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What Causes IntensityGhanges?

* Geometric events
* surface orientation (boundary) discontinuities
e depth discontinuities
e color and texture discontinuities

* Non-geometric events
* illumination changes

e specularities % surface normal discontinuity
e shadows

. flecti S~ |e—>=—— depth discontinuity
inter-reflections S

color discontinuity

" ] 44— Iillumination discontinuity
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* Produce a line “drawing” of a scene from an image of that
scene.
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Why is Edge Detection Useful?

* Important features can be extracted from the edges of an
image (e.g., corners, lines, curves).

e These features are used by higher-level computer vision
algorithms (e.g., recognition).
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Edge Descriptors s

e Edge direction: perpendicular

to the direction of maximum intensity
change (i.e., edge normal)

e Edge strength: related to the
local image contrast along the normal. EDGE

o DIRECTION
* Edge position: the image
position at which the edge is located.

EDGE
NORMAL
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 Step edge: the image intensity abruptly changes from one value on
one side of the discontinuity to a different value on the opposite side.
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 Ramp edge: a step edge where the intensity change is not
instantaneous but occur over a finite distance.
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Modeling Intensity Chiahges (cont’d)

* Ridge edge: the image intensity abruptly changes value but then
returns to the starting value within some short distance (i.e., usually

generated by lines).
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Modeling Intensity Chiahges (cont’d)

* Roof edge: a ridge edge where the intensity change is not
instantaneous but occur over a finite distance (i.e., usually generated
by the intersection of two surfaces).
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Main Steps in Edge Défection

(1) Smoothing: suppress as much noise as possible, without destroying
true edges.

(2) Enhancement: apply differentiation to enhance the quality of edges
(i.e., sharpening).
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Main Steps in Edge Défgction (cont’d)

(3) Thresholding: determine which edge pixels should be discarded
as noise and which should be retained (i.e., threshold edge
magnitude).

(4) Localization: determine the exact edge location.

resolution might be required for some applications to
estimate the location of an edge to better than the spacing
between pixels.
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Edge Detection Using,Derivatives

e Often, points that lie on an edge
are detected by:

(1) Detecting the local maxima or

minima of the first derivative.

(2) Detecting the zero-crossings

of the second derivative.

https://manara.edu.sy/
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Image Derivatives  sui

 How can we differentiate a djgita/image?

e Option 1: reconstruct a continuous image, f(x,yJ, then
compute the derivative.

e Option 2: take discrete derivative (i.e., finite differences)

L

Consider this case first!
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Edge Detection UsiéTngFirst Derivative

1D functions

(not centered at x)

c+h) — .
f(x) = ;lim ACH: ;Z /&) = f(x+1)— f(x) (h=1) ‘ mask: [-1 1]

1—=0

mask M = [-1,0,1  (centeredatx)

(upward) step edge ramp edge
(5. [ [1e[ie[i2]iz 1z 2a] 24 24 [2a ] 24| (Ss] [ [12[12]12] 1215 [18 [21 [24 [24 [2d]
EX [(SsJe[MJ o] o[ O] 3] 6] 6] 6] 3] 0 0]

gl ol a0y ol @r ol ol 0] 0

(downward) step edge roof edge
fj?l | ||24|?‘1|24|‘34|3_411‘-’|12112|12|121 [Sa ETRRCER AR IR A RS
[Jaf@ ||| G Po) ofar|- 2] 6] ¢ O] §] [(Sa]® M O] 0] 0]12] 0] 2] 0] 0] 0] 0]

https://manara.edu.sy/


https://manara.edu.sy/

I; W
I.l'
A"’

Edge Detection Using ém@%ond Derivative

e Approximate finding maxima/minima of gradient magnitude by
finding places where:

df?

m(}f) =0

e Can’t always find discrete pixels where the second derivative is zero —
look for instead.
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Edge Detection Usinﬁecond Derivative (cont’d)

1D functions:

S (x+h) - f(x)

£ = lim TSR L e 1) - () =

(centered at x+1)

fx+2)=2f(x+ D+ f(x) (h=])
Replace x+1 with x (i.e., centered at X):

S = G+ D=2+ flx=1)
\ 4

mask: 1 -2 1]
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Edge Detection Using’Second Derivative (cont’d)

20,20, 20,20 (x)

10\10110110\101
) Y L
0 | 0 | 0 I 0 |10 0 0 0 fl{x) - f{};—i_l} - f(}{) {approximates £() at x+1/2)
0 0 01010 0 o  fi(x) =f(x-1)-2f)+f(x+1)  (epproximates 0 atx)

ZET0O-CTOSSING
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Edge Detection Usmg"&é‘cond Derivative (cont’d)

