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Chapter 1

Signal Representation and Modeling

1. Signals and Systems

2. Continuous-Time Signals

3. Basic building blocks for continuous-time signals

4. Discrete-Time Signals

5. Basic building blocks for discrete-time signals
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Introduction

▪ The broadcast example (a commentator in a radio broadcast studio) includes 

acoustic, electrical and electromagnetic signals.
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1. Signals and Systems

▪ A signal is a function of one or more variables that conveys information about 

some (usually physical) phenomenon.

▪ independent variable = time, space, …

▪ dependent variable = the function value itself.

▪ Some examples of signals include:

• A voltage or current in an electronic circuit.

• The position, velocity, or acceleration of an object.

• A force or torque in a mechanical system.

• A flow rate of a liquid or gas in a chemical process.

• A digital image, digital video, or digital audio.
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Classification of Signals

▪ Continuous-time and discrete-time

• A continuous-time (CT) signal is a signal that is specified for every value of 

time t.

• A discrete-time (DT) signal is a signal that is specified only at discrete 

values of t.

▪ Analog and digital signals

• An Analog signal is a signal whose amplitude can take on any value in a 

continuous range.

• A digital signal is a signal whose amplitude can take on only a finite number 

of values.
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analog, continuous time

digital, discrete time

digital, continuous time

analog, discrete time
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▪ Periodic and Nonperiodic Signals

• A periodic signal is one that repeats itself. A CT signal x(t) is said to be 

periodic with period T if x(t) = x(t + T) for all t ∊ R. Likewise, a DT signal 

x[n] is said to be periodic with period N if x[n] = x[n + N] for all n ∊ Z.

• A signal is aperiodic if it is not periodic.

▪ Deterministic or random signals

• A signal whose physical description is known completely, in either a 

mathematical form or a graphical form, is a deterministic signal. 

A periodic signal of period T
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• A signal whose values cannot be predicted precisely but are known only in 

terms of probabilistic description, such as mean value or mean-squared 

value, is a random signal.

▪ Energy and power signals

• A signal with finite energy is an energy signal, and a signal with finite and 

nonzero power is a power signal. 

▪ A system is an entity that processes one or more input signals in order to 

produce one or more output signals.

system with single-input and single-output (SISO)
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Input Signals Output Signals

system with many inputs and outputs

Classification of Systems

▪ Linear and nonlinear systems

▪ Time-Varying and Time-Invariant Systems

• A time-varying system is one whose parameters vary with time.

• In a time-invariant system, a time shift (advance or delay) in the input signal 

leads to the time shift in the output signal.
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▪ Memoryless (static) and with memory (dynamic) systems

• A memoryless system is one in which the current output depends only on 

the current input; it does not depend on the past or future inputs.

• A system with memory is one in which the current output depends on the 

past and/or future input.

▪ Causal and noncausal systems

• A causal system is one whose present response does not depend on the 

future values of the input.

▪ Continuous-time and discrete-time systems

• CT system is a system whose inputs and outputs are CT signals.

• DT system is a system whose inputs and outputs are DT signals.
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▪ Analog and digital systems

• Analog system is a system whose inputs and outputs are analog signals.

• Digital system is a system whose inputs and outputs are digital signals.

▪ Invertible and noninvertible systems

• An invertible system when we can obtain the input x(t) back from the 

corresponding output y(t) by some operation.

▪ Stable and unstable systems

• A system is said to be stable if every bounded input applied at the input 

terminal results in a bounded output.

▪ If a CT signal is sampled, the resulting signal is a DT signal. We can process 

a CT signal by processing its samples with a DT system.
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Examples of Systems:

▪ One very basic system is the resistor-capacitor (RC) network. Here, the input 

would be the source voltage vs and the output would be the capacitor 

voltage vc.

• This type of stability is also known as the stability in the BIBO (bounded-

input/bounded-output) sense.
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General Structure of a Communication System

General Structure of a Feedback Control System

▪ Communication System

▪ Feedback Control System
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▪ The Signals and Systems approach has broad application: electrical, 

mechanical, optical, acoustic, biological, financial, ... 
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Mathematical Modeling of Signals

▪ The mathematical model for a signal is in the form of a formula, function, 

algorithm or a graph that approximately describes the time variations of the 

physical signal.

▪ Understand the characteristics of the signal in terms of its behavior in time 

and in terms of the frequencies it contains (signal analysis).

▪ Develop methods of creating signals with desired characteristics (signal 

synthesis).

