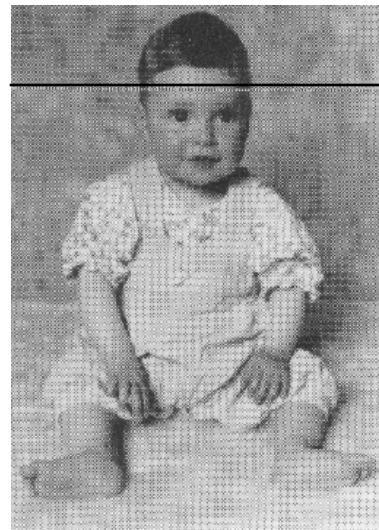
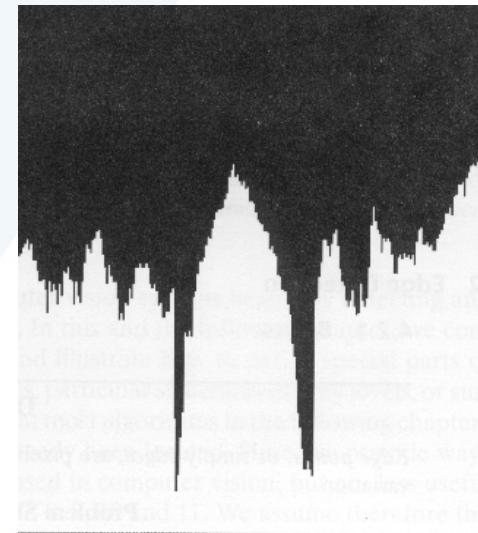


Edge Detection

Definition of Edges

- Edges are significant local changes of intensity in an image.



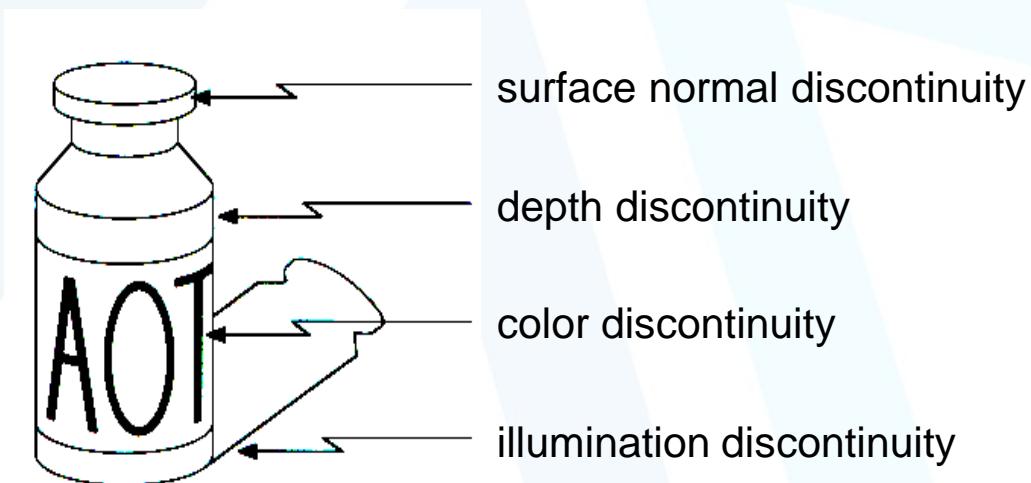
What Causes Intensity Changes?

- Geometric events

- surface orientation (boundary) discontinuities
- depth discontinuities
- color and texture discontinuities

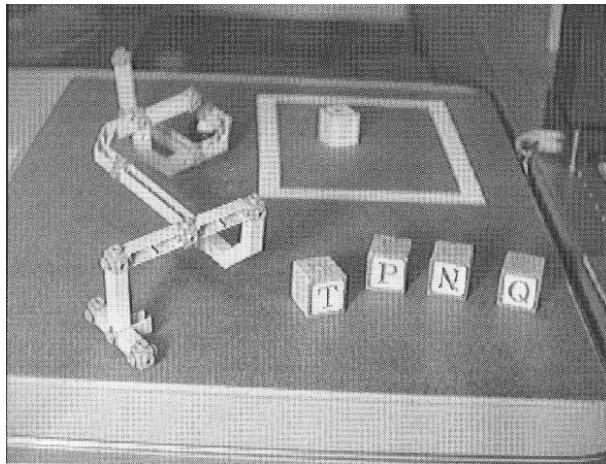
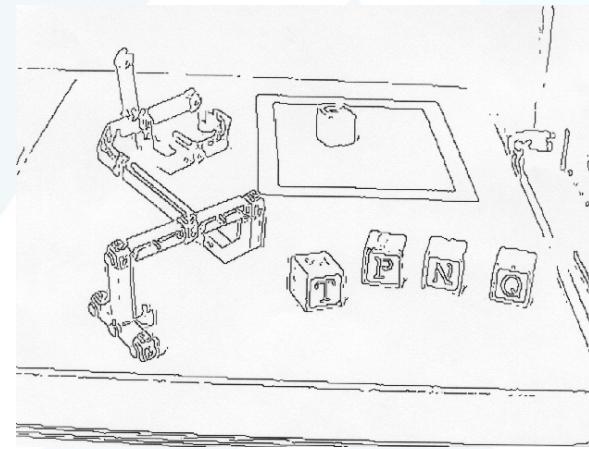
- Non-geometric events

- illumination changes
- specularities
- shadows
- inter-reflections



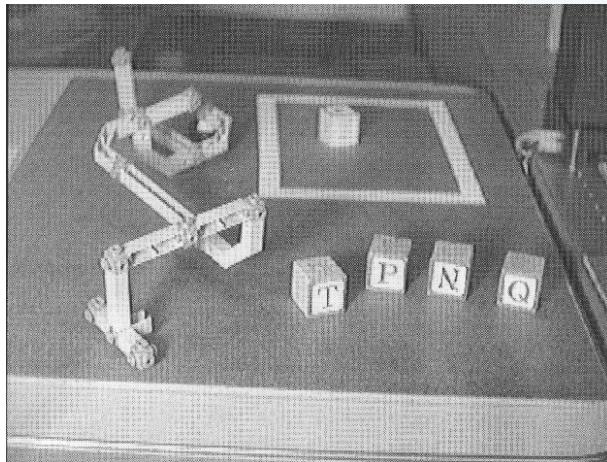
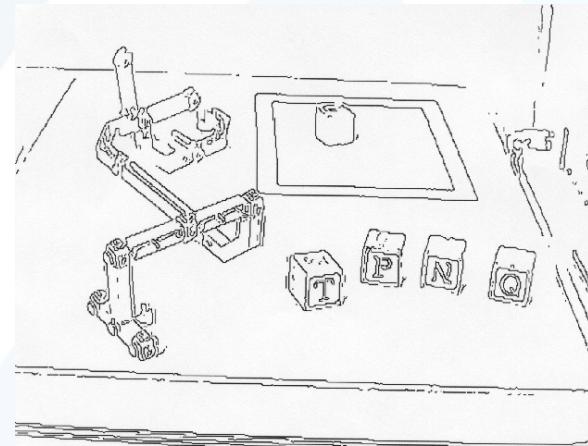
Goal of Edge Detection

- Produce a line “drawing” of a scene from an image of that scene.



Why is Edge Detection Useful?

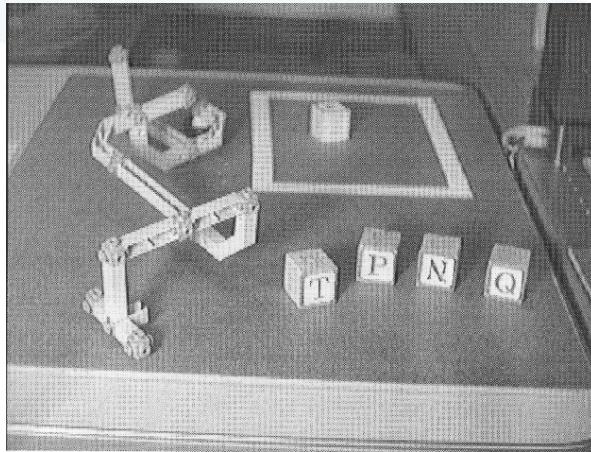
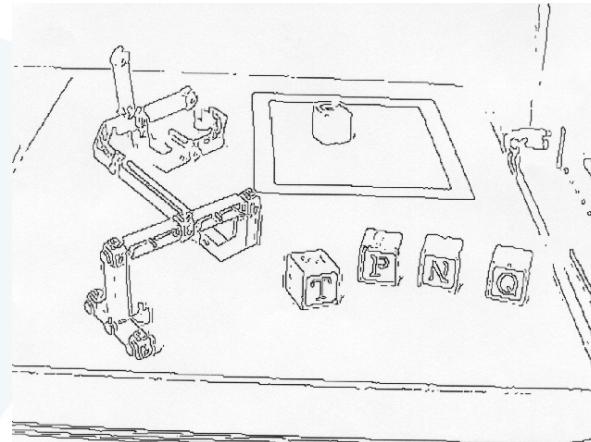
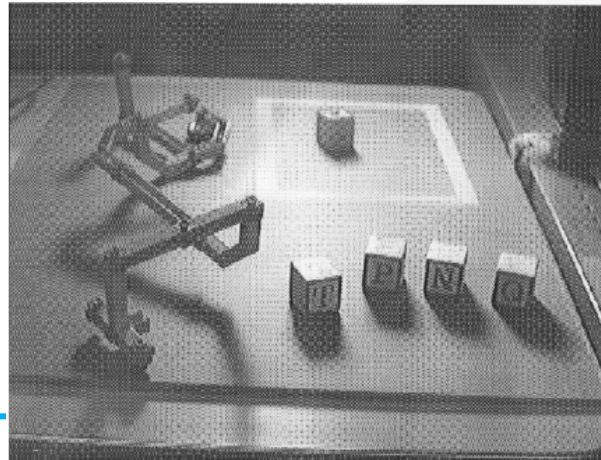
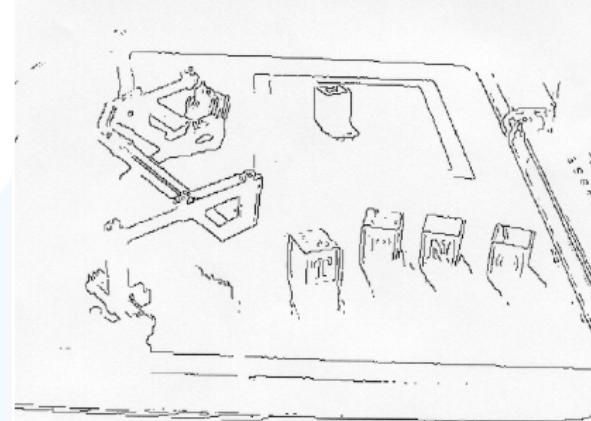
- Important features can be extracted from the edges of an image (e.g., corners, lines, curves).
- These features are used by higher-level computer vision algorithms (e.g., recognition).



جامعة
المنارة

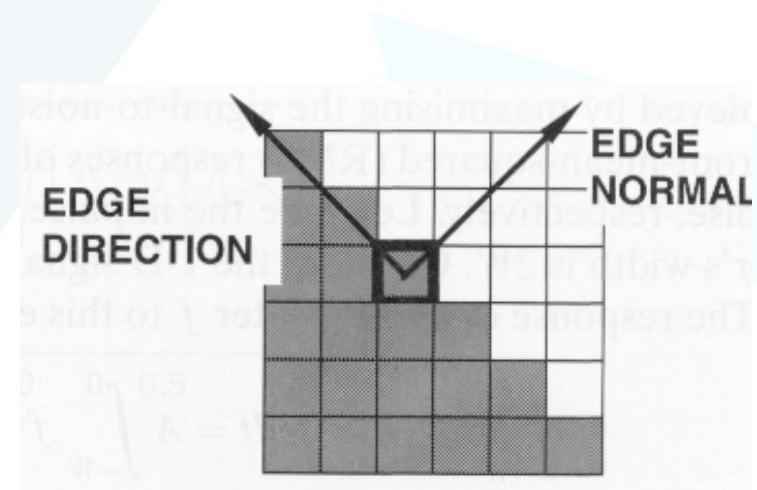
MANARA UNIVERSITY

Effect of Illumination



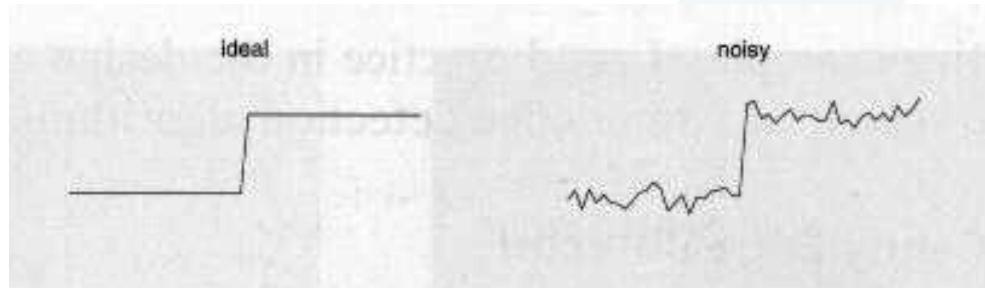
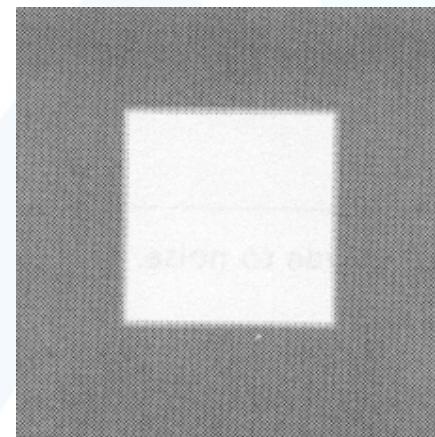
Edge Descriptors

- **Edge direction:** perpendicular to the direction of maximum intensity change (i.e., edge normal)
- **Edge strength:** related to the local image contrast along the normal.
- **Edge position:** the image position at which the edge is located.



