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Definition of Edges

• Edges are significant local changes of intensity in an image.
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What Causes Intensity Changes?

• Geometric events 
• surface orientation (boundary) discontinuities
• depth discontinuities
• color and texture discontinuities

• Non-geometric events
• illumination changes
• specularities
• shadows
• inter-reflections depth discontinuity

color discontinuity

illumination discontinuity

surface normal discontinuity
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Goal of Edge Detection

• Produce a line “drawing” of a scene from an image of that 
scene.
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Why is Edge Detection Useful?

• Important features can be extracted from the edges of an 
image (e.g., corners, lines, curves).

• These features are used by higher-level computer vision 
algorithms (e.g., recognition).

https://manara.edu.sy/


https://manara.edu.sy/

Effect of Illumination
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Edge Descriptors

•Edge direction: perpendicular 
to the direction of maximum intensity 
change (i.e., edge normal)

•Edge strength: related to the 
local image contrast along the normal.

•Edge position: the image 
position at which the edge is located.
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Modeling Intensity Changes

• Step edge: the image intensity abruptly changes from one value on 
one side of the discontinuity to a different value on the opposite side.
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Modeling Intensity Changes (cont’d)

• Ramp edge: a step edge where the intensity change is not 
instantaneous but occur over a finite distance.
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Modeling Intensity Changes (cont’d)

• Ridge edge: the image intensity abruptly changes value but then 
returns to the starting value within some short distance (i.e., usually 
generated by lines).
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Modeling Intensity Changes (cont’d)

• Roof edge: a ridge edge where the intensity change is not 
instantaneous but occur over a finite distance (i.e., usually generated 
by the intersection of two surfaces).
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Main Steps in Edge Detection

 (1) Smoothing: suppress as much noise as possible, without destroying 
true edges.

 (2) Enhancement: apply differentiation to enhance the quality of edges 
(i.e., sharpening).
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Main Steps in Edge Detection (cont’d)

(3) Thresholding: determine which edge pixels should be discarded 
as noise and which should be retained (i.e., threshold edge 
magnitude).

  
 (4) Localization: determine the exact edge location.

     sub-pixel resolution might be required for some applications to 
estimate the location of an edge to better than the spacing 
between pixels.

https://manara.edu.sy/


https://manara.edu.sy/

Edge Detection Using Derivatives

• Often, points that lie on an edge 
 are detected by:

 (1) Detecting the local maxima or 
 minima of the first derivative.

 (2) Detecting the zero-crossings 
 of the second derivative.

2nd derivative

1st derivative
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Image Derivatives

• How can we differentiate a digital image?

• Option 1:  reconstruct a continuous image, f(x,y), then 
compute the derivative.

• Option 2:  take discrete derivative (i.e., finite differences)

Consider this case first!
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Edge Detection Using First Derivative 

ramp edge 

roof edge

(upward) step edge 

(downward) step edge 

(centered at x) 

1D functions
(not centered at x) 
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Edge Detection Using Second Derivative

• Approximate finding maxima/minima of gradient magnitude by 
finding places where:

• Can’t always find discrete pixels where the second derivative is zero – 
look for zero-crossing instead.
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Replace x+1 with x (i.e., centered at x):

1D functions:

(centered at x+1)

Edge Detection Using Second Derivative (cont’d)
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Edge Detection Using Second Derivative (cont’d) 

https://manara.edu.sy/


https://manara.edu.sy/

Edge Detection Using Second Derivative (cont’d)

(upward) step edge 

(downward) step edge 

ramp edge 

roof edge
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Edge Detection Using Second Derivative (cont’d)

• Four cases of zero-crossings:
 

{+,-}, {+,0,-},{-,+}, {-,0,+}

• Slope of zero-crossing {a, -b} is: |a+b|.