(upward) step edge

[12]12]12J12] 1224242424 24
[oT ol o[ o[ 13[12] 0] 0] 0] 0

(downward) step edge

|52 ] | J24J24J2d[24]24 121212 [12]12]

[S:[@[M [ 0] 0] O] 0[12[-12] 0] 0] 0] 0]
ramp edge
[ S ] | FLIIRITRIIETIN I8 24]20] 24 ]

EREREA ur‘u___[_u|-:-5} HEEE IS IR EEE

roof edge
sl iR r it B T RTEIET ]
(Sa @ | MJ o] 0JoJ-12]J24-12] 0] o] 0] 0]
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Edge Detection Usmg‘j%é‘cond Derivative (cont’d)

 Four cases of zero-crossings:

{+1_}1 {+) OI_}I{_1+}1 {_IOI+}

* Slope of zero-crossing {a, -b} is: |a+b].

e To detect “strong” zero-crossing, threshold the slope.
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Effect Smoothing on Bativates

f(@)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Effect of Smoothingﬁf&h Derivatives (cont’d)

Sigma = 50

Signal

>
Kernel

hxf 3
8
S (h*f) 3
GOE ] j l . , , U S

]
0 200 400 600 800 1000 1200 1400 1800 1800 2000
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Combine Smoothirﬁﬂféfwith Differentiation

_________________________________________________

Signal

| | | | |
1000 1200 1400 1600 1800 2000

| | | |
0 200 400 600 800

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

wonvolution

(Gal) * P ot ot

! | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000
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Mathematical Interpqcetanon of combining
smoothing with differentiation

 Numerical differentiation is an problem.
- 1.e., solution does not exist or it iIs not unique or it does not
depend continuously on initial data)

* |lI-posed problems can be solved using
- I.e., Impose additional constraints

. performs image |

https://manara.edu.sy/
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Edge Detection Using ﬁﬁst Derivative (Gradient)

2D functions:

e The first derivate of an image can be computed using the gradient:

vi (2
grad(f)=| 5%
v

https://manara.edu.sy/
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Gradlent”ﬁépresentatlon

* The gradient is a vector which has and

) f B f;_r (approximation)

magnitude(g ;aﬁd{f)}—‘\/ I h or -
19f f f

direction(grad(f)) = tan™ 3

* Magnitude: indicates edge strength.

P - EDGE
. . . . . . NORMAL
* Direction: indicates edge direction. sl i L |
* i.e., perpendicular to edge direction ' 3

https://manara.edu.sy/
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Approximate Gradient ‘”M'

e Approximate gradient using finite differences:

af_l. fx+hy) = f(x.v) df AR R IPACIR))
= 11m

g h—=0 h aJ/ I?— h

of _fGxt+he.y)-f(x.p)
x h,

=f(x+1.y) = f(x. ). (h=1)

dof  fx,y+h)—f(x,)
Jy h,

=, y+ 1) = fx.p). (h=1)

https://manara.edu.sy/
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Approximate Gradietit!(cont’d)

e Cartesian vs pixel-coordinates: x-h__x_ x+h

- jcorresponds to xdirection y+h

-/ to -y direction y
y-h

fix+Ly)—f(x.y) oy g_f =fG.j+1)— f(.))
X

Fy 1) — fx.y),m— g{ G )~ fG+ 1)

https://manara.edu.sy/
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Approximate Grad|er?Hcont’d)

af filxa,y2) - Li{m3,vy3)
: vZ - y3
a.}: or £ (=, v+Dv)
-Dy

(y3=y24+Dy, y2=y, x3=x, Dy=1)

=dge in the x-direction

(0,0

(x1.y1)

(x3,y2)

-

=[f (xz,v) - fix, y+1‘.l] (grad in the y-direction)

edge in the y-dirsction

fix2,y1) - £ixl,v1)

x2 - ¥l

fix+Dx,v) - fix,v)

or

Dx

[ fixsel,v) - £ilx,v) ]

(22 =x+Dx,

(grad in the x-direction)

xl=x, ¥l=y2=¥,

DK=1:|

af:
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* We can implement ﬂ nd a_fjsing the following masks:

dx

1 1 df

dx

1 df

dv

good approximation

at (x+1/2,y) ey

good approximation
at (x,y+1/2)

(x+1/2,y)

/

® -0 e e o

*

https://manara.edu.sy/
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» A different approximation of the gradient:

df

Jx

o f good approximation
;}; (x,v)=fx,y)-fx+1Lv+1) (x+1/2,y+1/2)

%(I.J’)Zf(l'-i- LLy)— f(x.v+1). : * : : : :

Jof : 4 .