▪ Understand how a system responds to a signal and why (system analysis).

▪ Develop methods of constructing a system that responds to a signal in some 

prescribed way (system synthesis).
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2. Continuous-Time Signals

▪ Consider x(t), a mathematical function of time chosen to approximate the 

strength of the physical quantity at the time instant t.

▪ The signal x(t), is referred to as a continuous-time signal or an analog signal. t 
is the independent variable, and x is the dependent variable.

A segment from the vowel “o” of the word “hello”

▪ Some signals can be described analytically. For 

ex., the function x(t) = 5sin(12t), or by segments as:

, 0
( )

, 0

t te e t
x t

t

− − − 
= 



3 5

0
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Signal operations

▪ Amplitude shifting maps the input signal x to the output signal g as given by 

g(t) = x(t) + A, where A is a real number.
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▪ Amplitude scaling maps the input signal x to the output signal g as given by 

g(t) = Bx(t), where B is a real number.

▪ Geometrically, the output signal g is expanded/compressed in amplitude.
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▪ Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two 

signals at each time instant. g(t) = x1(t) + x2(t).
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Multiplication of two signals is accomplished by multiplying the amplitudes of 

the two signals at each time instant. g(t) = x1(t).x2(t).
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▪ Time shifting (also called translation) maps the input signal x to the output 

signal g as given by: g(t) = x(t −td); where td is a real number.

▪ Such a transformation shifts the signal 

(to the left or right) along the time axis.

▪ If td  0, g is shifted to the right by |td|, 

relative to x (i.e., delayed in time).

▪ If td  0, g is shifted to the left by |td|, 

relative to x (i.e., advanced in time).
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▪ Time scaling (also called dilation) maps the input signal x to the output signal 

g as given by: g(t) = x(at); where a is a strictly positive real number.

▪ Such a transformation is associated 

with a compression/expansion along 

the time axis.

▪ If a  1, g is compressed along the 

horizontal axis by a factor of a, relative 

to x.

▪ If a  1, g is expanded (stretched) 

along the horizontal axis by a factor of 

1/a, relative to x.
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▪ Time reversal (also known as reflection) maps the input signal x to the output 

signal g as given by g(t) = x(−t).

▪ Geometrically, the output signal g is a reflection of the input signal x about the 

(vertical) line t = 0.
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▪ Integration and differentiation

Given a continuous-time signal x(t), a new signal g(t) may be defined as its 

time derivative in the form: g(t) = dx(t)/dt. Similarly, a signal can be defined as 

the integral of another signal in the form:

ideal capacitor

( )
( ) C

C

dv t
i t C

dt
=

( ) ( ) 
−

= 
t

g t x d

ideal inductor

( ) ( )
1 t

L Li t v d
L

 
−

= 
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▪ Sum of periodic signals

For two periodic signals x1 and x2 with fundamental periods T1 and T2, 

respectively, and the sum y = x1 + x2:

• The sum y is periodic if and only if the ratio T1T2 is a rational number (i.e., 

the quotient of two integers).

• If y is periodic, its fundamental period is rT1 (or equivalently, qT2, since rT1 

= qT2), where T1/T2 = q/r and q and r are integers and coprime. (Note that 

rT1 is simply the least common multiple of T1 and T2).

For example x(t) = sin(2 1.5 t) + sin(2 2.5 t) 
T1 = 1/1.5 = 2/3 s, T2 = 1/2.5 = 2/5 s ⇒ T1/T2 = 5/3

T = 5T2 = 3T1 = 2 s
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3. Basic building blocks for continuous-time signals

▪ The unit-impulse function (Dirac delta function or delta function), denoted , is 

defined by:

▪ Technically,  is not a function in the ordinary sense. Rather, it is what is 

known as a generalized function.