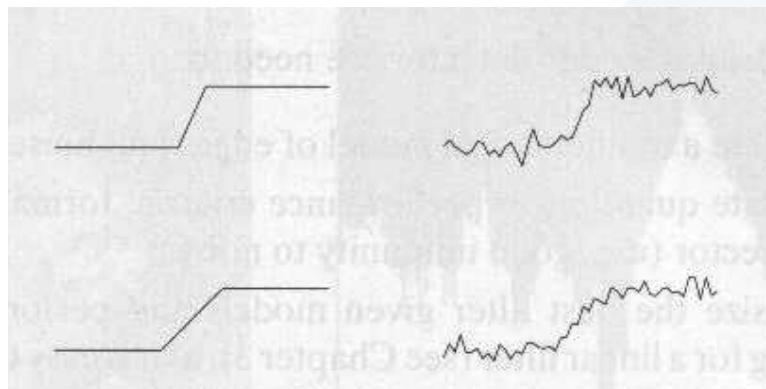
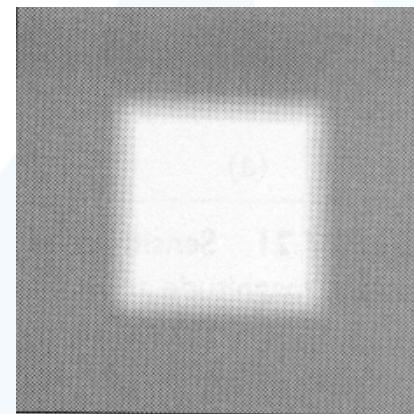
Modeling Intensity Changes

- **Step edge:** the image intensity abruptly changes from one value on one side of the discontinuity to a different value on the opposite side.



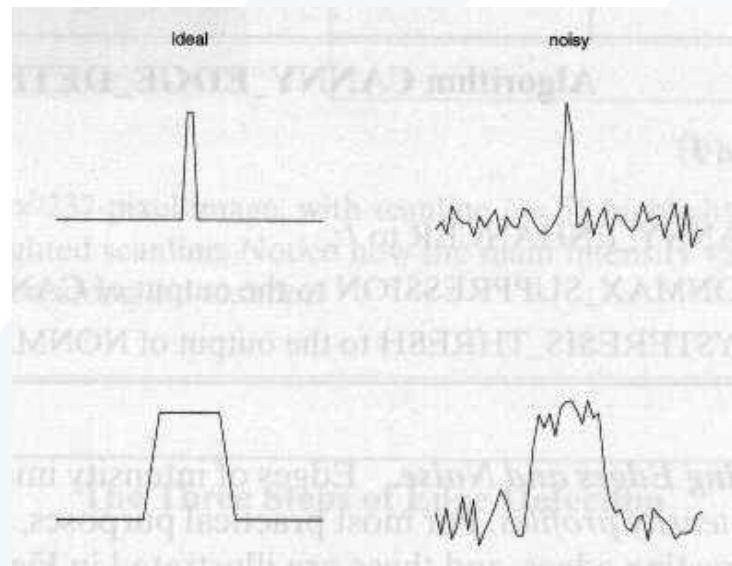
Modeling Intensity Changes (cont'd)

- **Ramp edge:** a step edge where the intensity change is not instantaneous but occur over a finite distance.



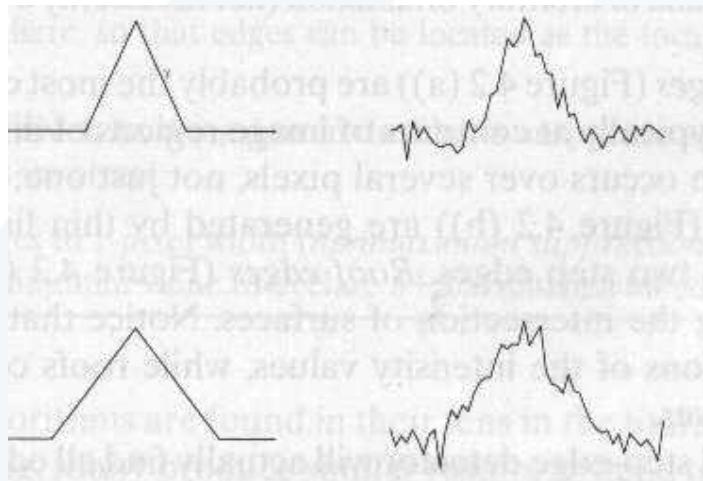
Modeling Intensity Changes (cont'd)

- **Ridge edge:** the image intensity abruptly changes value but then returns to the starting value within some short distance (i.e., usually generated by lines).



Modeling Intensity Changes (cont'd)

- **Roof edge:** a ridge edge where the intensity change is not instantaneous but occur over a finite distance (i.e., usually generated by the intersection of two surfaces).



Main Steps in Edge Detection

(1) Smoothing: suppress as much noise as possible, without destroying true edges.

(2) Enhancement: apply differentiation to enhance the quality of edges (i.e., sharpening).

Main Steps in Edge Detection (cont'd)

(3) Thresholding: determine which edge pixels should be discarded as noise and which should be retained (i.e., threshold edge magnitude).

(4) Localization: determine the exact edge location.

sub-pixel resolution might be required for some applications to estimate the location of an edge to better than the spacing between pixels.

Edge Detection Using Derivatives

- Often, points that lie on an edge are detected by:

(1) Detecting the local maxima or minima of the first derivative.

(2) Detecting the zero-crossings of the second derivative.

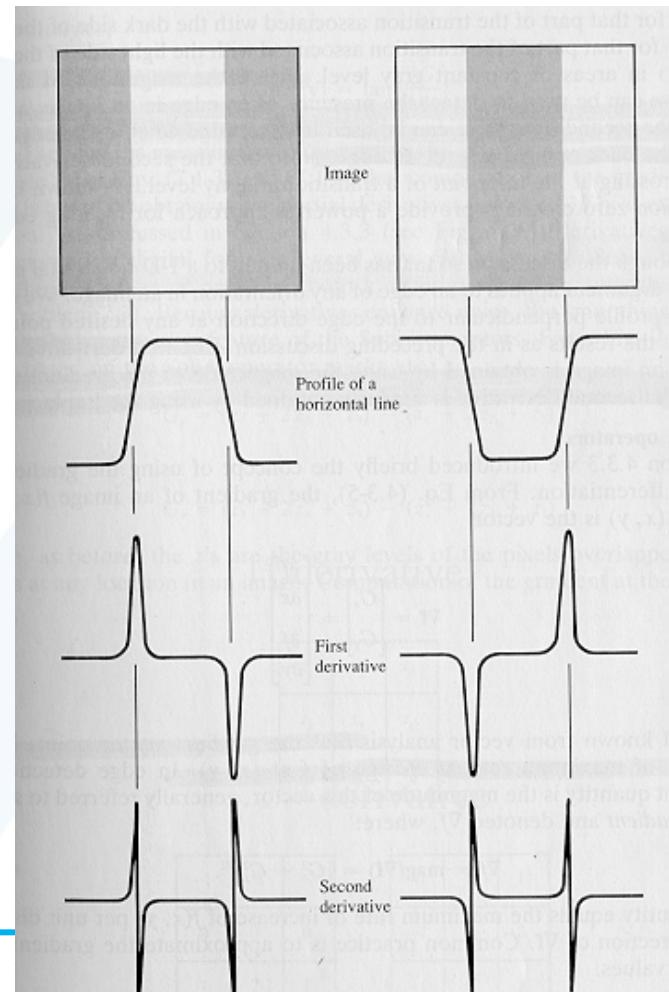


Image Derivatives

- How can we differentiate a *digital* image?
- **Option 1:** reconstruct a continuous image, $f(x,y)$, then compute the derivative.
- **Option 2:** take discrete derivative (i.e., finite differences)

Consider this case first!

Edge Detection Using First Derivative

1D functions

(not centered at x)

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h=1)$$

→ mask: $[-1 \ 1]$

mask $M = [-1, 0, 1]$ (centered at x)

(upward) step edge

S_1			12	12	12	12	12	24	24	24	24	24
S_1	\otimes	M	0	0	0	0	12	12	0	0	0	0

(downward) step edge

S_2			24	24	24	24	24	12	12	12	12	12
S_2	\otimes	M	0	0	0	0	-12	-12	0	0	0	0

ramp edge

S_3			12	12	12	12	15	18	21	24	24	24
S_3	\otimes	M	0	0	0	0	3	6	6	6	3	0

roof edge

S_4			12	12	12	12	24	12	12	12	12	12
S_4	\otimes	M	0	0	0	0	12	0	-12	0	0	0

Edge Detection Using Second Derivative

- Approximate finding maxima/minima of gradient magnitude by finding places where:

$$\frac{df^2}{dx^2}(x) = 0$$

- Can't always find discrete pixels where the second derivative is zero – look for **zero-crossing** instead.

Edge Detection Using Second Derivative (cont'd)

1D functions:

$$f''(x) = \lim_{h \rightarrow 0} \frac{f'(x+h) - f'(x)}{h} \approx f'(x+1) - f'(x) =$$

(centered at $x+1$)

$$f(x+2) - 2f(x+1) + f(x) \quad (h=1)$$

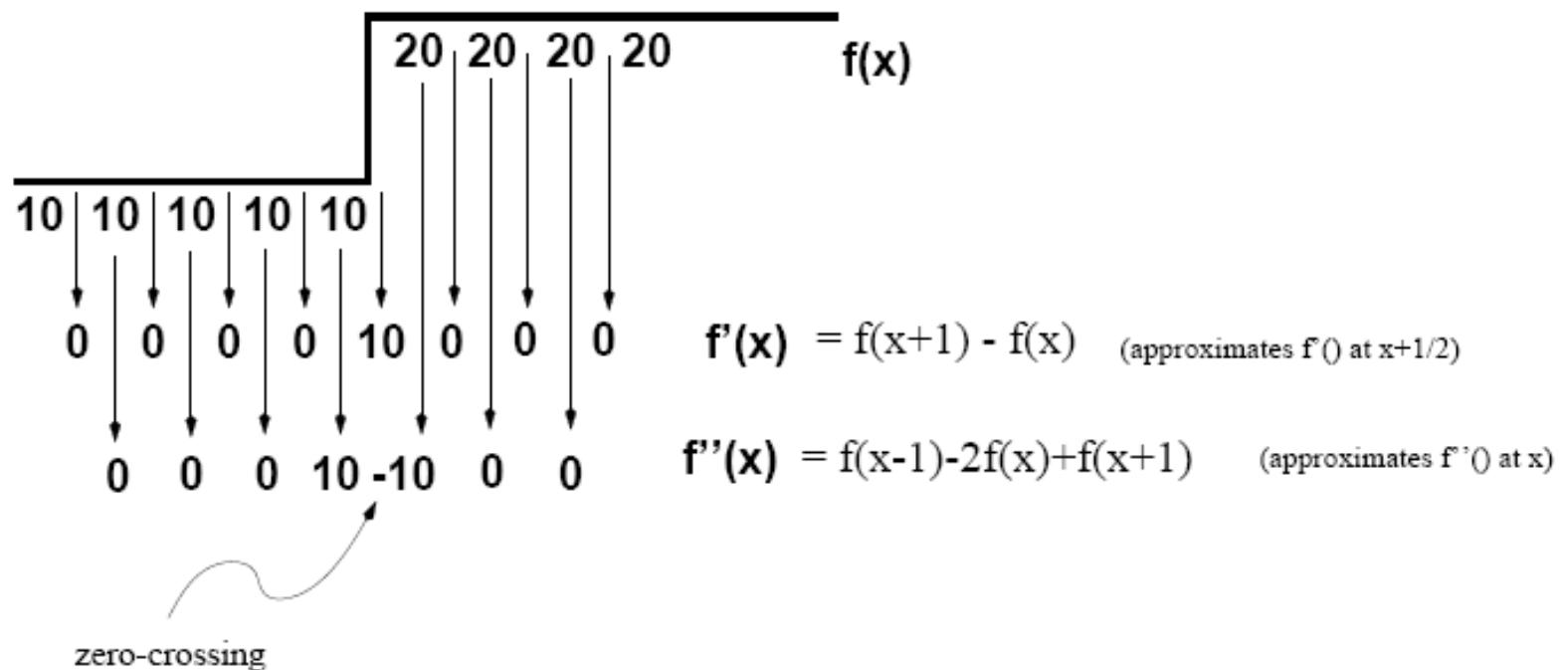
Replace $x+1$ with x (i.e., centered at x):

$$f''(x) \approx f(x+1) - 2f(x) + f(x-1)$$

mask:

$$[1 \quad -2 \quad 1]$$

Edge Detection Using Second Derivative (cont'd)



Edge Detection Using Second Derivative (cont'd)

(upward) step edge

S_1			12	12	12	12	12	24	24	24	24	24	24
S_1	\otimes	M	0	0	0	0	-12	12	0	0	0	0	0

(downward) step edge

S_2			24	24	24	24	24	24	12	12	12	12	12
S_2	\otimes	M	0	0	0	0	12	-12	0	0	0	0	0

ramp edge

S_3			12	12	12	12	15	18	21	24	24	24	24
S_3	\otimes	M	0	0	0	-3	0	0	0	3	0	0	0

roof edge

S_4			12	12	12	12	24	12	12	12	12	12	12
S_4	\otimes	M	0	0	0	-12	24	-12	0	0	0	0	0

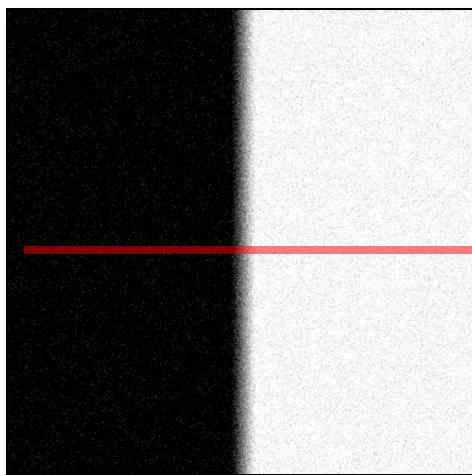
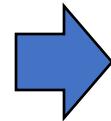
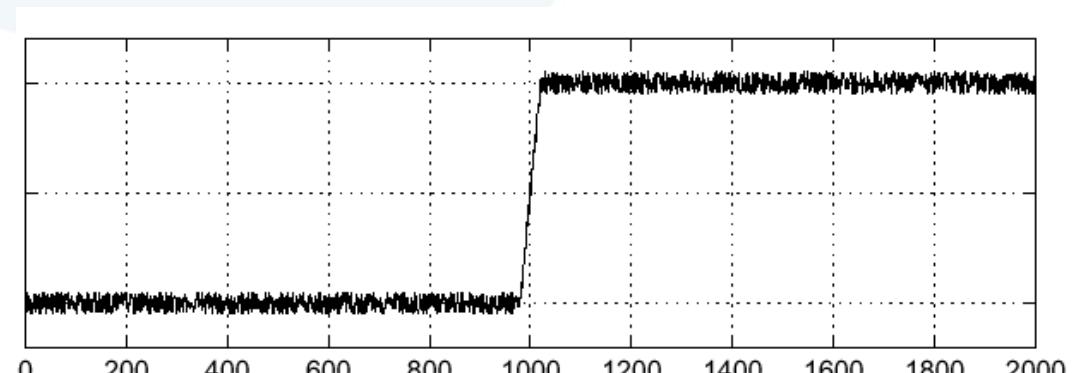
Edge Detection Using Second Derivative (cont'd)

- Four cases of zero-crossings:

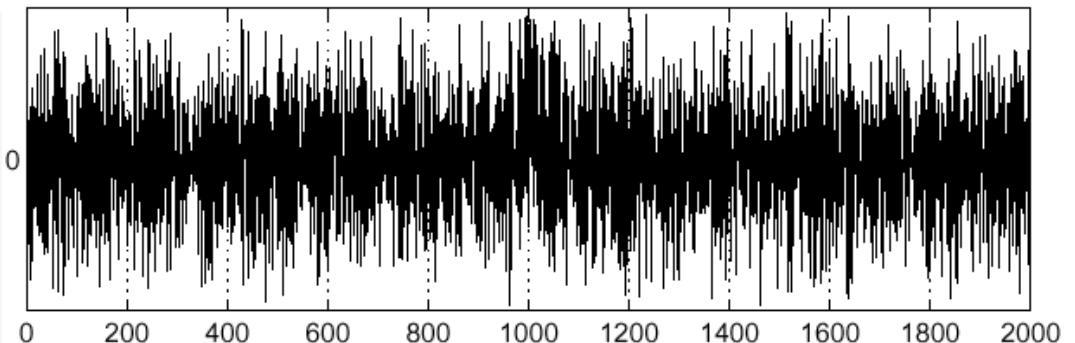
$\{+,-\}, \{+,0,-\}, \{-,+\}, \{-,0,+\}$

- **Slope** of zero-crossing $\{a, -b\}$ is: $|a+b|$.
- To detect “strong” zero-crossing, threshold the slope.