and 57 can be implemented using the following masks:
1 (0 () |
0 -1 ~| 0

(b) Roberts

https://manara.edu.sy/
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e Consider the arrangement of pixels about the pixel (/, )):

do  d a3
3 x 3 neighborhood: a5 [i,j] as;

: L deg ds  dy
e The partial derivatives wwrs ~< COMputed by:

Jdf of

Jx dv

M, =(a,+cas +ay)—(ag+ca-+ag)

e The const M, = (ag + cas+ay) —(ag+ca, +a,) sertothe
center of uic 1iasn.

https://manara.edu.sy/
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Prewitt Operator 6ol

e Setting c=1, we get the Prewitt operator:

-1 0 1 -1 -1 -1
M,=[-1 0 1 My=| 0 0 0
-1 0 1 11

M, and M, are approximations at (7, j)

https://manara.edu.sy/
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Sobel Operator ool

e Setting c= 2, we get the Sobel operator:

-1 0 1 -1 2 -1
M,=|-2 0 2 My={ 0 0 0
-1 0 1 12

M, and M, are approxumations at (7, j)

https://manara.edu.sy/
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Edge Detection Stepsﬁing Gradient

(1) Smooth the input image ( f (x,y) = f(x,y) * G(x,y))

@) fo=fG.)* M(xy) Y

dx
B3) fy =) * My(x.y) o
. A dy

(4) magn(x,y) = |/, + |/, sqrt

(5) dir(x,y) = tan™' (f,/f;)

(6) If magn(x, y) > T, then possible edge point

https://manara.edu.sy/
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Example (using Prewitt operator)

-1 0 1 -1 -1 -l
M.,=[-1 0 1 M,=10 0 0
-1 0 1 | 11

| £ =((38-12)/2 + (66-15)/2

+ (65-42)/2) /3
=(13+25+11)/3=16

3 ¥ o [ =((65-38)/2 + (64-14)/2
X
- N o b (42-12)2) /3
y+ 38 | 6p =(13+25+15)/3=18
lower ey :/ s EAETS)
o ities | 14 41 4-->
¥ intensities \ﬁﬁ ik fx :
y-1 12 15\\\5\12 B = tan (16/18) = 0.727 rad
= 42 degrees
| g
\ ]|vr|:{1ﬁ2+ 13']1’?:24

Note: in this example, the
divisions by 2 and 3 in the
computation of f, and f,
are done for normalization
purposes only

https://manara.edu.sy/
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Another Example (coft.d)
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Isotropic property 8f*gradient magnitude

* The magnitude of the gradient detects edges in all directions.

)5

https://manara.edu.sy/
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Practical Issues oy

* Noise suppression-localization tradeoff.
e Smoothing depends on mask size (e.g., depends on o for Gaussian filters).

e Larger mask sizes reduce noise, but worsen localization (i.e., add
uncertainty to the location of the edge) and vice versa.

smaller mask larger mask

= ,_: 3 ‘_ '}? ?‘:‘:?{,r??\;_
e

AP

a ¥ T -
e

P S iy ==
SN
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Practical Issues (cont@}

e Choice of threshold.

gradient magnitude

https://manara.c
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Practical Issues (cont@}

e Edge thinning and linking.

https://manara.edu.sy/
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Criteria for Optimal Edige Detection

* (1) Good detection
* Minimize the probability of false positives (i.e., spurious edges).
* Minimize the probability of false negatives (i.e., missing real edges).

* (2) Good localization
* Detected edges must be as close as possible to the true edges.

* (3) Single response
* Minimize the number of local maxima around the true edge.

https://manara.edu.sy/
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Canny edge detector s

e Canny has shown that the
closely approximates the operator that optimizes the
product of signal-to-noise ratio and localization.

(i.e., analysis based on "step-edges" corrupted by "Gaussian noise”)

Chrn s =) with moisen © ol sland aed derilion 3 Fire dasfsatva of Geasdan with mesn O and stansand dedation 2
0.3 ; B e Lt i
i e — i) —
0iEs - 5
2k ;~ o, 1 s 4
i L i
115 /
. =
u i r. u = - - ._a- s e—
| ' ‘l‘. I| -
I Ta Fi %
I =y
o —" r—— o1 5
0N -
FER i — 11 . — e
1o 5 [&] 5 1 o 5 10

J. Canny, A Computational Approach To Edge Detection, |EEE Trans. Pattern

Analysisand Machine Intelligence, 87679-714,71986.
https://manara.edu.sy/
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Steps of Canny edge détector

Algorithm

I. Compute f, and f,
tf—a(f*ﬁ—fﬂEjG—f*G
O 0x Y oy

fy= (f*G) f* G=f*G,

81
G(x, v) 1s the Gaussian function

: : _ —X
G, (x.v) 1s the dertvate of G(x. v) with respect to x: G,(x.y) = — G(x.v)
n_-