, if 0
( ) and ( )

undefined, if 0

0
1

t
t t dt

t
 



−


= = =



Unit-impulse function
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▪ Define
/ , /

( )
, /

 
= 



a t a
q t

t a
1 2
0 2

▪ Clearly, for any choice of a, ( )


−
= q t dt 1

▪ The function  can be obtained as the following limit: ( ) lim ( )
0a

t q t
→

=

▪ Sampling property. For any continuous function f and any real constant t1, 

f(t)(t − t1) = f(t1)(t − t1).
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▪ Sifting property. For any continuous function f and any real constant t1:

( ) ( ) ( )1 1f t t t dt f t


−
− =
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Unit-Step Function

▪ The unit-step function (also known as the Heaviside function), denoted u, is 

defined as:
, 0

( )
,

t
u t

t


=  

1
0 0

,
( )

,

t t
u t t

t t


− =  

1
1

1

1
0

▪ A time shifted version of the unit-step function:

▪ Signals begin at t = 0 (causal signals) can be described in terms of u(t).
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sin ),
( ) ( )

,

( f t t t
x t u t t

t t
 

− = 


0 1
1

1

2
0

▪ Using the unit-step function to turn a signal on/off at a specified time instant:

sin( ),
( ) ( )

,

f t t t
x t u t t

t t
 

− + =  

0 1
1

1

2
0

▪ The Relationship between the unit-step 

function and the unit-impulse function:
( ) ( )

t
u t d  

−
= 

( )
( )

du t
t

dt
 =
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Signum Function

▪ The signum function, denoted sgn, is defined as:

if 0

sgn if 0

if 0

1
0
1

t
t t

t




= =
− 

▪ From its definition, one can see that the signum function simply computes the 

sign of a number.
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Unit-pulse function

▪ The unit-pulse function (also called the unit-rectangular pulse function), 

denoted rect, is given by:

, if 
rect ( )

, otherwise

1 1
2 21

0
t

t t
 −  

=  = 


▪ Due to the manner in which the rect function is used in practice, the actual 

value of rectt at t = ½ is unimportant. Sometimes ≠ values are used.
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( ) ( ) ( ) = + − −t u t u t1 1
2 2

▪ Constructing a unit-pulse function from unit-step functions:
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Unit-Ramp Function

▪ The unit-ramp function, denoted r, is 

defined as:

 

 or, equivalently: r(t) = tu(t).

, if 0
( )

, otherwise0
t t

r t


= 


( ) ( )
−

=  
t

r t u d

▪ Constructing a unit-ramp 

function from a unit-step:
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Unit Triangular Function

▪ The unit triangular function (unit-triangular pulse function), 

denoted tri, is defined as:
, if 

tri ( )
, otherwise

1 1
0
t t

t t
 − 

=  = 


▪ Constructing a unit-triangle using unit-ramp functions:

( ) ( ) ( ) ( )1 2 1t r t r t r t = + − + −
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Cardinal Sine Function

▪ The cardinal sine function, denoted sinc, is given by
sin( )

sinc
t

t
t




=
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Sinusoidal Signal

▪ A real sinusoidal function is a function of the form: 

x(t) = Acos(t + )

 where A is the amplitude of the signal,  is the radian frequency (rad/s), and 

 is the initial phase angle (rad), all are real constants.

 = 2f where f is the frequency (Hz), T = 1/f is the period (s).
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▪ A complex exponential function is a function of the form x(t) = Aet, where A 

and  are complex constants.

▪ A complex exponential can exhibit one of a number of distinct modes of 

behavior, depending on the values of A and .

▪ For example, as special cases, complex exponentials include real 

exponentials and complex sinusoids.

▪ A real exponential function is a special case of a complex exponential 

x(t) = Aet, where A and  are restricted to be real numbers.

▪ A real exponential can exhibit one of three distinct modes of behavior, 

depending on the value of , as illustrated below.

Complex Exponential Function 
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▪ If   0, x(t) increases exponentially as t increases (growing exponential).

▪ If   0, x(t) decreases exponentially as t increases (decaying exponential).

▪ If  = 0, x(t) simply equals the constant A.

  0   0 = 0
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▪ A complex sinusoidal function is a special case of a complex exponential 

x(t) = Aet, where A is complex and  is purely imaginary (i.e., Re{} = 0).

▪ That is, a complex sinusoidal function is a function of the form x(t) = Aejt, 

where A is complex and  is real.

▪ By expressing A in polar form as A = |A|ej (where  is real) and using Euler’s 

relation, we can rewrite x(t) as:

▪ Thus, Re{x} and Im{x} are the same except for a time shift.

Re{ ( )} Im{ ( )}

( ) cos( ) sin( )

x t x t

x t A t j A t   = + + +

Complex Sinusoidal Function 

▪ Also, x is periodic with fundamental period T = 2/|| and fundamental 

frequency ||.
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▪ In the most general case of a complex exponential function x(t) = Aet, A and  

are both complex.
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▪ Letting A = |A|ej and  =  + j (where , , and  are real), and using Euler’s 

relation, we can rewrite x(t) as:

Re{ ( )} Im{ ( )}

( ) cos( ) sin( )t t

x t x t

x t A e t j A e t    = + + +

▪ Three distinct modes depending on the value of  

• If  = 0, Re{x} and Im{x} are real sinusoids.

