

Image Filtering

What is image filtering?

Spatial Domain

Frequency Domain (i.e., uses Fourier Transform)

Point Processing Methods

g(x,y) = T[f(x,y)]

T operates on 1 pixel

g(x,y) = T[f(x,y)]

T operates on a neighborhood of pixels

 Convert a given pixel value to a new pixel value based on some predefined function.

Point Processing Methods - Examples

Negative

Contrast stretching

Thresholding

Histogram Equalization

- Need to define:
 - (1) Area shape and size
 - (2) Operation

Area or Mask Processing Methods

$$g(x,y) = T[f(x,y)]$$

T operates on a neighborhood of pixels

Area Shape and Size

- •Area shape is typically defined using a rectangular mask.
- Area size is determined by mask size.
 e.g., 3x3 or 5x5
- Mask size is an important parameter!

Operation

- Typically linear combinations of pixel values.
 - e.g., weight pixel values and add them together.
- Different results can be obtained using different weights.
 - e.g., smoothing, sharpening, edge detection).

mask

Example

Local image neighborhood

mask

Modified image data

Correlation

Convolution

Correlation

 A filtered image is generated as the <u>center</u> of the mask visits every pixel in the input image.

pad with zeroes

wrap around

or

101.0	1	1	1
1 ×	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
4	10	10	10	0	0	0	0	0	

Suppose x and y are two n-dimensional vectors:

$$x = (x_1, x_2, ..., x_n)$$
 $y = (y_1, y_2, ..., y_n)$

• The dot product of x with y is defined as:

$$x.y = x_1y_1 + x_2y_2 + ... + x_ny_n$$

using vector notation:

$$x. y = |x| |y| \cos(\theta)$$

Correlation generalizes the notion of dot product

Geometric Interpretation of Correlation (cont'd)

 $cos(\theta)$ measures the similarity between x and y

$$x.y = |x| |y| \cos(\theta)$$
 or $\cos(\theta) = \frac{xy}{|x||y|}$

Normalized correlation (i.e., divide by lengths)

$$N(i,j) = \frac{\sum_{k=-\frac{n}{2}}^{\frac{n}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} h(k,l) f(i+k,j+l)}{\left[\sum_{k=-\frac{n}{2}}^{\frac{n}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} h^2(k,l)\right]^{1/2} \left[\sum_{k=-\frac{n}{2}}^{\frac{n}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} f^2(i+k,j+l)\right]^{1/2}}$$
https://manara.edu.sv/

جَامِعة الْمَنَارِة Normalized Correlation

• Measure the similarity between images or parts of images.

-

Example 1: TV Remote Control

Credit: W. Freeman *et al*, "Computer Vision for Interactive Computer Graphics," *IEEE Computer Graphics and Applications*, 1998

Application: TV Remote Control (cont'd)

Application : TV Remöte Control (cont'd)

Application : TV Remöte Control (cont'd)

Application : TV Remöte Control (cont'd)

Application: TV Remote Control (cont'd)

Example 1 (cont'd): Normalized Correlation

Template (left), image (middle), normalized correlation (right)

Note peak value at the true position of the hand

Credit: W. Freeman et al, "Computer Vision for Interactive Computer Graphics," IEEE Computer Graphics and Applications, 1998

31/31

- Traditional correlation cannot handle changes due to:
 - size
 - orientation
 - shape (e.g., deformable objects).

Convolution

 Same as correlation except that the mask is <u>flipped</u>, both horizontally and vertically.

1	2	3	Н	7	8	9	V	9	8	7
4	5	6		4	5	6		6	5	4
7	8	9		1	2	3		3	2	1

$$g(i,j) = \sum_{k=-\frac{n}{2}}^{\frac{n}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} h(k,l) f(i-k,j-l) = \sum_{k=-\frac{n}{2}}^{\frac{n}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} h(i-k,j-l) f(k,l)$$

For symmetric masks (i.e., h(i,j)=h(-i,-j)), convolution is equivalent to correlation!

Notation:

Convolution:

- Depends on the application.
- Usually by sampling certain functions and their derivatives.

Good for image smoothing

Good for image sharpening

- Sum of weights affects overall intensity of output image.
- Positive weights
 - Normalize them such that they sum to one.
- Both positive and negative weights
 - Should sum to zero (but not always)

- Idea: replace each pixel by the average of its neighbors.
- Useful for reducing noise and unimportant details.
- •The size of the mask controls the amount of smoothing.