: : : -V
G,(x, ) 1s the dervate of G(x, y) with respect to y: Gy (x,y) = E G(x,v)

https://manara.edu.sy/
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Steps of Canny edge detettor (cont’d)

2. Compute the gradient magnitude

magn(x, y) = \ﬁ.\ﬂfﬂ dir(x,y) = tan (ﬁffx)

3. Apply non-maxima suppression.

4. Apply hysteresis thresholding/edge linking.

https://manara.edu.sy/
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Canny edge detector - exﬁ‘rﬂple

original image

https://manara.edu.sy/
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Canny edge detector — e%%ple (cont’d)

Gradient magnitude
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Canny edge detector — ex4thple (cont’d)
Thresholded gradient magnitude
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Canny edge detector — ex4thple (cont’d)

Thinning (non-maxima suppression)

| kY N,

| 4 b ‘\‘
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Non-max¥#ta suppression

e Check if gradient magnitude at pixel location (i,))
IS local maximum along gradient direction

https://manara.edu.sy/
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Non-maxima suppressign (cont’d)

Warning: requires checking
interpolated pixels p and r

_— magn(i1.j1)
55 6 Zif;_:}zl 5 7
1012161410 1113 < magn(ii)
44 3(3)5 25

= magn(i2.j2)

direction of
gradient

Algorithm

] ] e O &
P
] ] ]
| q
Gradient /
® & O @ [ ]
T
9 L ] ® L

For each pixe ()R do:

then 7,(i. j) =0
else I (i. j) = magn(i. j)

if magn(i. j) < magn(iy. j;) or magn(i. j) < magn(i-. j,)

https://manara.edu.sy/
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Hysteresis thresholding %=
« Standard thresholding:

1 if ||V f(x,y)|| > T for some threshold T’
0 otherwise

E(r,y) = {

- Can only select “strong” edges.
- Does not guarantee “continuity”.

high threshold

gradient magnitude low threshold

https://manara.edu.sy/


https://manara.edu.sy/

2

Hysteresis thresholding (C%ﬁt’d)

» Hysteresis thresholding uses two thresholds:

- [/
- t, (usually, £, =2¢t)

Viix,y) definitely an edge
> |V f(z,y) maybe an edge, depends on context
Viiz,y) definitely not an edge

 For “maybe” edges, decide on the edge if neighboring
pixel Is a strong edge.

https://manara.edu.sy/
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Hysteresis thresholdi%VEdge Linking

Idea: use a high threshold to start edge curves and a low threshold to

continue them.

Use edge °o o o
“direction” for Gmdie“}/\ .
linking edges ¢ * & 0

https://manara.edu.sy/
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Hysteresis ThresholdM/Edge Linking (cont’d)

Algorithm

1. Produce two thresholded images I;(i. j) and I, (7. j).

(note: since 7,(7. j) was formed with a high threshold. it will contain fewer false
edges but there might be gaps in the contours)

2. Link the edges in 75(i. j) into contours
2.1 Look in /(7. j) when a gap 1s found.

2.2 By examining the 8 neighbors in 7,(7. j). gather edge points from 7, (7. j)
until the gap has been bridged to an edge in 75(7. j).

Note: large gaps are still difficult to bridge.
(1.e., more sophisticated algorithms are required)

https://manara.edu.sy/
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Second Derivative in 20 Laplacian

The Laplacian is defined mathematically as

TE

‘v

When we apply it to an image, we get

|

921

G C 8 ] )
oo | P x| 0°
A ) 8 | Oxe

dy ay

i
ay?

el 4

X &

a | a !
3y 7y

~ Ox2 i ay?

https://manara.edu.sy/
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Second Derivative in Q‘@ Laplacian (cont’d)

°f

al
a;,'/.: =fG+L)=-2fG D+ fGE=1.))

Vif==a4f(i, )+ fG.j+ D+ fGj-D+ fG+1, )+ fG-1,7)

O 0|0 0] 110 110
11-2 1 + (0210 = 1 1
O 0|0 0] 110 110

https://manara.edu.sy/
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Variations of Laplaciaki

/
L
JLi .[

Dy

05| 00|05
1.0 -40 | 1.0
05| 00|05
1| -2
1] -2
1] -2

05] 1.0 05 11
00| 40[00] = [1]-8
05| 1.0 |05 1
1] 1 211 2
22| = [1]-4]-
1] 1 21 2

https://manara.edu.sy/
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Laplacian - Example &

|||||||||||

BIO1L B 151816 4 2 e g
AERE Y HE /D s LD 15 1.8
515|110 | 10|10 ] 10 B 1015150
515110]10] 10| 10 v E BT It 6110
515 5 |10]10| 10 I B Tt-J00 01 0
SIS 5 S LTI 24P B % S
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Properties of Laplaciafiz

* |t is an isotropic operator.

e It is cheaper to implement than the gradient (i.e., one mask only).
* It does not provide information about edge direction.

e It is more sensitive to noise (i.e., differentiates twice).

https://manara.edu.sy/
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Laplacian of Gaussian ?%G)
(Marr-Hildreth operatof)

* To reduce the noise effect, the image is first smoothed.