• If   0, Re{x} and Im{x} are each the product of a real sinusoid and a 

growing real exponential.

• If   0, Re{x} and Im{x} are each the product of a real sinusoid and a 

decaying real exponential.

▪ From Euler’s relation, a complex sinusoid can be expressed as the sum of two 

real sinusoids as:
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  0  = 0   0

▪ Moreover, a real sinusoid can be expressed as the sum of two complex 

sinusoids using the identities:

( ) ( ) ( ) ( )cos( ) [ ] sin( ) [ ]j t j t j t j tA AA t e e A t e e          + − + + − ++ = + + = −and2 2
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Energy and power definitions

▪ The energy of a continuous time signal x(t) is given by: ( )xE x t dt


−
= 

2

▪ The average power of a continuous time signal x(t) is given by:

/

/
( )

T

x T
P x t dt

T −
= 

0

0

22

2
0

1

/

/
lim ( )

T

x TT
P x t dt

T −→
= 

22

2

1

periodic complex signal:

non-periodic complex signal:

▪ Energy signals are those that have finite energy and zero power, i.e., Ex  ∞, 

and Px = 0.

▪ Power signals are those that have finite power and infinite energy, i.e., 

Ex → ∞, and Px < ∞.
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▪ Example 1: Energy of exponential signal

Compute the energy of the exponential signal (where   0).

if 0
( )

otherwise

− 
= 



tAe t
x t

0





 −= =
t

x

A
E A e dt

2
2 2

0 2

▪ Example 2: Power of a sinusoidal signal

x(t) = A sin(2f0t + )

/

/
sin (2 )

0

0

21 2 2 2
0 01 2 2

f

x f

A
P f A f t dt 

−
= + =

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Signal Representation and Modeling 46/732024-2025

Symmetry properties

▪ A real-valued signal is said to have even symmetry if it has the property: 

x(−t) = x(t) for all values of t.

▪ A real-valued signal is said to have odd symmetry if it has the property: 

x(−t) = −x(t) for all values of t.

Even and odd symmetry

Decomposition into even and odd components

▪ Every real-valued signal x(t) has a unique representation of the form: x(t) = 

xe(t) + xo(t); where the signals xe and xo are even and odd, respectively.

▪ In particular, the signals xe and xo are given by:

xe(t) = ½ [x(t) + x(−t)] and xo(t) = ½ [x(t) − x(−t)]
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Decomposition of complex signals

Symmetry properties for complex signals

▪ A complex-valued signal is said to have conjugate symmetric if it has the 

property: x(−t) = x*(t) for all values of t.

▪ A complex-valued signal is said to have conjugate antisymmetric if it has the 

property: x(−t) = −x*(t) for all values of t.

▪ Every complex-valued signal x(t) has a unique representation of the form: 

x(t) = xE(t) + xO(t); where the signals xE and xO are conjugate symmetric and 

conjugate antisymmetric, respectively.

▪ In particular, the signals xE and xO are given by:

xE(t) = ½ [x(t) + x*(−t)] and xO(t) = ½ [x(t) − x*(−t)]
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if 
( )

otherwise

 
 − = 



t
t 1

2

1 0 1
0

( ) ( ) ( ) ( )( / )
( ) , ( )

 − +  − −  − −  − −
= = =e o

t t t tt
x t x t

1 1 1 1
2 2 2 22

2 2 2

▪ Example 3: Even and odd components of a rectangular pulse

Determine the even and the odd components of the rectangular pulse signal.
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4. Discrete-Time Signals

▪ Discrete-time signals are not defined at all time instants. they are defined only 

at time instants that are integer multiples of a fixed time increment Ts, that is, 

at t = nTs.

▪ Consequently, the mathematical model for a discrete-time signal is a function 

x[n] in which independent variable n is an integer, and is referred to as the 

sample index.
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▪ Sometimes discrete-time signals are also modeled using mathematical 

functions: x[n] = 3sin[0.2n].

▪ In a discrete-time signal the time variable is discrete, yet the amplitude of 

each sample is continuous. 

▪ If, in addition to limiting the time variable to the set of integers, we also limit 

the amplitude values to a discrete set, the resulting signal is called a digital 

signal.

