemann Equations

▪ Theorem 6 (Cauchy–Riemann Equations): Suppose f(z) = u(x, y) + iv(x, y) is 

differentiable at a point z = x + iy. Then at z the first-order partial derivatives of 

u and v exist and satisfy the Cauchy Riemann equations: 

▪ Theorem 5 (L’Hˆopital’s Rule): Suppose f and g are analytic at the point z0 and 

f(z0) = 0, g(z0) ≠ 0. Then  ( )( )
lim

( ) ( )→


=

z z

f zf z

g z g z0

0

0

This result is a necessary condition for analyticity

   
= = −

   

u v u v

x y y x
and

For example the polynomial f(z) = z2 + z is analytic for all z

f(z) = x − y + x + i(2xy + y)
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▪ Example 10: Using the Cauchy–Riemann Equations

Show that the function f(z) = 2x2 + y + i(y2 − x) is not analytic at any point.

and

and

u v
x y

x y
u v

y x

 
= =

 

 
= = −

 

4 2

1 1

u v

y x

 
= −

 

   
= + = = − = −

   

u v u v
x y

x y y x
2 1 2and Cauchy–Riemann equations 

are satisfied

▪ If the Cauchy-Riemann equations are not satisfied at every point z in a domain 

D, then the function f(z) = u(x, y) + iv(x, y) cannot be analytic in D.

Criterion for Non-analyticity
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u v

x y

 
=

 

However, for any point z on the line, there is no neighborhood or open disk 

about z in which f is differentiable. We conclude that f is nowhere analytic.

is satisfied only on the line y = 2x

A Sufficient Condition for Analyticity

▪ Theorem 7: (Criterion for Analyticity) Suppose the real-valued functions u(x, y) 

and v(x, y) are continuous and have continuous first-order partial derivatives in 

a domain D. If u and v satisfy the Cauchy–Riemann equations at all points of D, 

then the complex function f(z) = u(x, y) + iv(x, y) is analytic in D. 

( )
x y

f z i
x y x y

= −
+ +2 2 2 2 is analytic in any domain not containing z = 0.

▪ Note: Analyticity implies differentiability but not vice versa.
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▪ If the real-valued functions u(x, y) and v(x, y) are continuous and have 

continuous first order partial derivatives in a neighborhood of z, and if u and v 

satisfy the Cauchy–Riemann equations at the point z, then the complex 

function f(z) = u(x, y) + iv(x, y) is differentiable at z and f’(z) is given by:

( )
u v v u

f z i i
x x y y

   
 = + = −

   

Sufficient Conditions for Differentiability

▪ Example 11: In Example 10 we saw that f(z) = 2x2 + y + i(y2 − x) was nowhere 

analytic, but yet the Cauchy-Riemann equations were satisfied on the line y = 

2x. Since the functions u(x, y) = 2x2 + y, u/x = 4x, u/y = 1, v(x, y) = y2 − x, 

v/x = −1 and v/y = 2y are continuous at every point, it follows that f is

differentiable on the line y = 2x. On this line f’ is given by f’(z) = 4x − i = 2y − i.
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Polar Coordinates

▪ In polar coordinates, f(z) = u(r, ) + iv(r, ), Cauchy-Riemann equations become

 

   
= = −

   

u v v u

r r r r

1 1
and

The polar version of f’(z) at a point z is

( ) i iu v v u
f z e i e i

r r r
 

 

− −      
 = + = −   

      

1

▪ Theorem 8: (Constant Functions) Suppose the function f(z) = u(x, y) + iv(x, y) 

is analytic in a domain D.

(i) If |f(z)| is constant in D, then so is f(z).

(ii) If f’(z) = 0 in D, then f(z) = c in D, where c is a constant.
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Harmonic Functions

▪ Definition: A real-valued function (x, y) that has continuous second-order 

partial derivatives in a domain D and satisfies Laplace’s equation (2 /2x +

2 /2y = 0) is said to be harmonic in D.