• To detect “strong” zero-crossing, threshold the slope. 
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Effect Smoothing on Derivates

Where is the edge??
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Effect of Smoothing on Derivatives (cont’d)
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Combine Smoothing with Differentiation

(i.e., saves one operation)
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Mathematical Interpretation of combining
smoothing with differentiation

• Numerical differentiation is an ill-posed problem.
      - i.e., solution does not exist or it is not unique or it does not 
               depend continuously on initial data)

• Ill-posed problems can be solved using “regularization”
- i.e., impose additional constraints

• Smoothing performs image interpolation.
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Edge Detection Using First Derivative (Gradient) 

• The first derivate of an image can be computed using the gradient:
2D functions:

f∇
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• The gradient is a vector which has magnitude and direction:

• Magnitude: indicates edge strength.

• Direction: indicates edge direction.
• i.e., perpendicular to edge direction

| | | |f f
x y
∂ ∂

+
∂ ∂

or

(approximation)

Gradient Representation 
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Approximate Gradient 

• Approximate gradient using finite differences:
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Approximate Gradient (cont’d)

• Cartesian vs pixel-coordinates: 
   - j corresponds to x direction

   - i  to -y direction 
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Approximate Gradient (cont’d)

sensitive to vertical edges!

sensitive to horizontal edges!
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Approximating Gradient (cont’d)

• We can implement         and         using the following masks:

(x+1/2,y)

(x,y+1/2) *
*

good approximation
at (x+1/2,y)

good approximation
at (x,y+1/2)
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Approximating Gradient (cont’d)

• A different approximation of the gradient:

•         and          can be implemented using the following masks:

*

(x+1/2,y+1/2)
good approximation
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Another Approximation

• Consider the arrangement of pixels about the pixel (i, j):

• The partial derivatives                  can be computed by:

• The constant c implies the emphasis given to pixels closer to the 
center of the mask.

3 x 3 neighborhood:
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Prewitt Operator

• Setting c = 1, we get the Prewitt operator:
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Sobel Operator

• Setting c = 2, we get the Sobel operator:
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Edge Detection Steps Using Gradient

(i.e., sqrt is costly!)
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Example (using Prewitt operator)

Note: in this example, the
divisions by 2 and 3 in the 
computation of fx and fy 
are done for normalization 
purposes only 
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Another Example

I
dx
d

I
dy
d
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Another Example (cont’d)

22d dI I
dx dy

  ∇ = +   
   

100Threshold∇ ≥ =
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Isotropic property of gradient magnitude

• The magnitude of the gradient detects edges in all directions.

22d dI I
dx dy

  ∇ = +   
   

I
dx
d I

dy
d
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Practical Issues

• Noise suppression-localization tradeoff.
• Smoothing depends on mask size (e.g., depends on σ for Gaussian filters).
• Larger mask sizes reduce noise, but worsen localization (i.e., add 

uncertainty to the location of the edge) and vice versa. 

larger masksmaller mask
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Practical Issues (cont’d)

• Choice of threshold. 

gradient magnitude

low threshold high threshold
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Practical Issues (cont’d)

• Edge thinning and linking.
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Criteria for Optimal Edge Detection

• (1) Good detection
• Minimize the probability of false positives (i.e., spurious edges).
• Minimize the probability of false negatives (i.e., missing real edges).

• (2) Good localization
• Detected edges must be as close as possible to the true edges.

• (3) Single response
• Minimize the number of local maxima around the true edge.
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Canny edge detector

• Canny has shown that the first derivative of the Gaussian 
closely approximates the operator that optimizes the 
product of signal-to-noise ratio and localization.

  (i.e., analysis based on "step-edges" corrupted by "Gaussian noise“)

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 
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Steps of Canny edge detector
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Steps of Canny edge detector (cont’d)

(and direction)
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Canny edge detector - example
original image
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Canny edge detector – example (cont’d)

Gradient magnitude
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Canny edge detector – example (cont’d)

Thresholded gradient magnitude
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Canny edge detector – example (cont’d)

Thinning (non-maxima suppression)
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Non-maxima suppression

•  Check if gradient magnitude at pixel location (i,j)
    is local maximum along gradient direction
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Non-maxima suppression (cont’d)

(i,j)

Warning: requires checking 
interpolated pixels p and r
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Hysteresis thresholding

•  Standard thresholding:

- Can only select “strong” edges.
- Does not guarantee “continuity”.

gradient magnitude low threshold high threshold

https://manara.edu.sy/


https://manara.edu.sy/

Hysteresis thresholding (cont’d)

•  Hysteresis thresholding uses two thresholds:

•  For “maybe”  edges, decide on the edge if neighboring  
pixel is a strong edge.