Effect Smoothing on Derivates

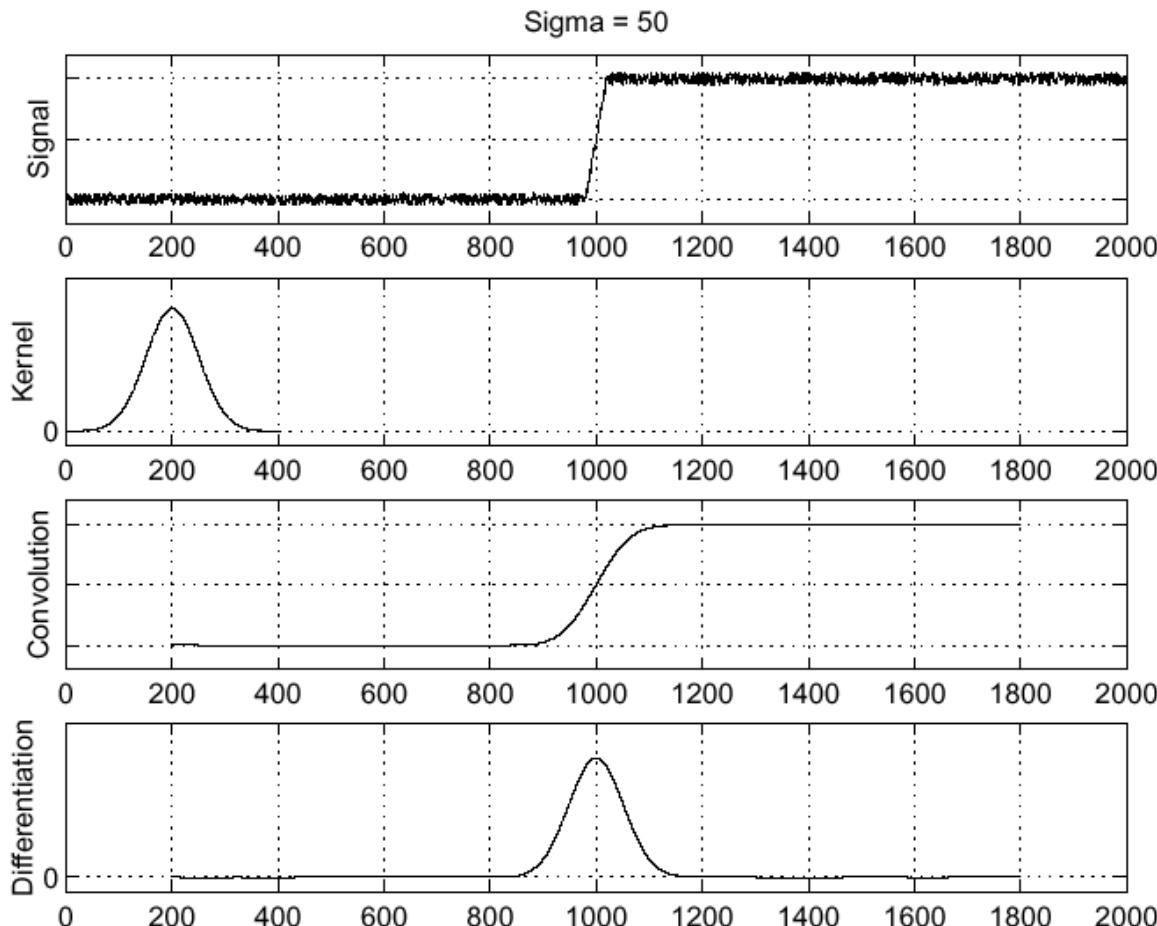


$$\frac{d}{dx} f(x)$$



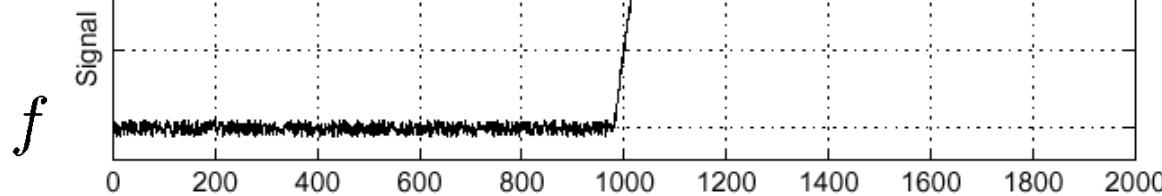
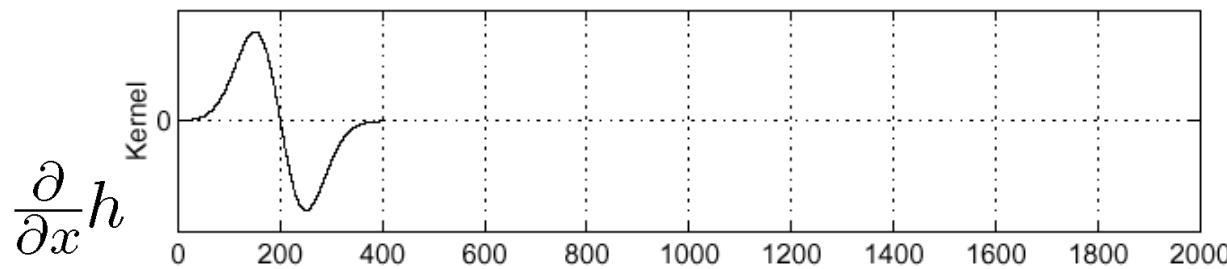
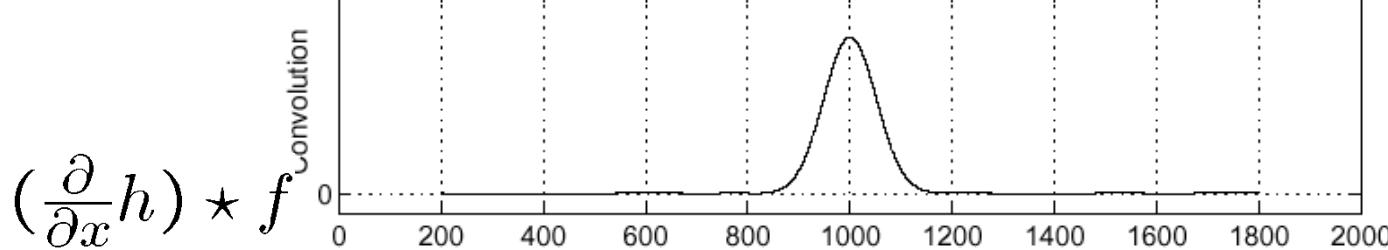
Effect of Smoothing on Derivatives (cont'd)

f
 h
 $h \star f$
 $\frac{\partial}{\partial x}(h \star f)$



Combine Smoothing with Differentiation

$$\frac{\partial}{\partial x}(h \star f) = \left(\frac{\partial}{\partial x} h \right) \star f \quad (\text{i.e., saves one operation})$$



مانارة
الجامعة

Mathematical Interpretation of combining smoothing with differentiation

- Numerical differentiation is an **ill-posed** problem.
 - i.e., solution does not exist or it is not unique or it does not depend continuously on initial data)
- Ill-posed problems can be solved using “**regularization**”
 - i.e., impose additional constraints
- **Smoothing** performs image **interpolation**.

Edge Detection Using First Derivative (Gradient)

2D functions:

- The first derivative of an image can be computed using the gradient:

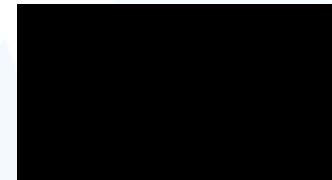
$$\nabla f \quad grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

Gradient Representation

- The gradient is a vector which has **magnitude** and **direction**:

$$\text{magnitude}(\text{grad}(f)) = \sqrt{\frac{\partial f^2}{\partial x} + \frac{\partial f^2}{\partial y}}$$

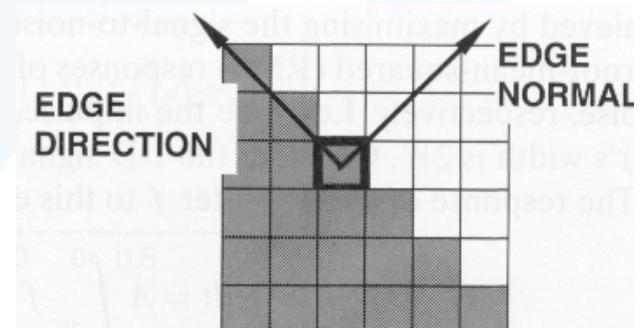
or (approximation)



$$\text{direction}(\text{grad}(f)) = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- Magnitude:** indicates edge strength.

- Direction:** indicates edge direction.
 - i.e., perpendicular to edge direction



Approximate Gradient

- Approximate gradient using finite differences:

$$\frac{\partial f}{\partial x} = \lim_{h \rightarrow 0} \frac{f(x + h, y) - f(x, y)}{h}$$

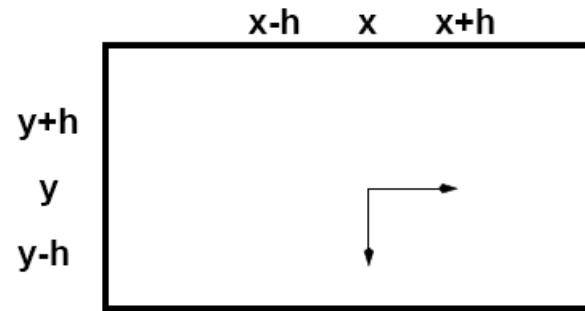
$$\frac{\partial f}{\partial y} = \lim_{h \rightarrow 0} \frac{f(x, y + h) - f(x, y)}{h}$$

$$\frac{\partial f}{\partial x} = \frac{f(x + h_x, y) - f(x, y)}{h_y} = f(x + 1, y) - f(x, y), \quad (h_x=1)$$

$$\frac{\partial f}{\partial y} = \frac{f(x, y + h_y) - f(x, y)}{h_y} = f(x, y + 1) - f(x, y), \quad (h_y=1)$$

Approximate Gradient (cont'd)

- Cartesian vs pixel-coordinates:
 - j corresponds to x direction
 - i to $-y$ direction



$$f(x+1, y) - f(x, y) \rightarrow \frac{\partial f}{\partial x} = f(i, j+1) - f(i, j)$$

$$f(x, y+1) - f(x, y) \rightarrow \frac{\partial f}{\partial y} = f(i, j) - f(i+1, j)$$

Approximate Gradient (cont'd)

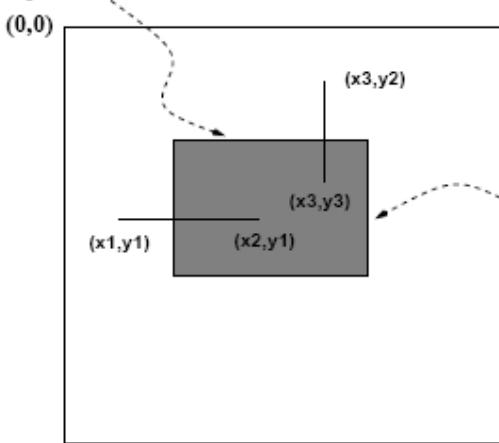
sensitive to horizontal edges!

$$\frac{\partial f}{\partial y} : \frac{f(x_3, y_2) - f(x_3, y_3)}{y_2 - y_3}$$

or $\frac{f(x, y+Dy) - f(x, y)}{-Dy} = \boxed{f(x, y) - f(x, y+1)}$ (grad in the y-direction)

$(y_3=y_2+Dy, y_2=y, x_3=x, Dy=1)$

edge in the x-direction



sensitive to vertical edges!

$$\frac{\partial f}{\partial y} :$$

$$\frac{f(x_2, y_1) - f(x_1, y_1)}{x_2 - x_1}$$

or $\frac{f(x+Dx, y) - f(x, y)}{Dx} = \boxed{f(x+1, y) - f(x, y)}$ (grad in the x-direction)

$(x_2=x+Dx, x_1=x, y_1=y_2=y, Dx=1)$

Approximating Gradient (cont'd)

- We can implement $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ using the following masks:

$$\begin{array}{|c|c|} \hline -1 & 1 \\ \hline \end{array}$$

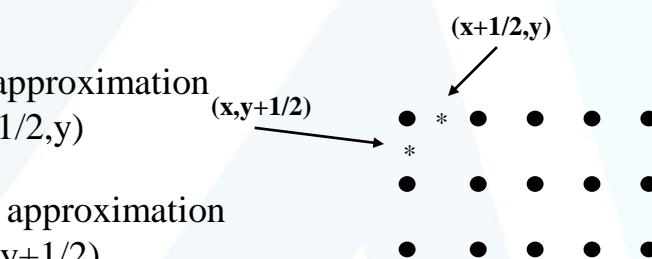
$$\frac{\partial f}{\partial x}$$

good approximation
at $(x+1/2, y)$

$$\begin{array}{|c|} \hline 1 \\ \hline -1 \\ \hline \end{array}$$

$$\frac{\partial f}{\partial y}$$

good approximation
at $(x, y+1/2)$



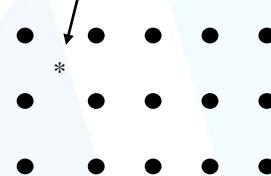
Approximating Gradient (cont'd)

- A different approximation of the gradient:

$$\frac{\partial f}{\partial x}(x, y) = f(x, y) - f(x + 1, y + 1)$$

$$\frac{\partial f}{\partial y}(x, y) = f(x + 1, y) - f(x, y + 1),$$

good approximation
(x+1/2, y+1/2)



- $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ can be implemented using the following masks:

(b) Roberts

Another Approximation

- Consider the arrangement of pixels about the pixel (i, j) :

3 x 3 neighborhood:

a_0	a_1	a_2
a_7	$[i, j]$	a_3
a_6	a_5	a_4

- The partial derivatives $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$ computed by:

$$M_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

- The constant c is the center of the mask.