▪ Theorem 9 (Harmonic Functions): Suppose f(z) = u(x, y) + iv(x, y) is analytic in 

a domain D. then the functions u(x, y) and v(x, y) are harmonic functions.

Harmonic Conjugate Functions If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, 

then u and v are harmonic in D. Now suppose u(x, y) is a given function that is 

harmonic in D. It is then sometimes possible to find another function v(x, y) that 

is harmonic in D so that u(x, y) + iv(x, y) is an analytic function in D. The function 

v is called a harmonic conjugate function of u.
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u u
x x

x y

 
+ = − =

 

2 2

2 2
6 6 0

▪ Example 12: Harmonic Function/Harmonic Conjugate Function

Verify that the function u(x, y) = x3 − 3xy2 − 5y is harmonic in the entire 

complex plane. Find the harmonic conjugate function of u.

, , ,
2 2

2 2
2 2

3 3 6 6 5 6
u u u u

x y x xy x
x yx y

   
= − = = − − = −

  

,2 23 3 6 5
v u v u

x y xy
y x x y

   
= = − = − = +

   

( ) ( )3 2 2 33 5 3 5f z x xy y i x y y x C= − − + − + +

( , ) ( ) ( ) ( ) ( )2 33 6 5 5
v

v x y x y y h x xy h x h x h x x C
x


 = − +  = +  =  = +


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Entire

Analytic

Differentiable

Continuous
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6. Exponential and Logarithmic Functions

Exponential Function

We want the definition of the complex function f(z) = ez, where z = x + iy, to 

reduce ex for y = 0 and to possess the properties f’(z) = f(z) and f(z1 + z2) = f(z1)f(z2).

▪ Definition: The complex exponential function is defined as:

(cos sin )z x iy xe e e y i y+= = +

▪ The real and imaginary parts of ez are continuous and have continuous first 

partial derivatives at every point z of the complex plane. Moreover, the 

Cauchy–Riemann equations are satisfied at all points of the complex plane:

cos and sin x xu v u v
e y e y

x y y x

   
= = = − = −

   
f(z) = ez is analytic for all z

f is an entire function
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Properties

, , , ,
z

z z z z z zz z z z
z

d e
e e e e e e e e e

dz e
+ −

= = = = =
1

1 2 1 2 1 2

2

0 1

Periodicity

Unlike the real function ex, the complex function f(z) = ez 

is periodic with the complex period 2i. ( ) ( )f z i f z+ =2

If we divide the complex plane into horizontal strips 
defined by (2n − 1)  y  (2n + 1), n = 0, ±1, ±2, ..., 

then, for any point z in the strip −  y  , the values 

f(z), f(z + 2i), f(z − 2i), f(z + 4i), and so on, are the 

same. The strip −∞  x  ∞, −  y   is called the 

fundamental region for the exponential function f(z) = ez.
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Logarithmic Function

The logarithm of a complex number z = x + iy, z  0, is defined as the inverse of 

the exponential function, w = log z if z = ew.

▪ Definition: The multiple-valued function Logarithm of a Complex Number 

z = x + iy, z  0, is defined as:

log ln arg ln (Arg ), 0, 1, 2, z z i z z i z n n= + = + + =  2

log ( ) ln ( )

log ( ) ( )

log ( ) ln ( )

2
5
4

2 2 2
2

1 2 2

i n
i i n

i i n





 





− = + +

= +

− − = + +

Principal Value

Log ln Arg , , Argz z i z z z = +  −  0
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f(z) = Log z is called the principal branch of log z, or the principal logarithmic 

function.

Log ( ) ln 

Log ( )

Log ( ) ln

i

i i

i i





− = +

=

− − = −

2

3
4

2 2

1 2

Properties

log( ) log log 

log log log 

log log n

z z z z

z
z z

z

z n z

= +

= −

=

1 2 1 2

1
1 2

2
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Log z as an Inverse Function

Log , ze z z=  0

▪ Note: The identities above are not necessarily satisfied by the principal value. 

For example, it is not true that Log(z1z2) = Log z1 + Log z2 for all complex 

numbers z1 and z2 (although it may be true for some complex numbers).