- low threshold tl
- high threshold th (usually, th = 2tl)

tl
tl

th

th
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Hysteresis thresholding/Edge Linking

Idea: use a high threshold to start edge curves and a low threshold to 
continue them.

Use edge
“direction” for
linking edges

https://manara.edu.sy/


https://manara.edu.sy/

Hysteresis Thresholding/Edge Linking (cont’d)

Note: large gaps are still difficult to bridge. 
(i.e., more sophisticated algorithms are required)

(using tl and th)
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Second Derivative in 2D: Laplacian
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Second Derivative in 2D: Laplacian (cont’d)
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Variations of Laplacian
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Laplacian - Example

detect zero-crossings
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Properties of Laplacian

• It is an isotropic operator. 
• It is cheaper to implement than the gradient (i.e., one mask only). 
• It does not provide information about edge direction.
• It is more sensitive to noise (i.e., differentiates twice). 
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Laplacian of Gaussian (LoG)
 (Marr-Hildreth operator)

• To reduce the noise effect, the image is first smoothed. 
• When the filter chosen is a Gaussian, we call it the LoG edge 

detector. 

• It can be shown that: 

σ controls smoothing

2σ2

(inverted 
LoG)
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Laplacian of Gaussian (LoG) - Example

filtering zero-crossings

(inverted LoG)
(inverted LoG)
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Decomposition of LoG

• It can be shown than LoG can be written as follows:

• 2D LoG convolution can be implemented using 4, 1D convolutions.

2 ( , )g x y∇

2 ( , )* ( , )g x y I x y∇
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Decomposition of LoG (cont’d)

Steps
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Difference of Gaussians (DoG)

• The Laplacian of Gaussian can be approximated by the 
difference between two Gaussian functions:

approximation
actual LoG
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Difference of Gaussians (DoG) (cont’d)

(a) (b) (b)-(a)
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Gradient vs LoG

• Gradient works well when the image contains sharp 
intensity transitions and low noise. 

• Zero-crossings of LOG offer better localization, especially 
when the edges are not very sharp. 

step edge

ramp edge
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Gradient vs LoG (cont’d)

LoG behaves poorly at corners
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Directional Derivative

• The partial derivatives of f(x,y) will give the slope 
∂f/∂x in the positive x direction and the slope ∂f /∂y in 
the positive y direction. 

• We can generalize the partial derivatives to calculate 
the slope in any direction (i.e., directional derivative).

f∇
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Directional Derivative (cont’d)

•  Directional derivative computes intensity changes 
   in a specified direction.

Compute 
derivative 
in direction u
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Directional Derivative (cont’d)

+ =

Directional derivative  
is a linear 

combination of 
partial derivatives.

(From vector calculus)
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Directional Derivative (cont’d)

+ =
cosθ sinθ

cos , sin yx uu
u u

θ θ= = cos , sinx yu uθ θ= =
||u||=1
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Higher Order Directional Derivatives

' ( , ) cos sinf ff x y
x yθ θ θ∂ ∂

= +
∂ ∂

3 3 3 3
''' 3 2 2 3

3 2 2 3( , ) cos 3 cos sin 3 cos sin sinf f f ff x y
x x y x y yθ θ θ θ θ θ θ

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂ ∂ ∂

2 2 2
'' 2 2

2 2( , ) cos 2 cos sin sinf f ff x y
x x y yθ θ θ θ θ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂
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Edge Detection Using Directional Derivative

• What direction would you use for edge detection?