Prewitt Operator

- Setting $c=1$, we get the Prewitt operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad M_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

M_x and M_y are approximations at (i, j)

Sobel Operator

- Setting $c = 2$, we get the Sobel operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad M_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

M_x and M_y are approximations at (i, j)

Edge Detection Steps Using Gradient

(1) Smooth the input image ($\hat{f}(x, y) = f(x, y) * G(x, y)$)

(2) $\hat{f}_x = \hat{f}(x, y) * M_x(x, y) \longrightarrow \frac{\partial f}{\partial x}$

(3) $\hat{f}_y = \hat{f}(x, y) * M_y(x, y) \longrightarrow \frac{\partial f}{\partial y}$

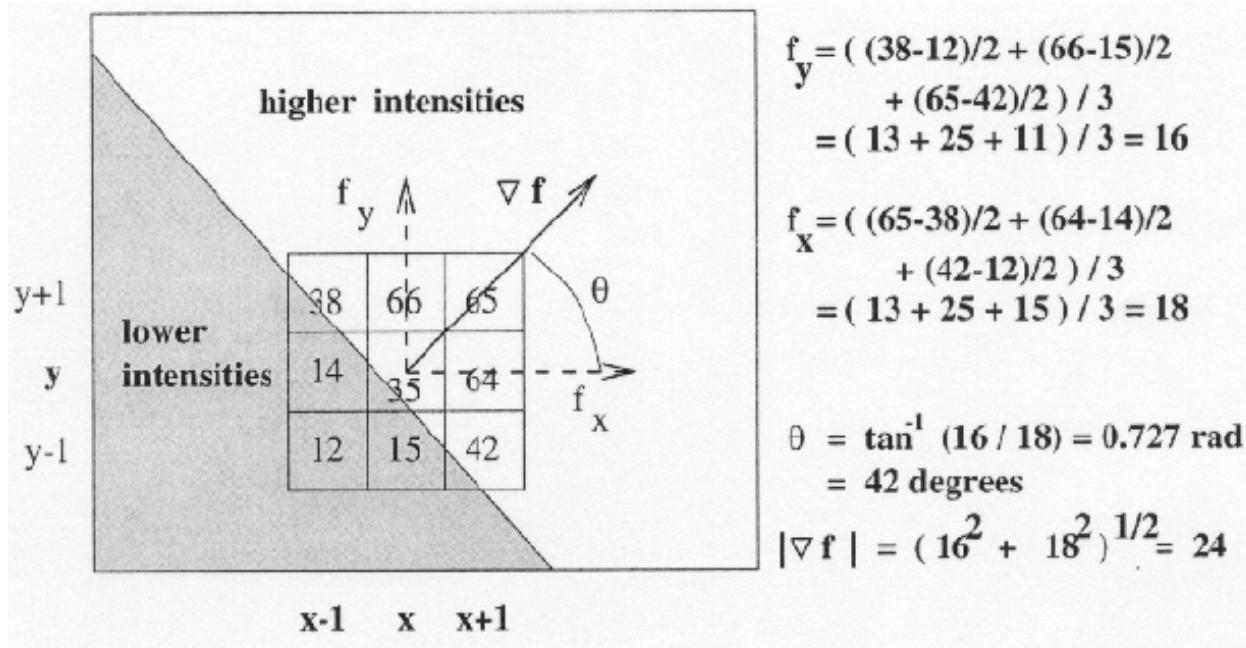
(4) $magn(x, y) = |\hat{f}_x| + |\hat{f}_y|$ (i.e., **sqrt** is costly!)

(5) $dir(x, y) = \tan^{-1}(\hat{f}_y / \hat{f}_x)$

(6) If $magn(x, y) > T$, then possible edge point

Example (using Prewitt operator)

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad M_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

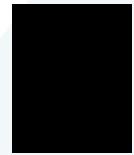
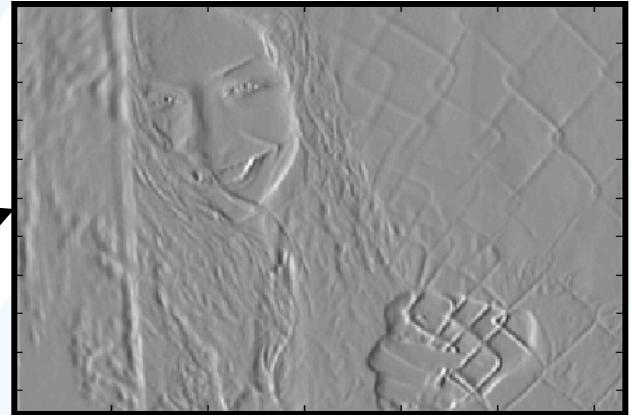
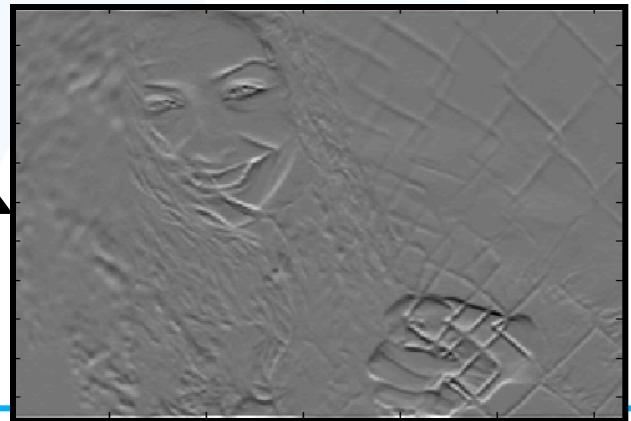


Note: in this example, the divisions by 2 and 3 in the computation of f_x and f_y are done for normalization purposes only

جامعة
المنارة

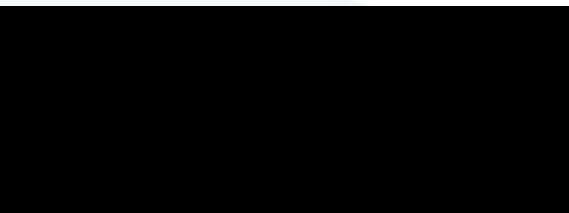
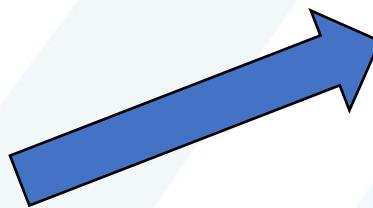
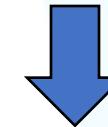
MANARA UNIVERSITY

Another Example



مانارة
جامعة
الطب والعلوم
MANARA UNIVERSITY

Another Example (cont'd)



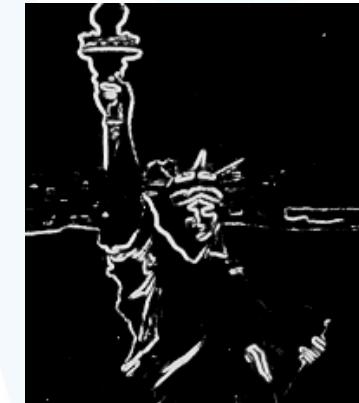
Isotropic property of gradient magnitude

- The magnitude of the gradient detects edges in all directions.

$$\frac{d}{dx} I$$

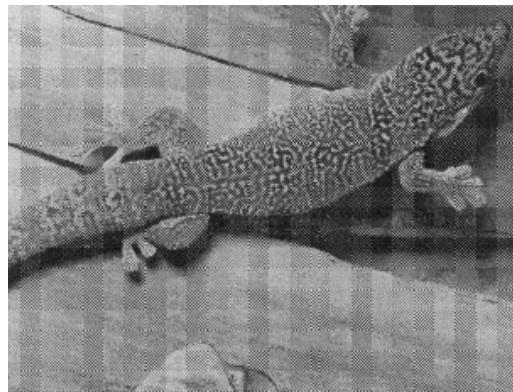
$$\frac{d}{dy} I$$

$$\nabla = \sqrt{\left(\frac{d}{dx} I\right)^2 + \left(\frac{d}{dy} I\right)^2}$$



Practical Issues

- Noise suppression-localization tradeoff.
 - Smoothing depends on mask size (e.g., depends on σ for Gaussian filters).
 - Larger mask sizes reduce noise, but worsen localization (i.e., add uncertainty to the location of the edge) and vice versa.



smaller mask

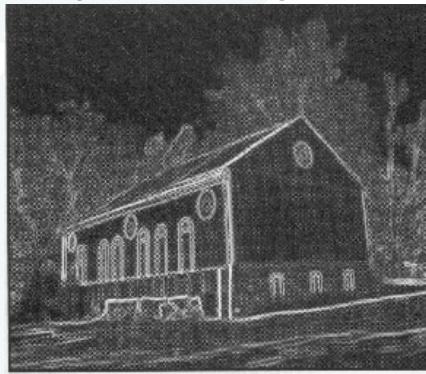
larger mask



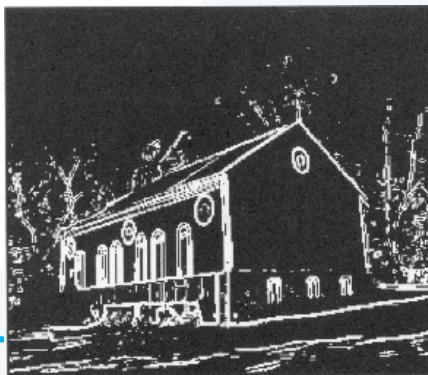
Practical Issues (cont'd)

- Choice of threshold.

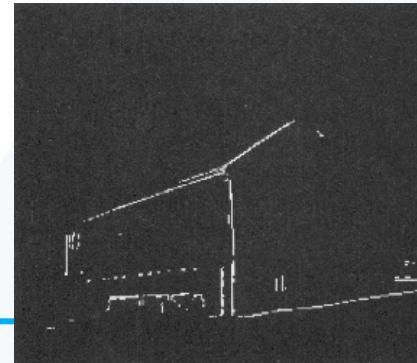
gradient magnitude



low threshold

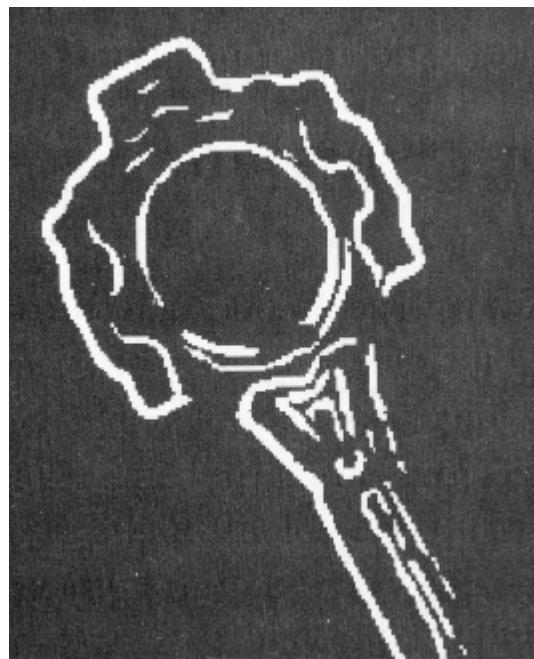
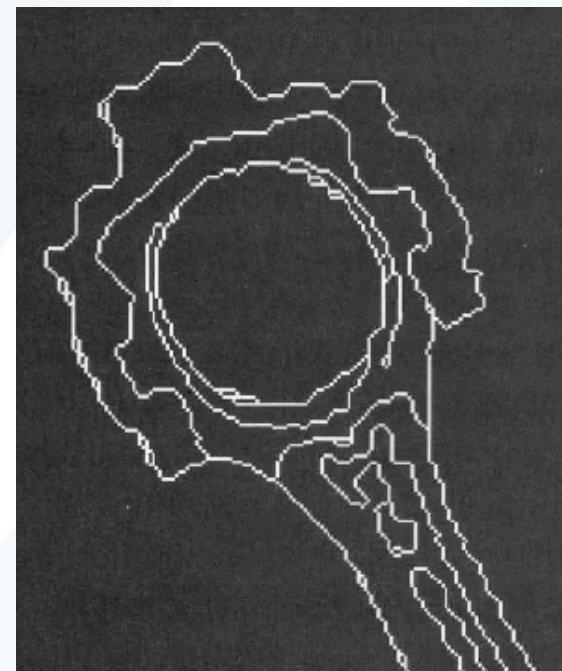


high threshold



Practical Issues (cont'd)

- Edge thinning and linking.

