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Chapter 3

Series and Residues

1. Sequences and Series

2. Taylor Series

3. Laurent Series

4. Zeros and Poles

5. Residues and Residue Theorem

6. Evaluation of Real Integrals
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1. Sequences and Series

Sequences

▪ A sequence {zn} is a function whose domain is the set of positive integers; in 

other words, to each integer n = 1, 2, 3, ..., we assign a complex number zn. 

For example, the sequence {1 + in} is
, , , , ,

, , , , ,

i i i

n n n n n

+ − +

= = = = =

1 0 1 2 1

1 2 3 4 5
    

▪ If                   we say the sequence {zn} is convergent.lim n
n
z L

→
=

{zn} converges to the number L if, for each positive number 

, an N can be found such that |zn − L|   whenever n  N.

The sequence {1 + in} is divergent.
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▪ Example 1: A Convergent Sequence

The sequence             converges, since

ni

n

+ 
 
 

1

lim
n

n

i

n

+

→
=

1

0

, , , , , 
i i

− − −
1 1

1
2 3 4 5

▪ Theorem 1 (Criterion for Convergence): A sequence {zn} converges to a 

complex number L if and only if Re(zn) converges to Re(L) and Im(zn) 

converges to Im(L).

▪ Example 2: The sequence                converges to i. since
ni

n i
 
 

+ 2
Re(zn) = 2n/(n2 + 4) → 0 and Im(zn) = n2 /(n2 + 4) → 1 as n → ∞
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Series

▪ An infinite series of complex numbers

1 2 31 k nk
z z z z z



=
= + + + + +

is convergent if the sequence of partial sums {Sn}, where

n nS z z z z= + + + +1 2 3

converges. If Sn → L as n → ∞, we say that the sum of the series is L.

Geometric Series
2 1

0
k n

k
az a az az az

 −

=
= + + + + +

( )
 when 

n
n

n
n

a z
S a az az a

a
z

z
z

z
−

→

−
= + + + + =

−
→ 

−

2 1

1

1
1

1
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k

k

az


=


1

converges when |z|  1, and diverges when |z|  1.

,/( ) /( )z z z z z z z z− = + + + + + = − + − +2 3 2 31 1 1 1 1 1 valid for |z|  1

( )/( )n nz z z z z z −− − = + + + + +2 3 11 1 1

▪ Example 3: Convergent Geometric Series

( ) ( ) ( )k

k
k

i i i i

=

+ + + +
= + + +

2 3

2 3
1

1 2 1 2 1 2 1 2

55 5 5

is a geometric series with a = (1 + 2i)/5 and z = ( 1 + 2i)/5.

/z =  5 5 1 the series converges
( )k i

k i
k

i i+

+
=

+
= =

−


1 2
5
1 2

1 5

1 2

1 25
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▪ Theorem 2 (Necessary Condition for Convergence): If converges, then:k
k

z


=


1

lim n
n
z

→
= 0

▪ Theorem 3 (The nth Term Test for Divergence): If , then the series:

k
k

z


=


1

lim n
n
z

→
 0

diverges.

For example, the series
k

k i

k



=

+

1

5
diverges since zn = (n + 5i)/n → 1 as n → ∞

▪ Definition: An infinite series          is absolutely convergent if            converges.k
k

z


=


1

k
k

z


=


1

For example, the series ( )/k

k

i k


=

 2

1

is absolutely convergent ( )/ /ki k k=2 21
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▪ Note: Absolute convergence implies convergence.

( )/k

k

i k


=

 2

1

is convergent

▪ Theorem 4 (Ratio Test): Suppose       is a series of nonzero complex terms 

such that

lim n

n
n

z
L

z
+

→
=1

k
k

z


=


1

(i) If L  1, then the series converges absolutely.

(ii) If L  1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.
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▪ Theorem 5 (Root Test): Suppose          is a series of complex terms such that:

lim n
n

n
z L

→
=

k
k

z


=


1

(i) If L  1, then the series converges absolutely.

(ii) If L  1 or L = ∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.

Power Series

( ) ( ) ( )k
k

k

a z z a a z z a z z


=

− = + − + − + 2
0 0 1 0 2 0

0

where the coefficients ak are complex constants, is called a power series in 

z − z0, centered at z0,
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Circle of Convergence

▪ Every complex power series has radius of convergence R, 

where R is a real number. 