cos
sin

f
x
f
y

θ
θ

θ

∂ 
   ∂ = =  ∂   
 ∂ 

Direction of gradient:
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Second Directional Derivative
(along gradient direction)

cos
sin

f
x
f
y

θ
θ

θ

∂ 
   ∂ = =  ∂   
 ∂ 

2 2 2
'' 2 2

2 2( , ) cos 2 cos sin sinf f ff x y
x x y yθ θ θ θ θ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂
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Edge Detection Using Second Derivative

or

Laplacian:

(i) the second directional derivative is equal to zero and 
(ii) the third directional derivative is negative.
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Properties of Second Directional Derivative 
(along gradient direction)
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Facet Model

• Assumes that an image is an array of samples of a continuous function 
f(x,y).

• Reconstructs f(x,y) from sampled pixel values.
• Uses directional derivatives which are computed analytically (i.e., without 

using discrete approximations).

z=f(x,y)
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Facet Model (cont’d)

• For complex images, f(x,y) could contain 
extremely high powers of x and y.

• Idea: model f(x,y) as a piece-wise 
function.

• Approximate each pixel value by fitting  a 
bi-cubic polynomial in a small 
neighborhood around the pixel (facet).
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Facet Model (cont’d)

Steps
(1) Fit a bi-cubic polynomial to a small neighborhood of  each pixel 

(this step provides smoothing too).

(2) Compute (analytically) the second and third directional derivatives 
in the direction of gradient.

(3)  Find points where (i) the second derivative is equal to zero and (ii) 
the third derivative is negative.
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Fitting bi-cubic polynomial

• If a 5 x 5 neighborhood is used, the masks below can be used to 
compute the coefficients.

• Equivalent to least-squares (e.g., SVD)
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Analytic computations of second and 
third directional derivatives

• Using polar coordinates  
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Compute analytically second and 
third directional derivatives

• Gradient angle θ (with positive y-axis at (0,0)):

Locally approximate surface 
by a plane and use the normal
to the plane to approximate
the gradient.

https://manara.edu.sy/


https://manara.edu.sy/

Computing directional derivatives (cont’d)

• The derivatives can be computed as follows:

Second derivative equal
to zero implies:

Third derivative
negative implies:
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Edge Detection Using Facet Model (cont’d)

Steps
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Anisotropic Filtering 
(i.e., edge preserving smoothing)

• Symmetric Gaussian smoothing tends to blur out edges 
rather aggressively.

• An “oriented” smoothing operator would work better:
(i) Smooth aggressively perpendicular to the gradient
(ii) Smooth little along the gradient

• Mathematically formulated using diffusion 
     equation.
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Anisotropic filtering - Example

result using 
anisotropic filtering
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Effect of scale (i.e., σ)

original 

– Small σ detects fine features.
– Large σ detects large scale edges.
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Multi-scale Processing

• A formal theory for handling image structures at different scales.

• Process images multiple scales.

• Determine which structures (e.g., edges) are most significant by 
considering the range of scales over which they occur.
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Multi-scale Processing (cont’d)

σ=1

σ=2
σ=4

σ=16
σ=8

•Interesting scales: scales at which important  structures are 
present.

e.g., in the image above, people can be detected at scales [1.0 - 4.0]
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Scale Space (Witkin 1983)

Gaussian 
filtered signal 

• Detect and plot the 
   zero-crossing of a 1D 
  function over a continuum
  of  scales σ.

•  Instead of treating zero-  
crossings at a single scale as a 
single point, we can now treat 
them at multiple scales as 
contours.

σ

x
A. Witkin, "Scale-space filtering", 8th Int. Joint Conf. Art. Intell., 
Karlsruhe, Germany,1019–1022, 1983
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Scale Space (cont’d)

• Properties of scale space (assuming Gaussian 
smoothing): 

• Zero-crossings may shift with increasing scale (σ).
• Two zero-crossing may merge with increasing scale.
• A contour may not split into two with increasing 

scale.
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Multi-scale processing (cont’d)
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Multi-scale processing (cont’d)

https://manara.edu.sy/


https://manara.edu.sy/

Edge detection is just the beginning…

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude
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