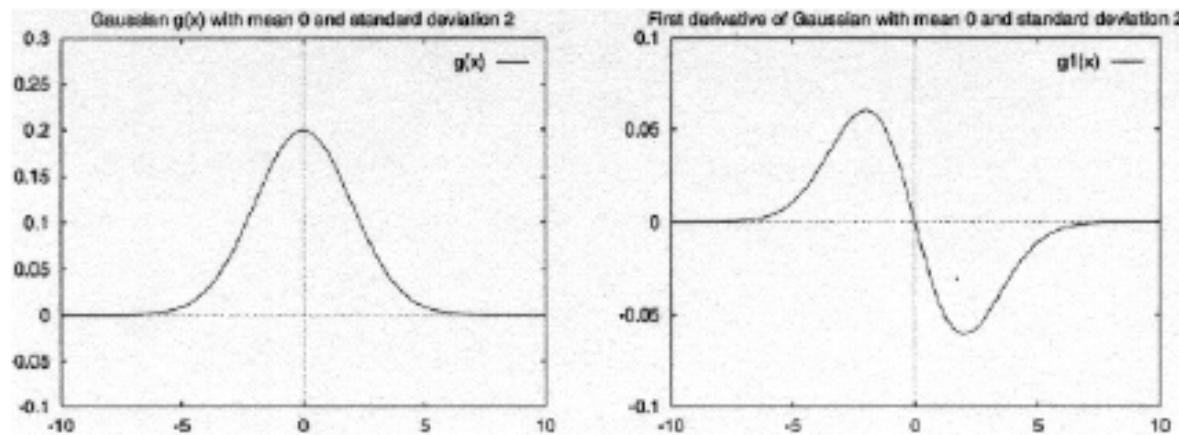


Criteria for Optimal Edge Detection

- **(1) Good detection**
 - Minimize the probability of false positives (i.e., spurious edges).
 - Minimize the probability of false negatives (i.e., missing real edges).
- **(2) Good localization**
 - Detected edges must be as close as possible to the true edges.
- **(3) Single response**
 - Minimize the number of local maxima around the true edge.

Canny edge detector

- Canny has shown that the **first derivative of the Gaussian** closely approximates the operator that optimizes the product of signal-to-noise ratio and localization.
(i.e., analysis based on "step-edges" corrupted by "Gaussian noise")



J. Canny, *A Computational Approach To Edge Detection*, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Steps of Canny edge detector

Algorithm

1. Compute f_x and f_y

$$f_x = \frac{\partial}{\partial x} (f * G) = f * \frac{\partial}{\partial x} G = f * G_x$$

$$f_y = \frac{\partial}{\partial y} (f * G) = f * \frac{\partial}{\partial y} G = f * G_y$$

$G(x, y)$ is the Gaussian function

$G_x(x, y)$ is the derivate of $G(x, y)$ with respect to x : $G_x(x, y) = \frac{-x}{\sigma^2} G(x, y)$

$G_y(x, y)$ is the derivate of $G(x, y)$ with respect to y : $G_y(x, y) = \frac{-y}{\sigma^2} G(x, y)$

Steps of Canny edge detector (cont'd)

2. Compute the gradient magnitude (and direction)

$$magn(x, y) = |\hat{f}_x| + |\hat{f}_y| \quad dir(x, y) = \tan^{-1}(\hat{f}_y / \hat{f}_x)$$

3. Apply non-maxima suppression.
4. Apply hysteresis thresholding/edge linking.

Canny edge detector - example

original image

جامعة
مانارة
الدولية

Canny edge detector – example (cont'd)

Gradient magnitude

Canny edge detector – example (cont'd)

Thresholded gradient magnitude

Canny edge detector – example (cont'd)

Thinning (non-maxima suppression)

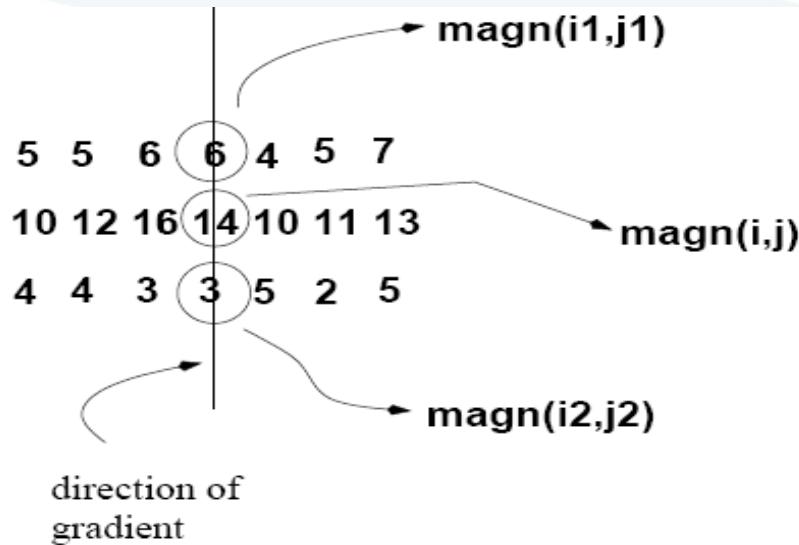
جامعة
المنارة
MANARA UNIVERSITY

Non-maxima suppression

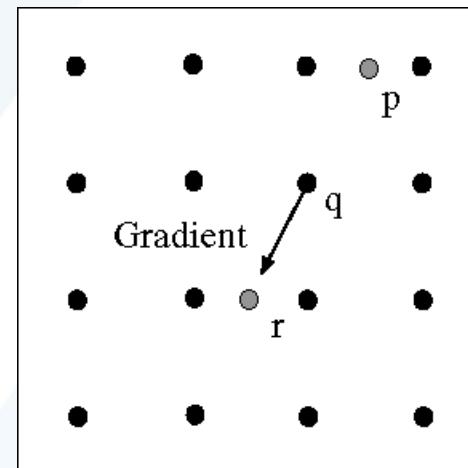
- Check if gradient magnitude at pixel location (i,j) is local maximum along gradient direction



Non-maxima suppression (cont'd)



Warning: requires checking interpolated pixels p and r



Algorithm

For each pixel (i,j) do:

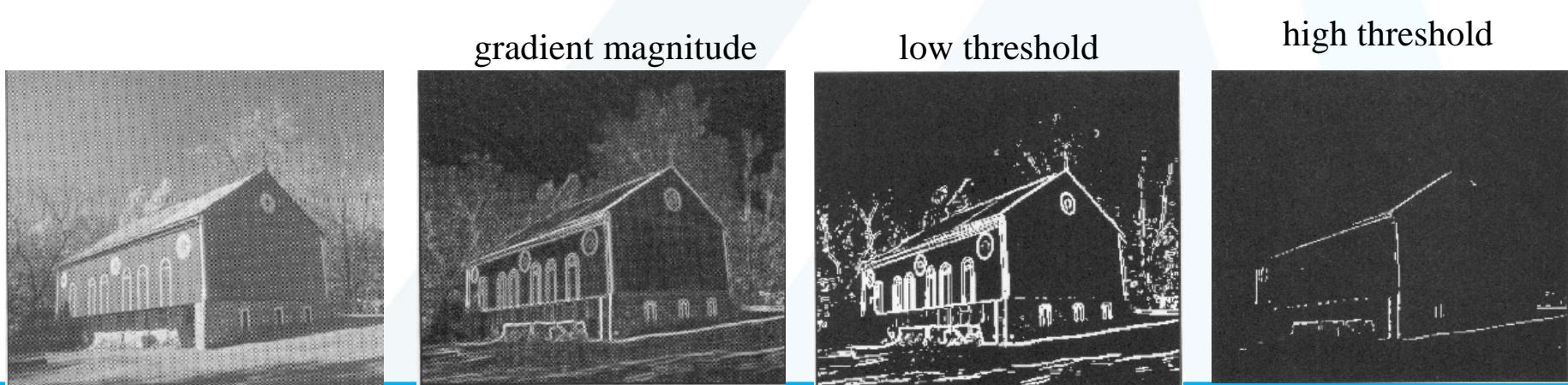
if $magn(i, j) < magn(i_1, j_1)$ or $magn(i, j) < magn(i_2, j_2)$
 then $I_N(i, j) = 0$
 else $I_N(i, j) = magn(i, j)$

Hysteresis thresholding

- Standard thresholding:

$$E(x, y) = \begin{cases} 1 & \text{if } \|\nabla f(x, y)\| > T \text{ for some threshold } T \\ 0 & \text{otherwise} \end{cases}$$

- Can only select “strong” edges.
- Does not guarantee “continuity”.



Hysteresis thresholding (cont'd)

- Hysteresis thresholding uses two thresholds:
 - low threshold t_l
 - high threshold t_h (usually, $t_h = 2t_l$)

$$\begin{cases} \|\nabla f(x, y)\| \geq t_h \\ \|\nabla f(x, y)\| < t_h \\ \|\nabla f(x, y)\| < t_l \end{cases}$$

definitely an edge

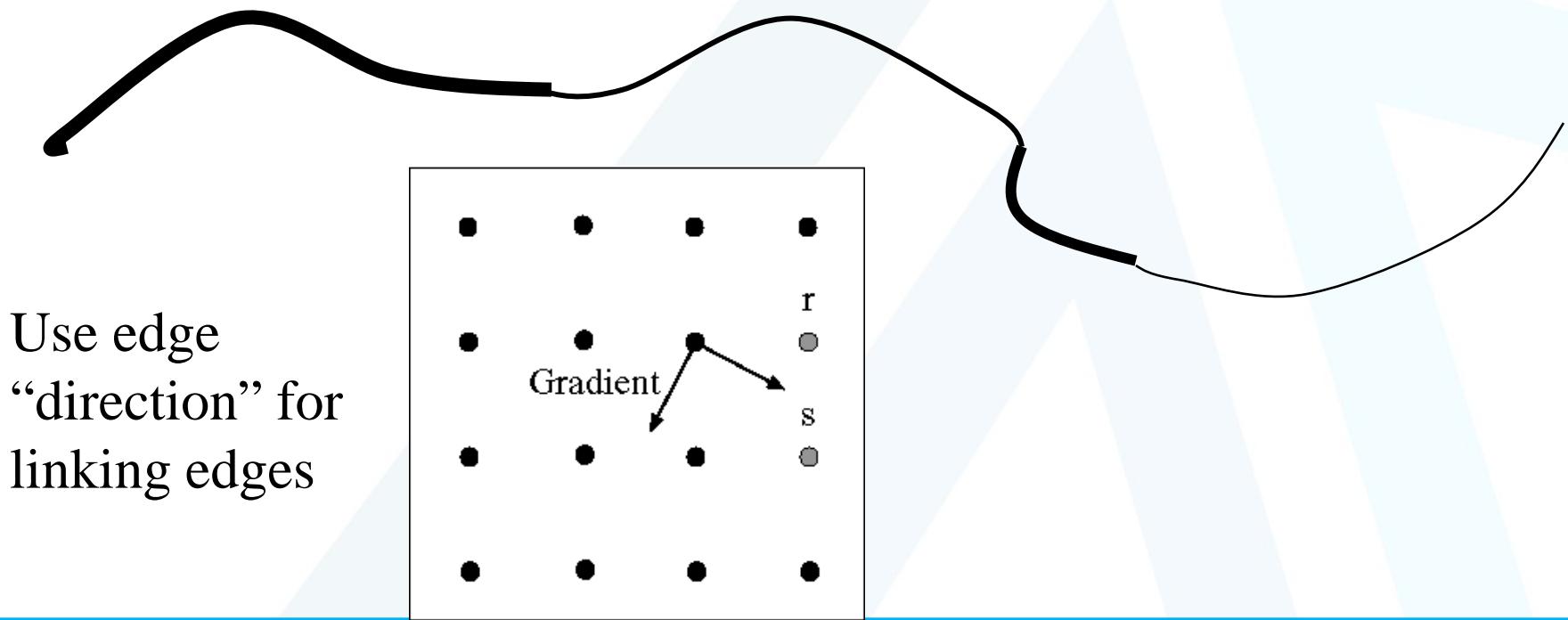
maybe an edge, depends on context

definitely not an edge

- For “maybe” edges, decide on the edge if neighboring pixel is a strong edge.

Hysteresis thresholding/Edge Linking

Idea: use a **high** threshold to start edge curves and a **low** threshold to continue them.



Use edge
“direction” for
linking edges

Hysteresis Thresholding/Edge Linking (cont'd)

Algorithm

1. Produce two thresholded images $I_1(i, j)$ and $I_2(i, j)$. (using t_l and t_h)

(note: since $I_2(i, j)$ was formed with a high threshold, it will contain fewer false edges but there might be gaps in the contours)

2. Link the edges in $I_2(i, j)$ into contours

- 2.1 Look in $I_1(i, j)$ when a gap is found.

- 2.2 By examining the 8 neighbors in $I_1(i, j)$, gather edge points from $I_1(i, j)$ until the gap has been bridged to an edge in $I_2(i, j)$.

Note: large gaps are still difficult to bridge.
(i.e., more sophisticated algorithms are required)

Second Derivative in 2D: Laplacian

The *Laplacian* is defined mathematically as

$$\nabla^2 = \nabla \cdot \nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

When we apply it to an image, we get

$$\nabla^2 f = \left(\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \right) I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Second Derivative in 2D: Laplacian (cont'd)

$$\frac{\partial^2 f}{\partial x^2} = f(i, j + 1) - 2f(i, j) + f(i, j - 1)$$

$$\frac{\partial^2 f}{\partial y^2} = f(i + 1, j) - 2f(i, j) + f(i - 1, j)$$

$$\nabla^2 f = -4f(i, j) + f(i, j + 1) + f(i, j - 1) + f(i + 1, j) + f(i - 1, j)$$

0	0	0
1	-2	1
0	0	0

+

0	1	0
0	-2	0
0	1	0

=

0	1	0
1	-4	1
0	1	0

Variations of Laplacian

$$\begin{bmatrix} 0.5 & 0.0 & 0.5 \\ 1.0 & -4.0 & 1.0 \\ 0.5 & 0.0 & 0.5 \end{bmatrix} + \begin{bmatrix} 0.5 & 1.0 & 0.5 \\ 0.0 & -4.0 & 0.0 \\ 0.5 & 1.0 & 0.5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 2 \\ -1 & -4 & -1 \\ 2 & -1 & 2 \end{bmatrix}$$

Laplacian - Example

5	5	5	5	5	5
5	5	5	5	5	5
5	5	10	10	10	10
5	5	10	10	10	10
5	5	5	10	10	10
5	5	5	5	10	10

detect zero-crossings

-	-	-	-	-	-
-	0	-5	-5	-5	-
-	-5	10	5	5	-
-	-5	10	0	0	-
-	0	-10	10	0	-
-	-	-	-	-	-

Properties of Laplacian

- It is an isotropic operator.
- It is cheaper to implement than the gradient (i.e., one mask only).
- It does not provide information about edge direction.
- It is more sensitive to noise (i.e., differentiates twice).

Laplacian of Gaussian (LoG) (Marr-Hildreth operator)

جامعة
المنارة
MANARA UNIVERSITY

- To reduce the noise effect, the image is first smoothed.
- When the filter chosen is a Gaussian, we call it the LoG edge detector.