* When the filter chosen is a Gaussian, we call it the LoG edge
detector.

2417 c controls smoothing
G(x,y)=e 20’

* |t can be shown that:

VAf(x.3) * G(x.9)] = V2G(x.p) * f(x.7) / \

. — . } 1
wn-C I ooy OIS
V2G(x, y) = (— TR (2 = 57 4 ) A

(o) -3 14

https://manara.edu.sy/
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Laplacian of Gaussiar¥{fLoG)

(inverted LoG)

5 x 5 Laplacian of Gaussian mask 0
() i) | 1) () [ n
]

0 -1 2 =1 0 0
1 -2 16 -2 -1 '|
() | 2 -1 | '
1

|l () | 0O 0 | 5
i ik 5

]

]

0
0

17 >

1

()
1

- Example

(inverted LoG)

17 Laplacian of Gaussian mask

1 I 1 1 | 0 (

1 -1 1 | 1 1 1
} 3 3 3 2 1
i 3 3 3 2
R s 3 J }
0 2 | 2 i
i 10 12 10 |
10 '1 21 18 10
21 24 21 1
11] 18 21 13 11
| 10 12 10 1 0
0 2 | 2 )
3 2 e 2 )
3 -3 } 3 2
] 3 3 1
| | 1 -1
| 1 1 I ok 0

i)

i)

1 1
| -1
2 1
—3

J

i 4
3} =3
3

1

L

1

1]
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Decomposition of LoGa
* [t can be shown than LoG can be written as follows:

d
V? g(X Y) = —f;[u) # glr) + gly) + ?fﬂ'r]
2D LoG convolution can be |mplemented using 4, 1D convolutions.

ayy(y) 2(x)

2 *
) Vag(xy)*1(xy)

[image

L =y —_— ()

https://manara.edu.sy/
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Decomposition of LoGfcont’d)

Steps

. Convolve the image with a second derivative of Gaussian mask (g,,(y)) along each

column.

Convolve the resultant image from step (1) by a Ganssian mask {g(x)) along each row.
Call the resultant image I”.

Convolve the original image with a Gaunssian mask (g(y)) along each column.

Convolve the resultant image from step (3) by a second derivative of Ganssian mask
(g:(x)) along each row. Call the resultant image Y.

CAdd 7 and 1Y,
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Difference of Gaussiatisi(DoG)

e The Laplacian of Gaussian can be approximated by the
difference between two Gaussian functions:

VG ~ G(X.y;01) — G(X.y; 02)

approximation
\ actual LoG

- ———sigma = 0.3‘
sigma = 1.0
difference

https://manara.edu.sy/
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Ratio (04 /02) for best approximation is about 1.6.
(Some people like v/2.)

https://manara.edu.sy/
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Gradient vs LoG o

e Gradient works well when the image contains sharp
intensity transitions and low noise.

e Zero-crossings of LOG offer better localization, especially
when the edges are not very sharp.

step edge
(2722228 [8[8]8[8]
] o o] e e e | il s , ——
i 51315 : : : :: i G W W
TR O OO 61| P s RRIEN O
PRITER N Rl Hk’j\?‘ B RO GA = E R ]
AlleH el el PR B ) © s ‘n 00 6[-6 000
e | P R -
. x Bid

ramp edge
[2T2]2]2]2[5]8]8[8][8]
| & .' B =1 B E I g .”“..“ _- d A O 5 e
‘jfff'j SR R e 0 0 0 3[0[-3 0 0
A £ ol o HE R REH 19 pRSTERR R e S
v i .] :| _} E k] ] ] £]
BEAR A oA e M e I RO o (& OO0 R I L R
2)l[i2a 20152 |29t S oGl B 1A T e e s |
2222|258 ]|8[8]8 : - —

“nwps.srimanara.edu.sy/
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Gradient vs LoG (contd])

LoG behaves poorly at corners
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Directional Derivativeis

d
vi J;f x| | % 21 o2
g:"df?d } _ . o _ X . X _ L L
(f of Vet {;_: o / 92 + 272
'a_'l" i L oy

 The partial derivatives of f(x,y) will give the slope
of/ox In the positive x direction and the slope of /oy In
the positive y direction.