▪ In the simplest case there are only two possible values for the amplitude of 

each sample, typically indicated by “0” and “1”. The corresponding signal is 

called a binary signal.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Signal Representation and Modeling 51/732024-2025

Signal operations

▪ Amplitude shifting maps the input function x[n] to the output function g as 

given by g[n] = x[n] + A, where A is a real number.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Signal Representation and Modeling 52/732024-2025

▪ Amplitude scaling maps the input function x to the output function g as given 

by g[n] = Bx[n], where B is a real number.

▪ Geometrically, the output function g is expanded/compressed in amplitude.
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▪ Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two 

signals at each time instant. g[n] = x1[n] + x2[n].
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Multiplication of two signals is accomplished by multiplying the amplitudes of 

the two signals at each time instant. g[n] = x1[n] x2[n].
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▪ Time shifting (also called translation) maps the input signal x to the output 

signal g as given by: g[n] = x[n − k]; where k is an integer.

▪ Such a transformation shifts the signal (to 

the left or right) along the time axis.

▪ If k  0, g is shifted to the right by |k|, 

relative to x (i.e., delayed in time).

▪ If k  0, g is shifted to the left by |k|, 

relative to x (i.e., advanced in time).
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▪ Time scaling maps the input signal x to the output signal g as given by:

 g[n] = x[kn];  downsampling

 and

  g[n] = x[nk]; upsampling

where k is a strictly positive integer.
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Time scaling (downsampling)

Time scaling (upsampling)
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▪ Time reversal (also known as reflection) maps the input signal x to the output 

signal g as given by g[n] = x[−n].

▪ Geometrically, the output signal g is a reflection of the input signal x about the 

(vertical) line n = 0.
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5. Basic building blocks for discrete-time signals

▪ The unit-impulse function, denoted , is defined by:

, if 0 , if 
[ ] [ ]

0, if 0 0, if 
1

1
1

1 n a n n
n a n n

n n n
 

= = 
= − =   

Unit-impulse function

▪ Sampling property of the unit-impulse function:

x[n][n − n1] = x[n1][n − n1]
[ ],

0,

=
=  

x n n n
n n

1 1

1
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▪ Sifting property of the unit-impulse function

[ ] [ ] [ ]1 1
n

x n n n x n


=−

− =
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Unit-Step Function

, if 0
[ ]

, otherwise

1
0

n
u n


= 



▪ The unit-step function, denoted u, is defined as:

▪ Relationship between the unit-step function and the unit-impulse function:

[n] = u[n] − u[n − 1]

[ ] [ ]
n

k

u n k
=−

= ▪ Conversely,

[ ] [ ]
0k

u n n k


=

= −or,
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Unit-Ramp Function

▪ The unit-ramp function, denoted r, is defined as:

if 0
[ ]

otherwise


= 



n n
r n

0

▪ or, equivalently:

r[n] = nu[n]
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▪ Constructing a unit-ramp from a unit-step [ ] [ ]
−

=−

= 
n

n

r n u k
1
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Sinusoidal Signal

▪ A discrete-time sinusoidal function is a function of the form 

x[n] = Acos(n + )

 where A is the amplitude of the signal,  is the angular frequency (rad), and 

 is the initial phase angle (rad).  = 2F where F is the normalized 

frequency (a dimensionless quantity).

x[n] = 3cos(0.1n + /10) x[n] = 3cos(0.2n + /10)
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▪ Since the signal xa(t) is evaluated at intervals of Ts, the number of samples 

taken per unit time is 1/Ts.

▪ The act of constructing a discrete-time signal by evaluating a continuous-time 

signal at uniform intervals is called sampling.

▪ For continuous-time sinusoidal signal xa(t) = Acos(t + ):  is in rad/s.

▪ For discrete-time sinusoidal signal x[n] = Acos(n + ):  is in rad.

▪ Let us evaluate the amplitude of xa(t) at time instants that are multiples of Ts, 

and construct a DT signal: x[n] = xa(nTs) = Acos(0Tsn + ) = Acos(2f0Tsn + ).