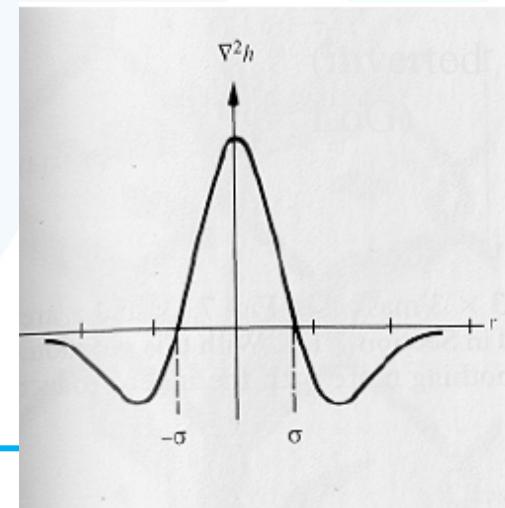
$$G(x, y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

σ controls smoothing

- It can be shown that:

$$\nabla^2[f(x, y) * G(x, y)] = \nabla^2 G(x, y) * f(x, y)$$

$$\nabla^2 G(x, y) = \left(\frac{r^2 - 2\sigma^2}{\sigma^4}\right) e^{-r^2/2\sigma^2}, \quad (r^2 = x^2 + y^2)$$



Laplacian of Gaussian (LoG) - Example

(inverted LoG)

5 × 5 Laplacian of Gaussian mask

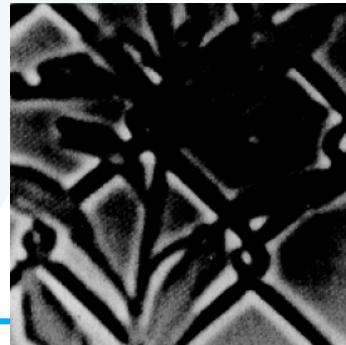
$$\begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

(inverted LoG)

17 × 17 Laplacian of Gaussian mask

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	0	0	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1	0
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0	0

filtering



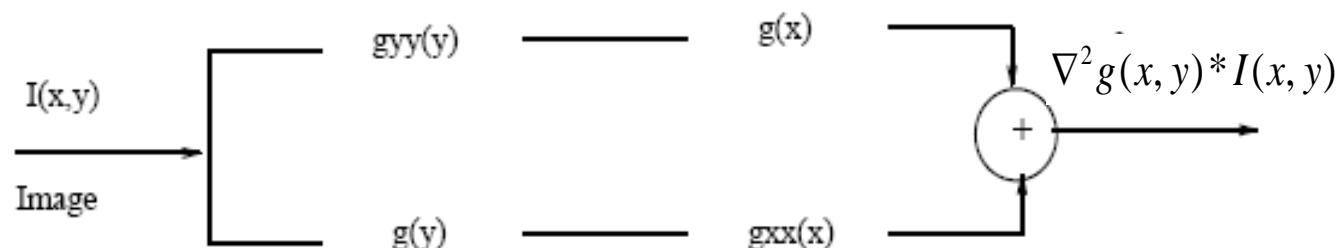
zero-crossings

Decomposition of LoG

- It can be shown than LoG can be written as follows:

$$\nabla^2 g(x, y) = \frac{\partial}{\partial y^2} g(y) * g(x) + g(y) * \frac{\partial}{\partial x^2} g(x).$$

- 2D LoG convolution can be implemented using 4, 1D convolutions.



Decomposition of LoG (cont'd)

Steps

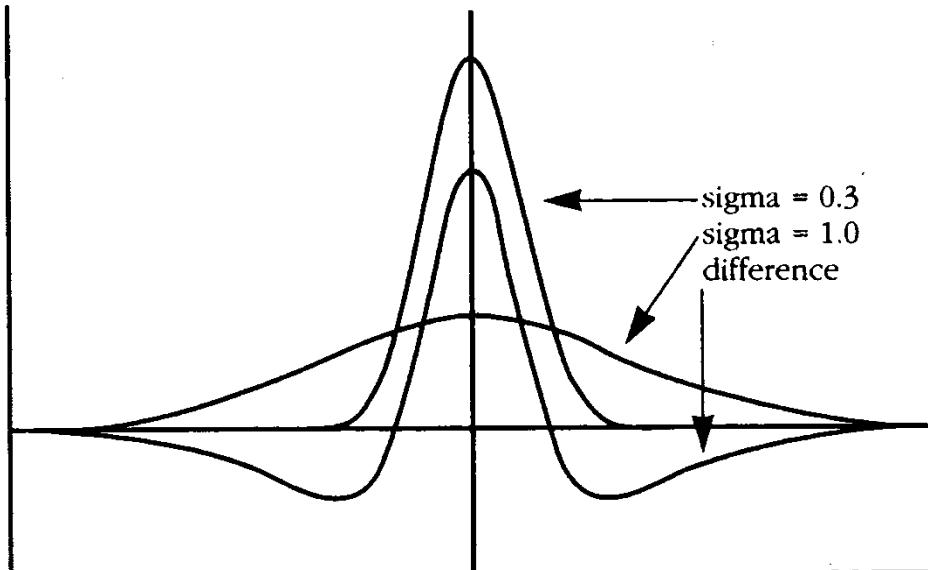
1. Convolve the image with a second derivative of Gaussian mask ($g_{yy}(y)$) along each column.
2. Convolve the resultant image from step (1) by a Gaussian mask ($g(x)$) along each row. Call the resultant image I^x .
3. Convolve the original image with a Gaussian mask ($g(y)$) along each column.
4. Convolve the resultant image from step (3) by a second derivative of Gaussian mask ($g_{xx}(x)$) along each row. Call the resultant image I^y .
5. Add I^x and I^y .

Difference of Gaussians (DoG)

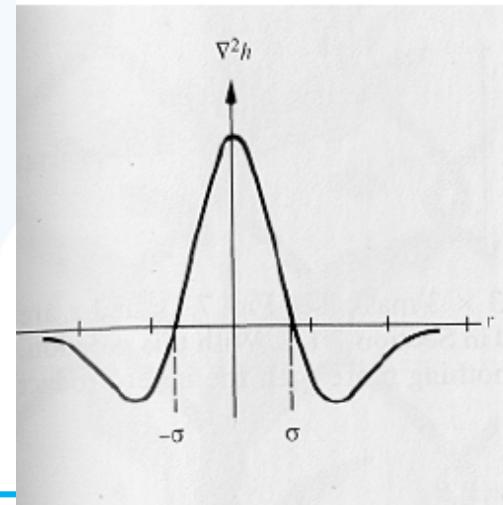
- The Laplacian of Gaussian can be approximated by the difference between two Gaussian functions:

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

approximation



actual LoG



Difference of Gaussians (DoG) (cont'd)

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

$$\sigma = 1$$

$$\sigma = 2$$

$$(b)-(a)$$

Ratio (σ_1/σ_2) for best approximation is about 1.6.
(Some people like $\sqrt{2}$.)

Gradient vs LoG

- Gradient works well when the image contains sharp intensity transitions and low noise.
- Zero-crossings of LOG offer better localization, especially when the edges are not very sharp.

step edge

2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8

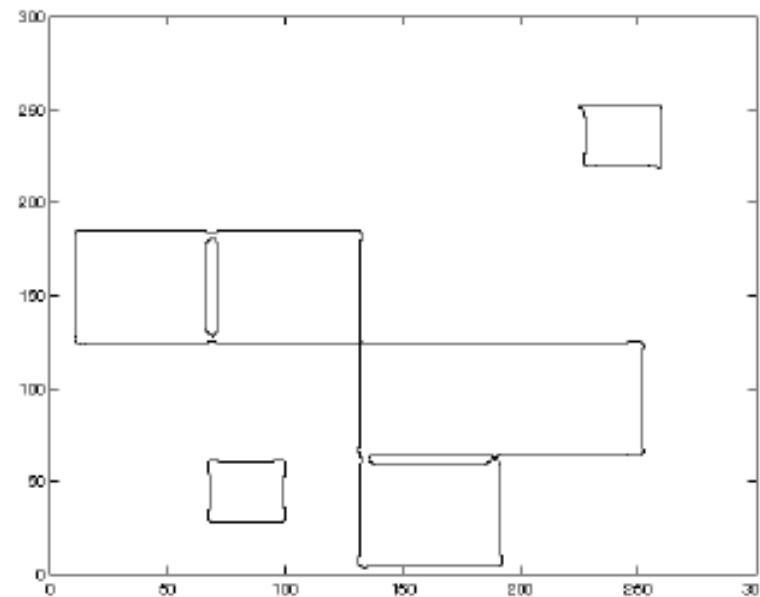
0	0	0	6	-6	0	0	0
0	0	0	6	-6	0	0	0
0	0	0	6	-6	0	0	0
0	0	0	6	-6	0	0	0

ramp edge

2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8

0	0	0	3	0	-3	0	0
0	0	0	3	0	-3	0	0
0	0	0	3	0	-3	0	0
0	0	0	3	0	-3	0	0

Gradient vs LoG (cont'd)



Directional Derivative

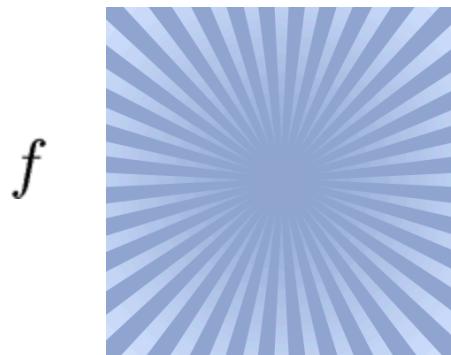
$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\nabla^2 f = \left(\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \right) I = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

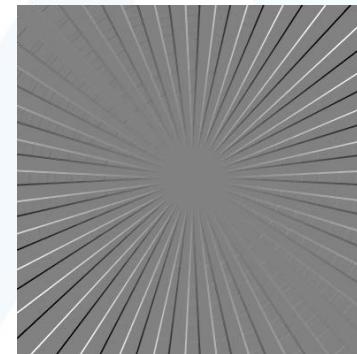
- The partial derivatives of $f(x,y)$ will give the slope $\partial f / \partial x$ in the positive x direction and the slope $\partial f / \partial y$ in the positive y direction.
- We can generalize the partial derivatives to calculate the slope in any direction (i.e., *directional derivative*).

Directional Derivative (cont'd)

- Directional derivative computes intensity changes in a specified direction.

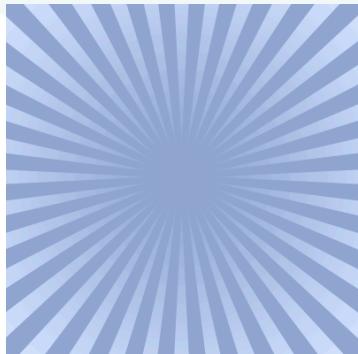
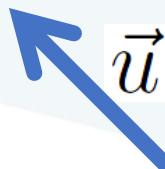


Compute
derivative
in direction u



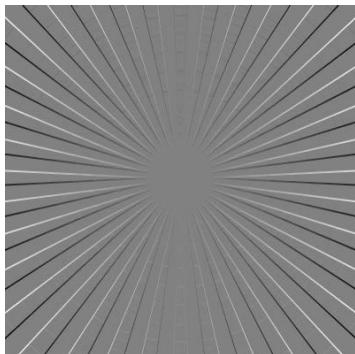
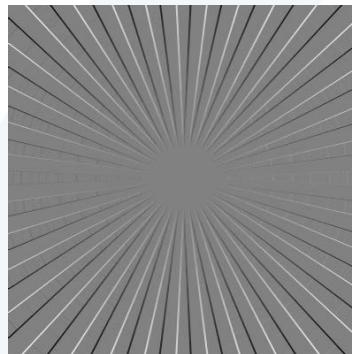
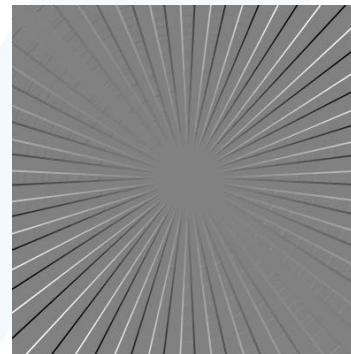
Directional Derivative (cont'd)

f



(From vector calculus)

$$\nabla_{\vec{u}} f(\vec{x}) = \nabla f(\vec{x}) \cdot \vec{u}$$



$$\frac{\partial f}{\partial x} \cdot u_x$$

$$\frac{\partial f}{\partial y} \cdot u_y$$

$$\nabla_{\vec{u}} f$$

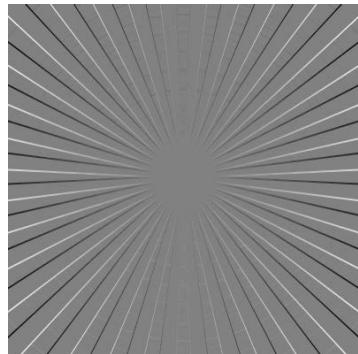
Directional derivative
is a linear
combination of
partial derivatives.

Directional Derivative (cont'd)

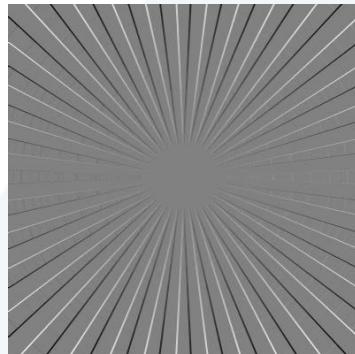
$$\cos \theta = \frac{u_x}{u}, \sin \theta = \frac{u_y}{u}$$

$$\|u\|=1$$

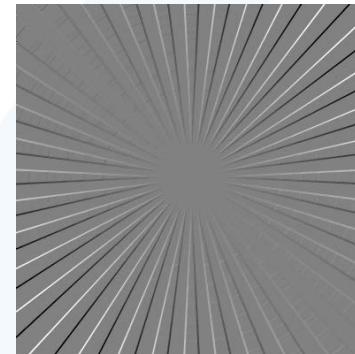
$$u_x = \cos \theta, u_y = \sin \theta$$



+



=



$$\frac{\partial f}{\partial x} \cdot \cos \theta$$

$$\frac{\partial f}{\partial y} \cdot \sin \theta$$

$$\nabla_{\vec{u}} f$$

Higher Order Directional Derivatives

$$f'_\theta(x, y) = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$f''_\theta(x, y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

$$f'''_\theta(x, y) = \frac{\partial^3 f}{\partial x^3} \cos^3 \theta + 3 \frac{\partial^3 f}{\partial x^2 \partial y} \cos^2 \theta \sin \theta + 3 \frac{\partial^3 f}{\partial x \partial y^2} \cos \theta \sin^2 \theta + \frac{\partial^3 f}{\partial y^3} \sin^3 \theta$$

Edge Detection Using Directional Derivative

- What direction would you use for edge detection?