▪ Example 13: Log(z1z2)  Log z1 + Log z2 

If z1 = i and z2 = −1 + i, then

( )
Log( ) Log ( ) ln 

Log Log ln ln Log( )

z z i i

z z i i i z z



  

= − − = −

+ = + + = + 

3
1 2 4

3 5
1 2 1 22 4 4

1 2

2 2

Log ez = z if −∞  x  ∞ and −  y  
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Analyticity

▪ The logarithmic function f(z) = Log z is not continuous at z = 0 since f(0) is not 

defined. 

▪ The logarithmic function f(z) = Log z is discontinuous at all points of the 

negative real axis. 

▪ If the complex exponential function f(z) = ez is defined on the fundamental 

region −∞  x  ∞, −  y  , then f is one-to-one and the inverse function of f 
is the principal value of the complex logarithm f −1(z) = Log z.

For example, for the point z = 1 + 3i/2, which is not in the fundamental 

region, we have:
/Log / /ie i i  + = −  +1 3 2 1 2 1 3 2
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▪ This is because the imaginary part of the function, v = Arg z, 
is discontinuous only at these points.

▪ Suppose x0 is a point on the negative real axis. As z → x0 

from the upper half-plane, Arg z → , whereas if z → x0 

from the lower half-plane, then Arg z → −.

▪ This means that f(z) = Log z is not analytic on the 

nonpositive real axis. 

▪ However, f(z) = Log z is analytic throughout the domain D 

consisting of all the points in the complex plane except 

those on the nonpositive real axis.

|z|  0, −  arg(z)  
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▪ It is convenient to think of D as the complex plane from which the nonpositive 

real axis has been cut out.

▪ Since f(z) = Log z is the principal branch of log z, the nonpositive real axis is 

referred to as a branch cut for the function.

▪ The Cauchy–Riemann equations are satisfied throughout this cut plane and 

that the derivative of Log z is given by:

Log 
d

z
dz z

=
1

for all z in D

▪ Example 14: Derivatives of Logarithmic Functions

Find the derivatives of the following functions in an appropriate domain:

(a) z Log z  (b) Log(z + 1)
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(a) z Log z is differentiable at all points where both of the functions z and 

Log z are differentiable. z is entire and Log z is differentiable on the 

domain: |z|  0, −  arg z  .

So z log z is differentiable on the domain defined by: 

|z|  0, −  arg z  

[ Log ] Log Log 
d
z z z z z

dz z
=  +  = +

1
1 1

Log ( )
d

z
dz z z

+ =  =
+ +

1 1
1 1

1 1

(b) The function Log(z + 1) is a composition of the functions 

Log z and z + 1. z + 1 is entire and Log(z + 1) is 

differentiable at all points w = z + 1 such that |w|  0 and 

−  arg(w)  .
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Complex Powers

▪ If  is a complex number and z = x + iy, then z is defined by:

log ,zz e z =  0

▪ In general, z is multiple-valued since log z is multiple-valued. However, in the 

special case when  = n = 0, ±1, ± 2, ... z is single-valued.

▪ Note: If we use Log z in place of log z, then z gives the principal value.

▪ Example 15: Complex Power

Find the value of: (a) i2i  (b) (1 + i)i 

[ln ( / )] ( ) , , , , ...i i i n ni e e n  + + − += = =  2 2 1 2 2 1 4 0 1 2

The principal value of i2i for n = 0: 
ii e −=2

(a)
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[ ln ( / )]

( , , , ) , ...
i i ni ni e

 + +

= = + 

1
2 4 2

2 0 1 21(b)

The principal value of (1 + i)i for n = 0: 

ln 

( )
iii e


− +

+ =

2

4 21

Complex powers satisfy the following properties

, ; ,

( ) ; ,n n

z
z z z z C

z
z z C n Z


     



 

 



+ −= = 

=  

Analyticity

▪ The principal value of the complex power                    is differentiable and:
Log zz e =

d
z z

dz
  −= 1
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▪ Example 16: Derivative of a Power Function