» \We can generalize the partial derivatives to calculate
the slope in any direction (i.e., directional derivative).

https://manara.edu.sy/
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Directional Derivative;{dont’d)

[ILTEERE S o

 Directional derivative computes intensity changes
In a specified direction.

Compute
derivative
In direction u

https://manara.edu.sy/
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Directional Derivative;{dont’d)

[ILTEERE S o

Directional derivative

,&: is a linear
combination of
partial derivatives.

(From vector calculus)

Vaf(Z) =V[(Z)-d
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Directional Derivative;{dont’d)

[ILTEERE S o

9f . cos of . i
3T - sIind

u, =C0sé, u,

=sin g

https://manara.edu.sy/
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Higher Order Directic?fh?él Derivatives

f;(x,y):ﬂcose+ﬂsin9
OX
) 2 , 2 2 ,
f (x,Vy)= cos“ 0+ 2 cosdsin @ + sSin“ @
0 (X.Y) X OXOY oy?
an 3 3 3

f,(X,y)=—=C0s>0+3

X

X%y

cos’ @sing+3

Xy

cos@sin26’+ﬂsin39

ay3

https://manara.edu

.sy/
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Edge Detection Usingiirectional Derivative

i 8 R T

* What direction would you use for edge detection?

Direction of gradient:

of

o X ~(cos6
| of | |sing

oy

https://manara.edu.sy/
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Second Directional D%vative
(along gradient direction) ™

2 5 >
f‘;(x’y):a Z cos® @+ 2 0 cos¢9sin¢9+a ZSinZH
o
OX cos @
- ot _(sinej
oy
92 f fngﬂ + 2fxf}r’fxy + f}”zf}’}f

on? fxz + f};z

https://manara.edu.sy/
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Edge Detection Usiﬁﬁf@Second Derivative

Pr(x.y) N 9°f(x, y)

Laplacian:  v2f(x.y) = 3 52

or V3 = fix + fy

Second directional derivative along the gradient:

U”E fxz + fyz

(1) the second directional derivative is equal to zero and

— (i the- third-directional-derivativeisnegative——————

https://manara.edu.sy/
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Properties of Second @ansectlonal Derivative
(along gradient dlrectlon)

Mathematical:

02 . .
o 57 18 non-linear
Q f: 5 heither commutes nor associates with convolution
z
0° E}zg
/ A O
oné (9+7) 7 (Urﬁ)
g J, 0°f
(;)nf’f) ot 7o (UnE
* : - - 2 2
Q 52 1S not everywhere defined (i.e., require = + fy
L

Experimental:

i . L .
(% r—g provides better localization, especially at corners

https://manara.edu.sy/
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Facet Model o

e Assumes that an image is an array of samples of a continuous function
f(x,y).
e Reconstructs f(x,y) from sampled pixel values.

» Uses directional derivatives which are computed (i.e., without
using discrete approximations).

https://manara.edu.sy/


https://manara.edu.sy/

%v

Facet Model (cont’d) &

e For complex images, f(x,y) could contain
extremely high powers of x and y.

e Idea: model f(x,y) as a piece-wise
function.

e Approximate each pixel value by fitting a
bi-cubic polynomial in a small
neighborhood around the pixel (facet).

fle,y) =k + kox + sy + kax® + ksxy + key® + kea® + kax’y + koxy® + kyoy™.

https://manara.edu.sy/
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Facet Model (cont'd}=

Steps

(1) Fit a bi-cubic polynomial to a small neighborhood of each pixel
(this step provides smoothing too).

(2) Compute the second and third directional derivatives
in the direction of gradient.

(3) Find points where (i) the second derivative is equal to zero and (ii)
the third derivative is negative.

https://manara.edu.sy/
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Fitting bi-cubic polynéiiial

fla.y) =k 4 by + kay + kax® + ksay + key® + kra® + ke®y + koxy® + koy”.

e If a5 x 5 neighborhood is used, the masks below can be used to
compute the coefficients.
e Equivalent to least-squares (e.g., SVD)

-13 ] 2 T 2 |-13 31 -5 [-17 | -5 | 31
2 01722 [ 17 ] 2 -44 | -62 | -68 | -62 | -44 201-1]-2]-1]2 Lf-1]-1]-1]-1 Al-2)012] 4
Tl 22|21 2|7 ﬁ 0 0 0 0 0 20-1[-2[-1]2 212122 |2 2101 10]-11]-2
2 1722 |17 ] 2 44 1 62 | 68 | 62 | 44 =[2]-1]-2]-1]2 ={ofofJoJo]o —[4[2]o0]-2]-4
-13 ] 2 7 2 |-13 315 |17 5 |-31 20-1]-2]-1]2 22 0-21-2]-2 211 f0]-1]-2
21-1]-2]-1]2 I 11 ]1]1 41210124
by
kg k7 ks
31 |-44 |0 44 | -31 21212122 41210]-2]-4
-5 [ -62)10)62] 5 - p-1Tf-1]-1 201 10]-1]-2 214124 L{2]0]-2]1
SIT 681068 1T % 22222 ﬁ OjJoJojofo 211211 ]-2 L]1210]-211
5[ -62)0f62] 5 -t 2-rjof1g]2 —[0foJoJofo =[-1]2]0]-2]1
44 (0] 44|51 2022 2|2 42|02 4 2 -1 )-2]-1f2 Lj2f{of-2]1
41-2|-4]-2|4 Lf2)of-21]1
k4 k kg k1o
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Analytic computatiorigipf second and
third directional derivatives