Direction of gradient:

$$\theta = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

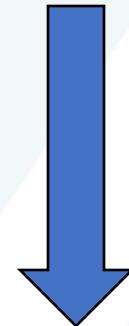
مانارة
الجامعة

MANARA UNIVERSITY

Second Directional Derivative (along gradient direction)

$$f_{\theta}''(x, y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

$$\theta = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$



$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_x^2 f_{xx} + 2f_x f_y f_{xy} + f_y^2 f_{yy}}{f_x^2 + f_y^2}$$

Edge Detection Using Second Derivative

Laplacian: $\nabla^2 f(x, y) \equiv \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$

or $\nabla^2 f \equiv f_{xx} + f_{yy}$

Second directional derivative along the gradient:

$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_x^2 f_{xx} + 2f_x f_y f_{xy} + f_y^2 f_{yy}}{f_x^2 + f_y^2}$$

- (i) the second directional derivative is equal to zero and
- (ii) the third directional derivative is negative.

Properties of Second Directional Derivative (along gradient direction)

Mathematical:

- ➊ $\frac{\partial^2}{\partial n^2}$ is non-linear
- ➋ $\frac{\partial^2}{\partial n^2}$ neither commutes nor associates with convolution

$$\begin{aligned}\frac{\partial^2}{\partial n^2} (g * f) &\neq \left(\frac{\partial^2 g}{\partial n^2} \right) * f \\ \left(\frac{\partial^2 g}{\partial n^2} \right) * f &\neq g * \left(\frac{\partial^2 f}{\partial n^2} \right)\end{aligned}$$

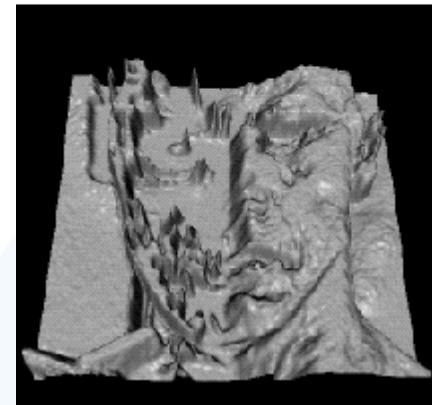
- ➌ $\frac{\partial^2}{\partial n^2}$ is not everywhere defined (i.e., require $f_x^2 + f_y^2 \neq 0$)

Experimental:

- ➍ $\frac{\partial^2}{\partial n^2}$ provides better localization, especially at corners

Facet Model

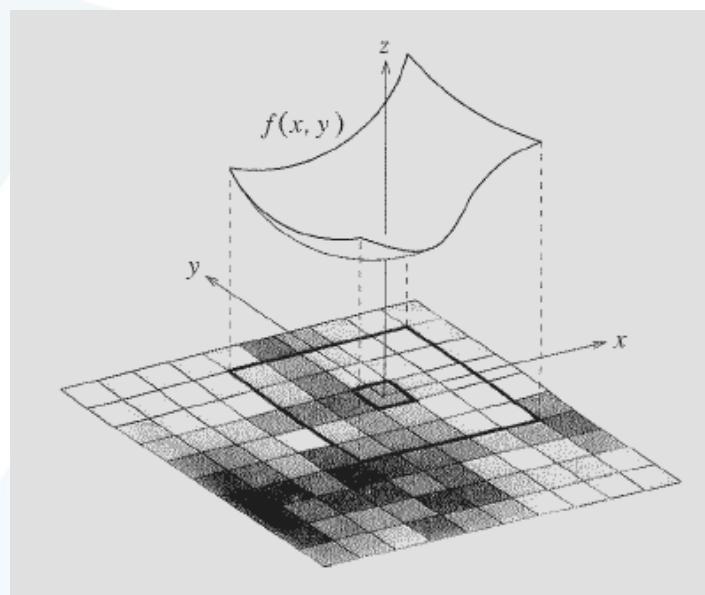
- Assumes that an image is an array of samples of a continuous function $f(x,y)$.
- Reconstructs $f(x,y)$ from sampled pixel values.
- Uses directional derivatives which are computed **analytically** (i.e., without using discrete approximations).



$$z=f(x,y)$$

Facet Model (cont'd)

- For complex images, $f(x,y)$ could contain extremely high powers of x and y .
- **Idea:** model $f(x,y)$ as a piece-wise function.
- Approximate each pixel value by fitting a bi-cubic polynomial in a small neighborhood around the pixel (facet).



$$f(x, y) = k_1 + k_2x + k_3y + k_4x^2 + k_5xy + k_6y^2 + k_7x^3 + k_8x^2y + k_9xy^2 + k_{10}y^3.$$

Facet Model (cont'd)

Steps

- (1) Fit a bi-cubic polynomial to a small neighborhood of each pixel (this step provides smoothing too).
- (2) Compute (**analytically**) the second and third directional derivatives in the direction of gradient.
- (3) Find points where (i) the second derivative is equal to zero and (ii) the third derivative is negative.

Fitting bi-cubic polynomial

$$f(x, y) = k_1 + k_2x + k_3y + k_4x^2 + k_5xy + k_6y^2 + k_7x^3 + k_8x^2y + k_9xy^2 + k_{10}y^3.$$

- If a 5×5 neighborhood is used, the masks below can be used to compute the coefficients.
 - Equivalent to least-squares (e.g., SVD)

-13	2	7	2	-13
2	17	22	17	2
7	22	27	22	7
2	17	22	17	2
-13	2	7	2	-13

k_1

31	-44	0	44	-31
-5	-62	0	62	5
-17	-68	0	68	17
-5	-62	0	62	5
31	-44	0	44	-31

k_3

31	-5	-17	-5	31
-44	-62	-68	-62	-44
0	0	0	0	0
44	62	68	62	44
-31	5	17	5	-31

k_2

2	2	2	2	2
-1	-1	-1	-1	-1
-2	-2	-2	-2	-2
-1	-1	-1	-1	-1
2	2	2	2	2

k_4

4	2	0	-2	-4
2	1	0	-1	-2
0	0	0	0	0
-2	-1	0	1	2
-4	-2	0	2	4

k_5

2	-1	-2	-1	2
2	-1	-2	-1	2
2	-1	-2	-1	2
2	-1	-2	-1	2
2	-1	-2	-1	2

k_6

-4	2	4	2	-4
-2	1	2	1	-2
0	0	0	0	0
2	-1	-2	-1	2
4	-2	-4	-2	4

k_9

-1	-1	-1	-1	-1
2	2	2	2	2
0	0	0	0	0
-2	-2	-2	-2	-2
1	1	1	1	1

k_7

-4	-2	0	2	4
2	1	0	-1	-2
4	2	0	-2	-4
2	1	0	-1	-2
-4	-2	0	2	4

k_8

-1	2	0	-2	1
-1	2	0	-2	1
-1	2	0	-2	1
-1	2	0	-2	1
-1	2	0	-2	1

k_{10}

Analytic computations of second and third directional derivatives

$$f(x, y) = k_1 + k_2x + k_3y + k_4x^2 + k_5xy + k_6y^2 + k_7x^3 + k_8x^2y + k_9xy^2 + k_{10}y^3.$$

- Using polar coordinates

$$x = \rho \sin \theta, \quad y = \rho \cos \theta$$

$$f_\theta(\rho) = C_0 + C_1\rho + C_2\rho^2 + C_3\rho^3,$$

where

$$C_0 = k_1,$$

$$C_1 = k_2 \sin \theta + k_3 \cos \theta,$$

$$C_2 = k_4 \sin^2 \theta + k_5 \sin \theta \cos \theta + k_6 \cos^2 \theta,$$

$$C_3 = k_7 \sin^3 \theta + k_8 \sin^2 \theta \cos \theta + k_9 \sin \theta \cos^2 \theta + k_{10} \cos^3 \theta.$$

Compute analytically second and third directional derivatives

- Gradient angle θ (with positive y-axis at (0,0)):

$$\sin \theta = \frac{k_2}{\sqrt{k_2^2 + k_3^2}},$$

$$\cos \theta = \frac{k_3}{\sqrt{k_2^2 + k_3^2}}.$$

Locally approximate surface by a plane and use the normal to the plane to approximate the gradient.

$$f(x, y) = k_1 + k_2x + k_3y + \cancel{k_4x^2 + k_5xy + k_6y^2 + k_7x^3 + k_8x^2y + k_9xy^2 + k_{10}y^3}.$$

Computing directional derivatives (cont'd)

- The derivatives can be computed as follows:

$$f_\theta(\rho) = C_0 + C_1\rho + C_2\rho^2 + C_3\rho^3,$$

$$f_\theta'(\rho) = C_1 + 2C_2\rho + 3C_3\rho^2,$$

$$f_\theta''(\rho) = 2C_2 + 6C_3\rho,$$

$$f_\theta'''(\rho) = 6C_3.$$

Second derivative equal to zero implies:

$$f_\theta''(\rho) = 2C_2 + 6C_3\rho = 0, \text{ we get } |\frac{C_2}{3C_3}| < \rho_0$$

Third derivative negative implies:

$$f_\theta'''(\rho) < 0, \text{ we get } 6C_3 < 0, \text{ or } C_3 < 0,$$

Edge Detection Using Facet Model (cont'd)

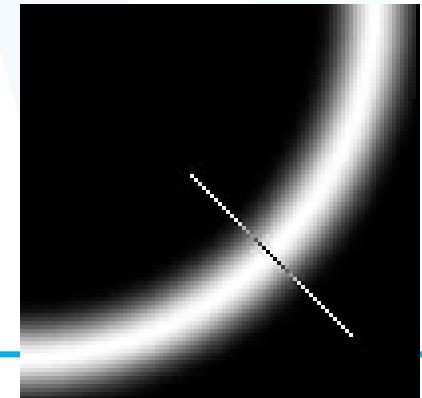
Steps

1. Find $k_1, k_2, k_3, \dots, k_{10}$ using least square fit, or masks given in Figure 2.8.
2. Compute $\theta, \sin \theta, \cos \theta$.
3. Compute C_2, C_3 .
4. If $C_3 < 0$ and $|\frac{C_2}{3C_3}| < \rho_0$ then that point is an edge point.

Figure 2.9: The steps in Haralick's Edge Detector.

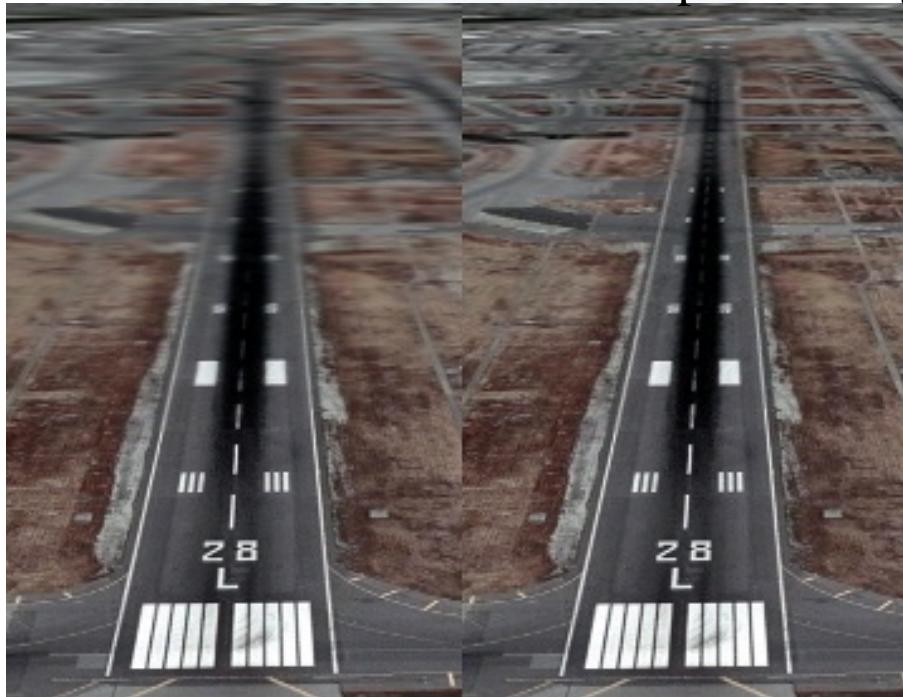
Anisotropic Filtering (i.e., edge preserving smoothing)

- Symmetric Gaussian smoothing tends to blur out edges rather aggressively.
- An “oriented” smoothing operator would work better:
 - (i) Smooth aggressively perpendicular to the gradient
 - (ii) Smooth little along the gradient
- Mathematically formulated using diffusion equation.



Anisotropic filtering - Example

result using
anisotropic filtering



جامعة
المنارة
MANARA UNIVERSITY

Effect of scale (i.e., σ)

original

$\sigma = 1$

$\sigma = 2$

- Small σ detects fine features.
- Large σ detects large scale edges.

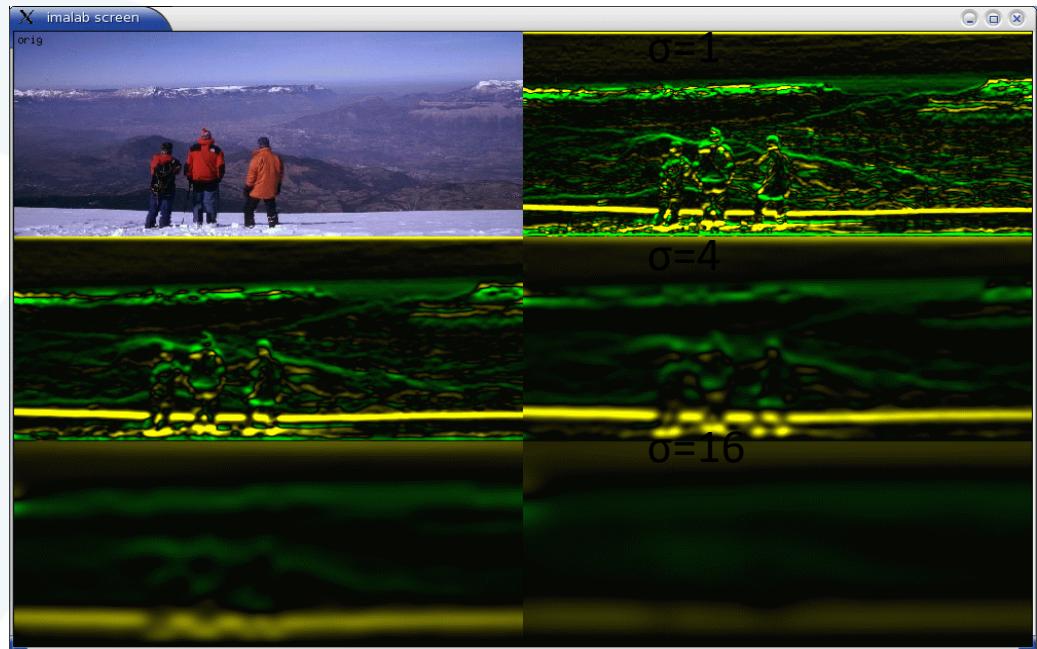
Multi-scale Processing

- A formal theory for handling image structures at different scales.
- Process images **multiple scales**.
- Determine which structures (e.g., edges) are most significant by considering **the range of scales** over which they occur.