Find the derivative of the principal value zi at the point z = 1 + i

z = 1 + i is in the domain |z|  0, −  arg z  , i id
z iz

dz
−= 1

( ) ( ) ( )i i i i i

z i
z i

d i
z iz i i i i i

dz i
− −

= +
= +

+
= = + = + = +

+

1 1

1
1

1 1
1 1 1

1 2

the principal value of (1 + i)i : / (ln )/
( )

iii e − +
+ =

4 2 21

/ (ln )/ii

z i

d i
z e

dz
− +

= +

+
=

4 2 2

1

1

2
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7. Trigonometric and Hyperbolic Functions

Trigonometric Functions

▪ Definition: For any complex number z = x + iy,

andsin cos 
iz iz iz ize e e e

z z
i

− −− +
= =

2 2

sin 
tan , cot ,

cos tan 

sec , csc 
cos sin 

z
z z

z z

z z
z z

= =

= =

1

1 1

additional trigonometric functions

cos 
1

2

e e
i

− +
=For example tan ( )

−

−

−
− = −

+

e e
i i

e e

2 2

2 2
2
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Periodicity

▪ The complex exponential function ez is periodic with a pure imaginary period 

of 2i.

▪ eiz and e−iz are periodic functions with real period 2.

▪ So, the complex sine and cosine functions are periodic functions with a real 

period of 2. sin (z + 2) = sin z and cos (z + 2) = cos z

▪ The complex tangent and cotangent functions are periodic with a real period 

of .  tan (z + ) = tan z and cot (z + ) = cot z

▪ Since the exponential functions eiz and e−iz are entire functions, it follows that 

sin z and cos z are entire functions.

Analyticity
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▪ sin z = 0 only for the real numbers z = n, n an integer, and cos z = 0 only for 

the real numbers z = (2n + 1)/2, n an integer. 

▪ Thus, tan z and sec z are analytic except at the points z = (2n + 1)/2, and cot z 
and csc z are analytic except at the points z = n.

Derivatives

sin cos 
d

z z
dz

= cos sin 
d

z z
dz

= −

tan sec  

sec sec tan 

=

=

d
z z

dz

d
z z z

dz

2 cot csc  

csc csc cot 

= −

= −

d
z z

dz

d
z z z

dz

2
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Identities
sin( ) sin cos( ) cos 

cos sin

sin( ) sin cos cos sin 

cos( ) cos cos sin sin 

sin( ) sin cos cos( ) cos sin

z z z z

z z

z z z z z z

z z z z z z

z z z z z z

− = − − =

+ =

 = 

 =

= = −

2 2

1 2 1 2 1 2

1 2 1 2 1 2

2 2

1

2 2 2

Zeros
( ) ( )

sin sin cos 
i x iy i x iy y y y ye e e e e e

z x i x
i

+ − + − −− + −
= = +

2 2 2
sin sin cosh cos sinh z x y i x y= +

cos cos cosh sin sinh z x y i x y= −
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cosh sinhy y= + 2 21 sin sin sinh

cos cos sinh

z x y

z x y

= +

= +

2 2 2

2 2 2

sin 
sin sin sinh

sinh 

x x n
z x y

y y
= = 

= + =   = = 

2 2 2 0
0

0 0

sin , , , , =  = =  z z n n0 0 1 2

cos ( ) / , , , , =  = + =  z z n n0 2 1 2 0 1 2

sin , cos x x 1 1▪ Note:                                  do not hold for the complex sine and cosine.

▪ Example 17: Solving a Trigonometric Equation

Solve the equation cos z = 10

cos 
−+

= =  − + =  = 
iz iz

iz iz ize e
z e e e2

2 10 20 1 0 10 3 11
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ln( ) , , , , =  + =  iz ni n10 3 11 2 0 1 2

ln( ), , , , =  + =  z n i n2 10 3 11 0 1 2

ln( ) ln( )− = − +10 3 11 10 3 11

Hyperbolic Functions

andsinh cosh 
z z z ze e e e

z z
− −− +

= =
2 2

▪ Definition: For any complex number z = x + iy,

sinh 
tanh , coth ,

cosh tanh 

sech , csch 
cosh sinh 

= =

= =

z
z z

z z

z z
z z

1

1 1
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▪ sinh z and cosh z are entire functions.