flo,y) =k 4 kox + kay + kax® + kszy + key” + kra® + kex’y + koxy® + koy®.
e Using polar coordinates

x=psinfl, y = pcosé

falp) = Co+ Cap + Cap* + Cip,

where
{-'T[] = JE‘TI-_
(7 = kasinf L+ kscosb,
(', = kysin®f + ks sin 0 cos 8 + kgcos®6,

(s = kesin®® 4+ kgsin®0 cos 8 + kg sin feos® + kygcos .

https://manara.edu.sy/
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Compute analytlcallyqs@cond and
third directional derivatives

e Gradient angle 6 (with positive y-axis at (0,0)):

) .lrw'*g .-
sinf = Tt b Locally approximate surface
"’ o by a plane and use the normal
A 1
cosfl = N to the plane to approximate

the gradient.

https://manara.edu.sy/
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Computing directionaﬁﬁfgrivatives (cont’d)

* The derivatives can be computed as follows:

,ff?f[.r‘?:' = {4+ 'E!f_‘-;p + 35}:5?{
.Jrﬁ“’] = Cy+ {'_1”} + (-]-:.”E + l5-1,'s.|”':!'- _r[]H[ ."ﬂ — 2{-":! ‘I‘ E"'[-'i.'tﬂg
Jr v .-:.-[ plo= 6C'y.
tSec:ond_derll\_/atlve equal  7(,) = 20, + 6Csp = 0. we get | % | < pg
0 zero implies:

Third derivative
negative implies:  [e"(p) < 0. we get 6C;5 < 0, or Cy < 0.

https://manara.edu.sy/
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Edge Detection Using Facé‘t‘“l\/lodel (cont’d)

Steps

. Find &y, By, ks, o, By using least square fit, or masks given in Figure 2.8,
2. Compute #. sin . cos#.
3. Compute (5, (s,

.I.n

I Cy =< 0 and | | < py then that point is an edge point.

Figure 2.9: The steps in Haralick’s Edge Detector,

https://manara.edu.sy/
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Anisotropic Filtering “ﬂj}
(i.e., edge preserving smoothing)

e Symmetric Gaussian smoothing tends to blur out edges
rather aggressively.

e An “oriented” smoothing operator would work better:
(i) Smooth aggressively perpendicular to the gradient
(ii) Smooth little along the gradient

 Mathematically formulated using diffusion
equation.

https://manara.edu.sy/
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Anisotropic filtering - Exa?’ﬁ"ﬁble

result using
anisotropic filtering

Hm | ||| '." m | w \

*mm| ol
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Fffect of scale (i.e.?d)

. I||;|_r|“|"|
r O 7 ol

| | .‘ ~y Ly
=
RnJ I IR

| Ll'-.'l-__.:" ___!Ifl.‘:l I‘"_l:i'l:'f;:'lili___._"j' K

— ;
|I||.|. .lf.-""_ A

— Small o detects fine features.
— Large o detects large scale edges.
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Multi-scale Processing’a

* A formal theory for handling image structures at different scales.

* Process images multiple scales.

e Determine which structures (e.g., edges) are most significant by
considering the range of scales over which they occur.

https://manara.edu.sy/
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Multi-scale Processing (cém%i“f’d)

o0=2

0=8

Interesting scales: scales at which important structures are
present.

https://manara.edu.sy/


https://manara.edu.sy/

2

Scale Space (Witkin 1983)%[

Gaussian
filtered signal

~—— e Detect and plot the
zero-crossing of a 1D

- __s+——_— function over a continuum
S~ —~——  of scaleso.

i~~~ * Instead of treating zero-
— M/\—\ - -
MAT N~ crossings at a single scale as a

sy~~~ SINgle point, we can now treat
—aI oA~ them at multiple scales as
contours.