Multi-scale Processing (cont'd)

$\sigma=2$

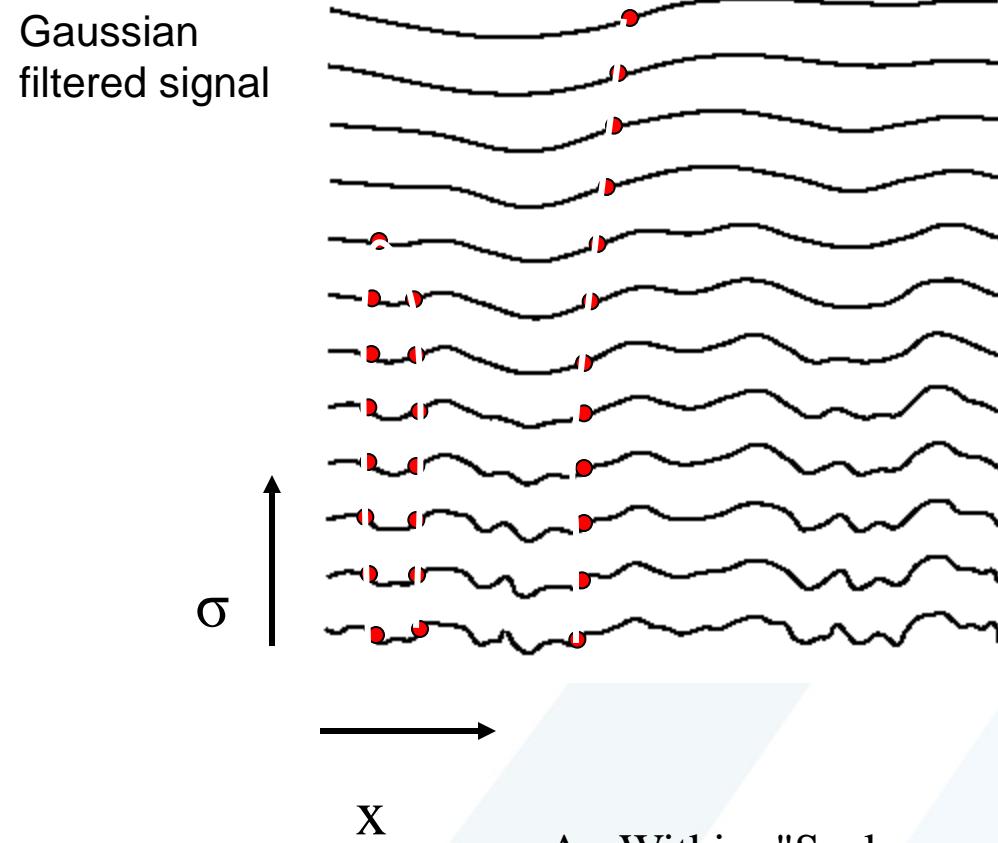
$\sigma=8$



- **Interesting scales:** scales at which important structures are present.

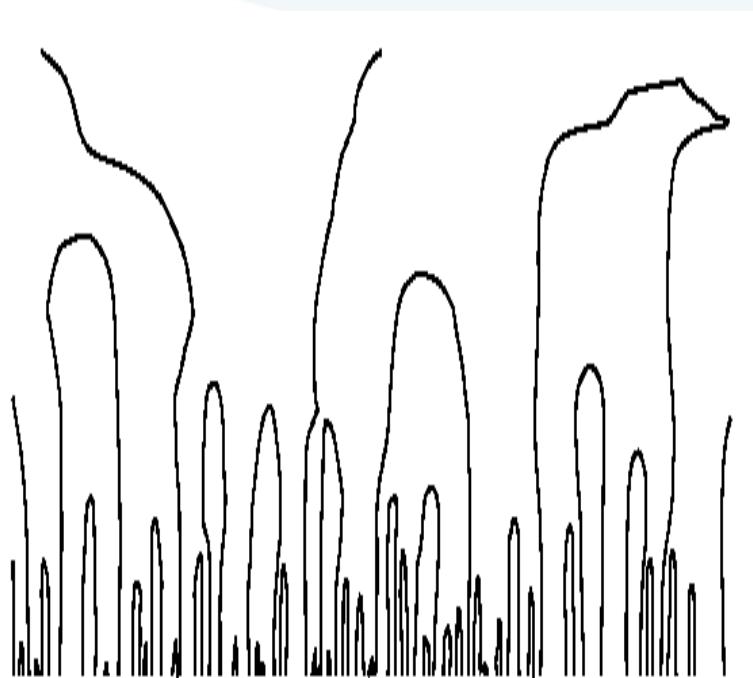
e.g., in the image above, people can be detected at scales [1.0 - 4.0]

Scale Space (Witkin 1983)



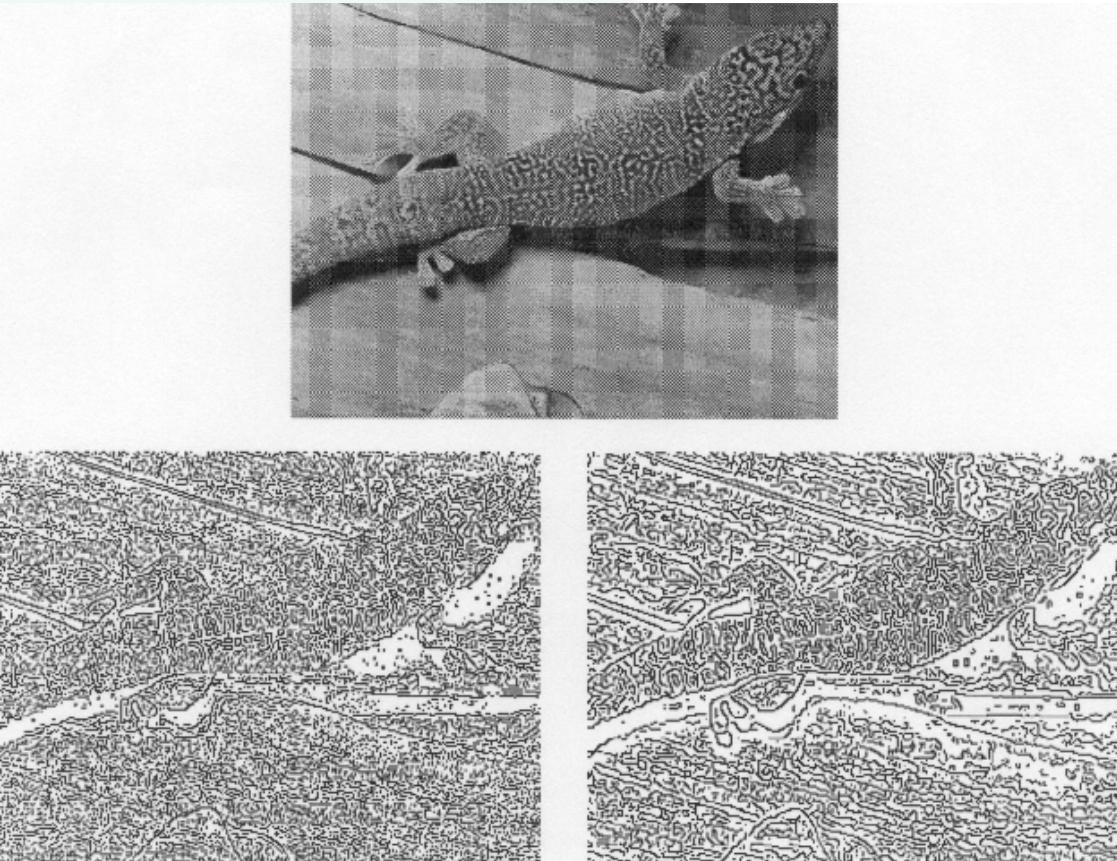
- Detect and plot the zero-crossing of a 1D function over a continuum of scales σ .
- Instead of treating zero-crossings at a single scale as a single point, we can now treat them at multiple scales as contours.

Scale Space (cont'd)



- Properties of scale space (assuming Gaussian smoothing):
 - Zero-crossings may shift with increasing scale (σ).
 - Two zero-crossing may merge with increasing scale.
 - A contour may *not* split into two with increasing scale.

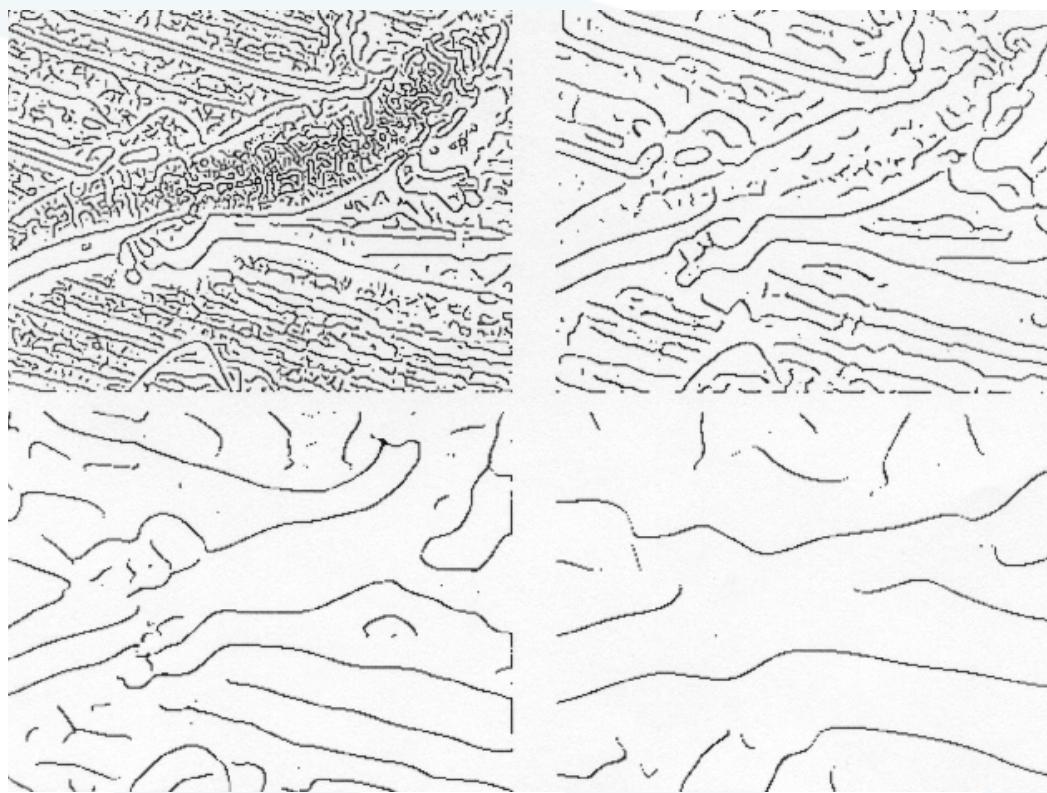
Multi-scale processing (cont'd)



(Canny edges at multiple scales of smoothing, $\sigma=0.5, 1$,

<https://manara.edu.sy/>

Multi-scale processing (cont'd)



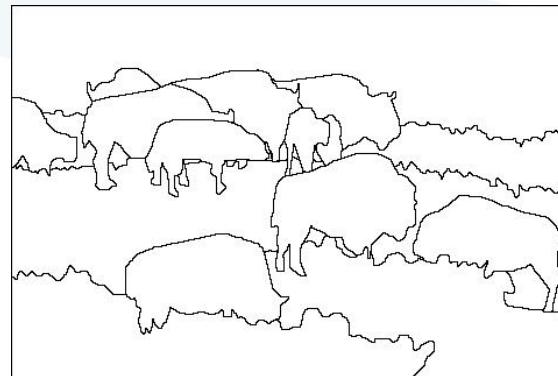
(Canny edges at multiple scales of smoothing, $\sigma = 1, 2, 4, 8, 16$)

جامعة
المنارة
MANARA UNIVERSITY

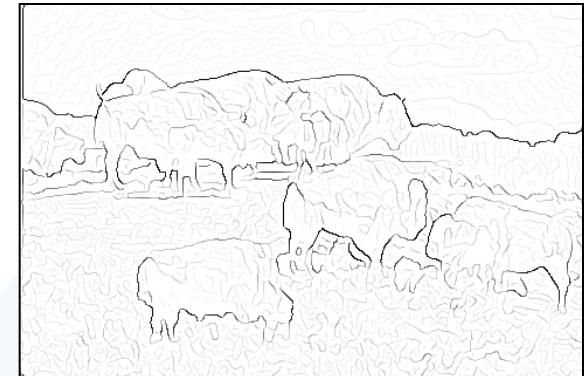
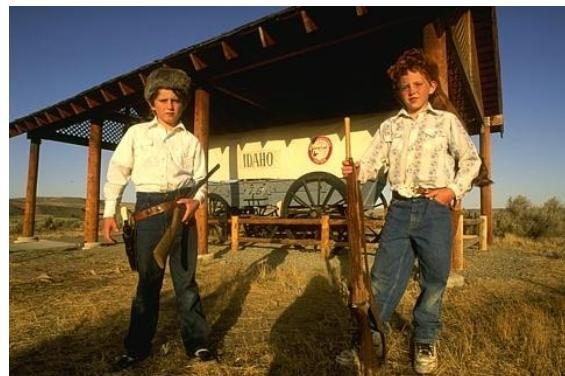
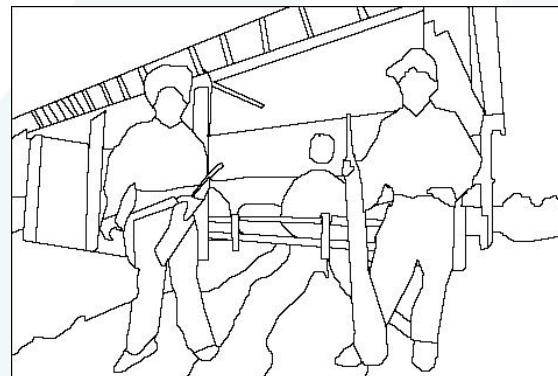
Edge detection is just the beginning...

image

human segmentation



gradient magnitude



- Berkeley segmentation database:

<http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/>

<https://manara.edu.sy/>