▪ tanh z, coth z, sech z, and csch z are analytic except where the denominators are 0.

Analyticity

Derivatives

sinh cosh 
d

z z
dz

= cosh sinh 
d

z z
dz

=

sinh(iz) = i sin z and cosh(iz) = cos z

sin z = −i sinh(iz), cos z = cosh(iz)

sinh z = −i sin(iz), cosh z = cos(iz)

tanh sech  =
d

z z
dz

2 coth csch  = −
d

z z
dz

2
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sinh , , , , =  = =  z z n i n0 0 1 2

cosh ( ) / , , , , =  = + =  z z n i n0 2 1 2 0 1 2

Zeros
sinh sinh cos cosh sin z x y i x y= +

cosh cosh cos sinh sin z x y i x y= +

Identities
sinh( ) sinh cosh( ) cosh 

cosh sinh

sinh( ) sinh cosh cosh sinh 

cosh( ) cosh cos sinh sin 

sin( ) sinh cosh cos( ) cosh sinh

− = − − =

− =

 = 

 = 

= = +

z z z z

z z

z z z z z z

z z z z z z

z z z z z z

2 2

1 2 1 2 1 2

1 2 1 2 1 2

2 2

1

2 2 2
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8. Inverse Trigonometric and Hyperbolic Functions

Inverse Trigonometric Functions

The inverse multiple-valued sine function, sin−1z or arcsin z, is defined by:

w = sin−1z if z = sin w.

/( )
iw iw

iw iw iwe e
z e ize e iz z

i

−−
=  − − =  = + −2 2 1 22 1 0 1

2
/sin log[ ( ) ]1 2 1 21z i iz z− = − + −

/cos log[ ( ) ]1 2 1 21z i z i z− = − + −
tan log1

2

i i z
z

i z
− +

=
−

Periodicity

sin z and cos z are also periodic with the same real period 2.

sinh z and cosh z have the imaginary period 2i.
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/sin log[ ( ) ] log[( ) ]1 1 25 5 1 5 5 2i i i i− = − + − = − 

[ln( ) ( / ) ], , , ,  = −  + + =  i n i n5 2 2 2 0 1 2

ln( ) ln( )− = − +5 2 5 2 sin / n ln( ), , , , − = +  + =  i n1 5 2 2 5 2 0 1 2

To obtain particular values of, sin−1z, we must choose a specific root of 1 − z2 

and a specific branch of the logarithm. For example, if we choose (−4)1/2 = 2i

and the principal branch of the logarithm, then sin /2 ln( )i− = − +1 5 5 2

( )/( )1 21 5 2i− = 

Derivatives

/ /
sin  cos  tan  

( ) (
, ,

)

− − −−
= = =

− − +

d d d
z z z

dz dz dzz z z
1 1 1

2 1 2 2 1 2 2

1 1 1

1 1 1

▪ Example 18: Values of an Inverse of sin−1 5
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Inverse Hyperbolic Functions

/

/

/

/

sinh log[ ( ) ] sin  
( )

cosh log[ ( ) ] cos  
( )

tanh log tan  

1 2 1 2 1
2 1 2

1 2 1 2 1
2 1 2

1 1
2

1
1

1
1

1
1

1 1 1

2 1 1

d
z z z z

dz z
d

z z z z
dz z

z d
z z

z dz z

− −

− −

− −

= + + =
−

−
= + − =

−

+
= =

− +

▪ Example 19: Values of an Inverse Hyperbolic Cosine

Find all values of cosh−1(−1) 

cosh ( ) log( ) ln ( ) ( ) , , , ,   − − = − = + + = + =  n i n i n1 1 1 1 2 2 1 0 1 2
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