A. Witkin, "Scale-space filtering", 8th Int. Joint Conf. Art. Intell.,

Karlsruhe, Germany,l019-1022, 1983
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Scale Space (cont’d) o)a)

* Properties of scale space (assuming Gaussian

smoothing):
» Zero-crossings may shift with increasing scale (o).
* Two zero-crossing may merge with increasing scale.

e A c?ntour may not split into two with increasing
scale.

n”u.ﬂ MM Mﬂ
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(Canny edges at multiple scales of smoothing, =0.5, 1.
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Multi-scale processingfcont’d)

e vt Sooe A, S
:\\x\HTN l
. .L\Tﬁ?ﬂ .- x\r-l'\
/ ro. 4—-‘—'flf‘~'~fi“f“/R1f_
: J - i F’/ \ \
/ —f\‘h\-&_—_
/_\—/—\\¥_\\

=

T

(Canny edges at multiple scales of smoothing, o= 1.2.4,8.16)

—_—
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Edge detection is just thebeginning...

image human segmentation gradient magnitude

* Berkeley segmentation database:

https://manara.edu.sy/


https://manara.edu.sy/

	Edge Detection
	Definition of Edges
	What Causes Intensity Changes?
	Goal of Edge Detection
	Why is Edge Detection Useful?
	Effect of Illumination
	Edge Descriptors
	Modeling Intensity Changes
	Modeling Intensity Changes (cont’d)
	Modeling Intensity Changes (cont’d)
	Modeling Intensity Changes (cont’d)
	Main Steps in Edge Detection
	Main Steps in Edge Detection (cont’d)
	Edge Detection Using Derivatives
	Image Derivatives
	Edge Detection Using First Derivative 
	Edge Detection Using Second Derivative
	Slide Number 18
	Edge Detection Using Second Derivative (cont’d) 
	Edge Detection Using Second Derivative (cont’d)
	Edge Detection Using Second Derivative (cont’d)
	Effect Smoothing on Derivates
	Effect of Smoothing on Derivatives (cont’d)
	Combine Smoothing with Differentiation
	Mathematical Interpretation of combining�smoothing with differentiation
	  Edge Detection Using First Derivative (Gradient) 
	Slide Number 27
	Approximate Gradient 
	Approximate Gradient (cont’d)
	Approximate Gradient (cont’d)
	Approximating Gradient (cont’d)
	Approximating Gradient (cont’d)
	Another Approximation
	Prewitt Operator
	Sobel Operator
	Edge Detection Steps Using Gradient
	Example (using Prewitt operator)
	Another Example
	Another Example (cont’d)
	 Isotropic property of gradient magnitude
	Practical Issues
	Practical Issues (cont’d)
	Practical Issues (cont’d)
	Criteria for Optimal Edge Detection
	Canny edge detector
	Steps of Canny edge detector
	Steps of Canny edge detector (cont’d)
	Canny edge detector - example
	Canny edge detector – example (cont’d)
	Canny edge detector – example (cont’d)
	Canny edge detector – example (cont’d)
	Slide Number 52
	Non-maxima suppression (cont’d)
	Hysteresis thresholding
	Hysteresis thresholding (cont’d)
	Hysteresis thresholding/Edge Linking
	Hysteresis Thresholding/Edge Linking (cont’d)
	Second Derivative in 2D: Laplacian
	Second Derivative in 2D: Laplacian (cont’d)
	Variations of Laplacian
	Laplacian - Example
	Properties of Laplacian
	Laplacian of Gaussian (LoG)� (Marr-Hildreth operator)
	Laplacian of Gaussian (LoG) - Example
	Decomposition of LoG
	Decomposition of LoG (cont’d)
	Difference of Gaussians (DoG)
	Difference of Gaussians (DoG) (cont’d)
	Gradient vs LoG
	Gradient vs LoG (cont’d)
	Directional Derivative
	Directional Derivative (cont’d)
	Directional Derivative (cont’d)
	Directional Derivative (cont’d)
	Higher Order Directional Derivatives
	Edge Detection Using Directional Derivative
	Second Directional Derivative�(along gradient direction)
	Edge Detection Using Second Derivative
	Properties of Second Directional Derivative �(along gradient direction)
	Facet Model
	Facet Model (cont’d)
	Facet Model (cont’d)
	Fitting bi-cubic polynomial
	Analytic computations of second and �third directional derivatives
	Compute analytically second and �third directional derivatives
	Computing directional derivatives (cont’d)
	Edge Detection Using Facet Model (cont’d)
	Anisotropic Filtering �(i.e., edge preserving smoothing)
	Anisotropic filtering - Example
	Effect of scale (i.e., σ)
	Multi-scale Processing
	Multi-scale Processing (cont’d)
	Scale Space (Witkin 1983)
	Scale Space (cont’d)
	Multi-scale processing (cont’d)
	Multi-scale processing (cont’d)
	Edge detection is just the beginning…