A fundamental difference between a DT sinusoidal signal and its CT:

 ( )[ ] cos / cos( )0 02 2sx n A f f n A F n   = + = +

▪ The parameters fs and Ts are referred to as the sampling rate and the 

sampling interval respectively.
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Impulse decomposition for discrete-time signals

▪ Consider an arbitrary discrete-time signal x[n]. Let us define a new signal xk[n] 

by:
[ ],

[ ] [ ] [ ]
0,k

x k n k
x n x k n k

n k


=
= − =  
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Periodic discrete-time signals

▪ A discrete-time signal is said to be periodic if it satisfies: x[n] = x[n + N]

for all values of the integer index n and for a specific value of N  0. The 

parameter N is referred to as the period of the signal.

[ ] [ ] [ ] [ ]k
k k

x n x n x k n k
 

=− =−

= = − ▪ The signal x[n] can be reconstructed by:

▪ The period of a periodic signal is not unique. A periodic signal with period N is 

also periodic with period kN, for every positive integer k, x[n] = x[n + kN].

▪ The smallest period with which a signal is periodic is called the fundamental 

period.

▪ The normalized fundamental frequency of a DT periodic signal is F0 = 1/N.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Signal Representation and Modeling 68/732024-2025

Periodicity of discrete-time sinusoidal signals

Acos(2F0n + ) = Acos(2F0[n + N] + ) = Acos(2F0n + 2F0N + )

2F0N = 2k ⇒ N = k/F0 N must be an integer value

▪ Example 4: Check the periodicity of the following discrete-time signals:

a. x[n] = cos(0.2n) b. x[n] = cos(0.2n + /5) c. x[n] = cos(0.3n − /10)

a. x[n] = cos(0.2n)

0 = 0.2 ⇒ F0 = 0/2 = 0.2/2 = 0.1/ ⇒ N = k/F0 = k

Since no value of k would produce an integer value for N, the signal is 

not periodic.

b. x[n] = cos(0.2n + /5)

0 = 0.2 ⇒ F0 = 0/2 = 0.2/2 = 0.1 ⇒ N = k/F0 = 10k
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c. x[n] = cos(0.3n − /10)

0 = 0.3 ⇒ F0 = 0/2 = 0.3/2 = 0.15 ⇒ N = k/F0 = k/0.15

For k = 3 we have N = 20 samples as the fundamental period.

x[n] = cos(0.2n + /5) x[n] = cos(0.3n − /10)

▪ Example 5: Comment on the periodicity of the two-tone discrete-time signal:

x[n] = 2cos(0.4n) + 1.5sin(0.48n)

For k = 1 we have N = 10 samples as the fundamental period.
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x[n] = x1[n] + x2[n]

x1[n] = 2cos(n)

1 = 0.4 ⇒ F1 = 1/2 = 0.4/2 = 0.2 

⇒ N = k1/F1 = 5k1

2 = 0.48 ⇒ F2 = 2/2 = 0.48/2 = 0.24 

⇒ N2 = k2/F2 = k2/0.24

For k2 = 6 we have N2 = 25 samples as the 

fundamental period.

x2[n] = 1.5cos(n)

⇒ N = 25

For k1 = 1 we have N1 = 5 samples as the 

fundamental period.

x1[n] = 2cos(0.4n)

x2[n] = 1.5sin(0.48n)

x[n] = x1[n] + x2[n]
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Energy and power definitions

▪ The energy of a discrete time signal x[n] is given by [ ]


=−

= x
n

E x n
2

▪ The average power of a discrete time signal x[n] is given by:

[ ]
N

x
n

P x n
N

−

=

= 
1

2

0

1

lim [ ]
M

x
M

n M

P x n
M→

=−

=
+


21

2 1

periodic complex signal        

non-periodic complex signal

▪ Energy signals are those that have finite energy and zero power, i.e., Ex  ∞, 

and Px = 0.

▪ Power signals are those that have finite power and infinite energy, i.e., 

Ex → ∞, and Px < ∞.
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▪ Example 6: Determine the energy of the exponential signal x[n] = 0.8nu[n]

▪ Example 7: Determine the normalized average power of the periodic signal

▪ Note: A signal with finite energy has zero power, and a signal with finite power 

has infinite energy.
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Decomposition into even and odd components

▪ Every function x has a unique representation of the form: x[n] = xe[n] + xo[n];

where the functions xe and xo are even and odd, respectively.

▪ In particular, the functions xe and xo are given by

xe[n] = ½(x[n] + x[−n]) and xo[n] = ½(x[n] − x[−n])

▪ The functions xe and xo are called the even part and odd part of x, respectively.

Decomposition of real signals

Decomposition of complex signals

xE[n] = ½(x[n] + x*[−n]) and xO[n] = ½(x[n] − x*[−n])
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