▪ When 0  R  ∞, a complex power series has a circle of 

convergence defined by |z − z0| = R.

▪ The power series converges absolutely for all z satisfying 

|z − z0|  R and diverges for |z − z0|  R. The radius R of convergence can be:

(i) zero (the power series converges at only z = z0),

(ii) a finite number (the power series converges at all interior points of the 

circle |z − z0| = R), or

(iii) ∞ (the power series converges for all z).
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▪ Example 4: Circle of Convergence

Consider the power series             . By the ratio test
k

k

z

k

+

=


1

1

lim lim

n

nn n

z
nn z z
nz

n

+

+→ →

+ = =
+

2

1
1

1

Thus the series converges absolutely for 

|z|  1. The circle of convergence is |z| = 1 

and the radius of convergence is R = 1.

On the circle of convergence, the series does not converge absolutely.

It can be shown that the series converges at all points on the circle |z| = 1 

except at z = 1.

▪ Note: the radius of convergence is R = 1/L.                          or lim n

n
n

a
L

a
+

→
= 1 lim n

n
n

L a
→

=
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▪ Example 5: Radius of Convergence

Consider the power series ( )

k
k

k

k
z i

k



=

+ 
− 

+ 

1

6 1
2

2 5

lim limn
n

n n

n
a

n→ →

+
= =

+

6 1
3

2 5
The radius of convergence of the series is 

R = 1/3. The circle of convergence is |z − 2i| = 1/3, 

the series converges absolutely for |z − 2i|  1/3.

2. Taylor Series

▪ A power series defines or represents a function f ; for a specified z within the 

circle of convergence, the number L to which the power series converges is 

defined to be the value of f at z; that is, f(z) = L.
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▪ Theorem 6 (Continuity): A power series                 represents a continuous 

function f within its circle of convergence |z − z0| = R, R  0.

( )kk
k

a z z


=

− 0
0

▪ Theorem 7 (Term-by-Term Integration): A power series               can be 

integrated term by term within its circle of convergence |z − z0| = R, R  0, for 

every contour C lying entirely within the circle of convergence.

( )kk
k

a z z


=

− 0
0

▪ Theorem 8 (Term-by-Term Differentiation): A power series                    can be 

differentiated term by term within its circle of convergence |z − z0| = R, R  0.

( )kk
k

a z z


=

− 0
0

Taylor Series

▪ A power series represents an analytic function within its circle of convergence.
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( ) ( )
( ) ( )

!

k
k

k

f z
f z z z

k



=

= − 0
0

0

Taylor series for f centered at z0.

( ) ( )
( )

!

k
k

k

f
f z z

k



=

= 
0

0
Maclaurin series for f.

▪ Theorem 9 (Taylor’s Theorem): Let f be analytic within a domain D and let z0 

be a point in D. Then f has the series representation
( ) ( )

( ) ( )
!

k
k

k

f z
f z z z

k



=

= − 0
0

0

valid for the largest circle C with center at z0 and radius R 

that lies entirely within D.
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,
! ! !

sin ( ) ,
! ! ( )!

cos ( ) ,
! ! ( )!



=

+

=



=

= + + + = = 

= − + − = − = 
+

= − + − = − = 







k
z

k

k
k

k

k
k

k

z z z
e R

k

z z z
z z R

k

z z z
z R

k

2

0

3 5 2 1

0

2 4 2

0

1
1 2

1
3 5 2 1

1 1
2 4 2

▪ Note: the radius of convergence R is the distance from the center z0 of the 

series to the nearest isolated singularity of f. An isolated singularity is a point 

at which f fails to be analytic but is, nonetheless, analytic at all other points 

throughout some neighborhood of the point.

Some Important Maclaurin Series
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▪ Example 7: Maclaurin Series

( )
( )

f z
z

=
− 2

1

1
Find the Maclaurin expansion of

,z z z z
z

= + + + + 
−

2 31
1 1

1

▪ Example 6: Radius of Convergence

Suppose the function                         is expanded in a Taylor series with center 

z0 = 4 − 2i.What is its radius of convergence R?