Smoothing Using Averaging (cont'd)

• Trade-off: noise vs blurring and loss of detail.

https://manara.edu.sy/

Gaussian Smoothing

- Idea: replace each pixel by a weighted average of its neighbors
- Mask weights are computed by sampling a Gaussian function

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

1	1	2	2	2	1	1
1	2	2	4	2	2	1
2	2	4	8	4	2	2
2	4	8	16	8	4	2
2	2	4	8	4	2	2
1	2	2	4	2	2	1
1	1	2	2	2	1	1

Note: weight values decrease with distance from mask center!

mask size depends on σ : $height = width = 5\sigma$ (subtends 98.76% of the area)

• σ determines the degree of smoothing!

$$\sigma=3$$

	15×15 Gaussian mask													
2	2	3	4	5	5	6	6	6	5	5	4	3	2	2
2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
5	7	10	12	14	16	17	18	17	16	14	12	10	7	5
6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
6	8	11	13	16	18	19	20	19	18	16	13	11	8	6
6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
5	7	10	12	14	16	17	18	17	16	14	12	10	7	5
5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
2	2	3	4	5	5	6	6	6	5	5	4	3	2	2

nttps://mana

Gaussian Smoothing (cont'd)

```
Gaussian(sigma, hSize, h)
float sigma, *h;
int hSize;
 int i;
 float cst, tssq, x, sum;
 cst = 1./(sigma*sqrt(2.0*PI));
 tssq = 1./(2*sigma*sigma);
 for(i=0; i<hSize; i++) {
  x=(float)(i-hSize/2);
  h[i]=(cst*exp(-(x*x*tssq)));
 // normalize
 sum=0.0;
 for(i=0;i<hSize;i++)
  sum += h[i];
 for(i=0;i<hSize;i++)
  h[i] /= sum;
```



```
halfSize=(int)(2.5*sigma);
hSize=2*halfSize;
if (hSize % 2 == 0) ++hSize; // odd size
```


Averaging

Gaussian

nttps://mariara.edu.sy/

Properties of Gaussian

Convolution with self is another Gaussian

$$G_{\sigma_1}(x)*G_{\sigma_2}(x) \equiv G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

• Special case: convolving two times with Gaussian kernel of width σ is equivalent to convolving once with kernel of width $\sigma\sqrt{2}$

Properties of Gaussian (cont'd)

• Separable kernel: a 2D Gaussian can be expressed as the product of two 1D Gaussians.

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

 2D Gaussian convolution can be implemented more efficiently using 1D convolutions:

$$g(i,j) = \sum_{k=-n/2}^{n/2} \sum_{l=-n/2}^{n/2} h(k,l) f(i-k,j-l) =$$

$$\sum_{k=-n/2}^{n/2} \sum_{l=-n/2}^{n/2} exp\left[\frac{-(k^2+l^2)}{2\sigma^2}\right] f(i-k,j-l) =$$

$$\sum_{k=-n/2}^{n/2} exp\left[\frac{-k^2}{2\sigma^2}\right] \sum_{l=-n/2}^{n/2} exp\left[\frac{-l^2}{2\sigma^2}\right] f(i-k, j-l)$$

To convolve an image I with a nxn 2D Gaussian mask G with $\sigma = \sigma_g$

- 1. Build a 1-D Gaussian mask g, of width n, with σ_g
- 2. Convolve each row of I with g, get a new image I_r
- 3. Convolve each column of I_r with g

Example

2D convolution (center location only)

1 2 1 2 4 2 1 2 1

2 3 3 * 3 5 5 4 4 6

=2 + 6 + 3 = 11= 6 + 20 + 10 = 36= 4 + 8 + 6 = 18

65

 $O(n^2)$

The filter factors into a product of 1D filters:

1	2	1
2	4	2
1	2	1

= 2

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

				2	3	3		11	
1	2	1	*	3	5	5	=	18	
				4	4	6		18	

O(2n)=O(n)

Image Sharpening

- Idea: compute intensity differences in local image regions.
- Useful for emphasizing transitions in intensity (e.g., in edge detection).

Example

before after