( )
3

1

i
f z

i z

−
=

− +

The function is analytic at every point except at z = −1 + i, which is an 

isolated singularity of f. The distance from z = −1 + i to z0 = 4 − 2i is:

( ) ( ( ))2 2
0 1 4 1 2 34z z R− = − − + − − = =
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Differentiating both sides

,
( )

k

k

z z kz z
z


−

=

= + + + = 
−


2 1

2
1

1
1 2 3 1

1

▪ Example 8: Taylor Series

( )f z
z

=
−

1

1
Expand                     in a Taylor series with center z0 = 2i.

First Method:

( ) ( )! !
( ) ( )

( ) ( )

( )
( )

n n
n n

k
n

k

n n
f z f i

z i

z i
z i

+ +



+
=

=  =
− −

= −
− −



1 1

1
0

2
1 1 2

1 1
2

1 1 2
circle of convergence

(using ratio test)

z i− =2 5
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Second Method:

( )

( ) ( )
( ) ( )

z iz z i i i z i i
i

z i z i z i

z i i i i

z i z i
z i i i

= = =
−− − + − − − − −

−
−

 − − −   
= + + + +    

− − − − −     

= + − + − +
− − − −

2 3

2
2 3

1 1 1 1 1
21 1 2 2 1 2 2 1 2 1

1 2

1 1 2 2 2
1

1 1 2 1 2 1 2 1 2

1 1 1 1
2 2

1 1 2 1 2 1 2

▪ Note: we represented the same function 1/(1 − z) by 2 different power series. 

The first has center 0 and radius of convergence (ROC) 1. The second has 

center 2i and ROC      . The shaded region is where both series converge.5
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3. Laurent Series

▪ If a complex function f fails to be analytic at a point z = z0, then this point is 

said to be a singularity or a singular point of the function. 

▪ For example, the complex numbers z = 2i and z = −2i are singularities of the 

function f(z) = z/(z2 + 4) because f is discontinuous at each of these points.

Isolated Singularities

▪ Suppose that z = z0 is a singularity of a complex function f. The point z = z0 is 

said to be an isolated singularity of the function f if there exists some deleted 

neighborhood of z0, 0  |z − z0|  R throughout which f is analytic.

▪ For example, z = ±2i are isolated singularities of f(z) = z/(z2 + 4) since f is 

analytic at every point in the neighborhood |z − 2i|  1 except at z = 2i and at 

every point in the neighborhood |z − (−2i)|  1 except at z = −2i.
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▪ On the other hand, the branch point z = 0 is not an isolated singularity of Log z 

since every neighborhood of z = 0 must contain points on the negative x-axis.

▪ We say that a singular point z = z0 of a function f is nonisolated if every 

neighborhood of z0 contains at least one singularity of f other than z0.

A New Kind of Series

▪ If z = z0 is a singularity of a function f, then certainly f cannot be expanded in a 

power series with z0 as its center. However, about an isolated singularity z = z0 

it is possible to represent f by a new kind of series:

▪ For example, the branch point z = 0 is a nonisolated singularity of Log z since 

every neighborhood of z = 0 contains points on the negative real axis.
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is called the principal part and will converge for |1/(z − z0)|  r* or equivalently 

for |z − z0|  1/r* = r.

( )
( )

k k
k k

k k

a
a z z

z z

 
− −

−

= =

− =
−

 0
1 1 0

( )kk
k

a z z


=

− 0
0

is called the analytic part and will converge for |z − z0|  R.

( ) ( )kk
k

f z a z z


=−

= − 0 will converge for r  |z − z0|  R

Such series representation is called a Laurent series or a Laurent expansion 

of f.

( ) ( ) ( ) ( )
  

−
−

=− = =

= − = − + −  k k k
k k k

k k k

f z a z z a z z a z z0 0 0
1 0
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sin 
! ! !

z z z
z z= − + − +

3 5 7

3 5 7

converges for all |z|  ∞

analytic partprincipal part

sin 
( )

! ! ! !

3 5

4 3

1 1

3 5 7 9

z z z z
f z

zz z
= = − + − + −

▪ Example 9: A New Kind of Series

The function f(z) = (sin z)/z4 is not analytic at z = 0 and hence cannot be 

expanded in a Maclaurin series.

The analytic part of the series converges for |z|  ∞. The principal part is 

valid for |z|  0 ⇒ the series converges for all z except at z = 0 (0  |z|  ∞).
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▪ Theorem 10 (Laurent’s Theorem): Let f be analytic within the annular domain 

D defined by r  |z − z0|  R. and let z0 be a point in D. Then f has the series 

representation:

( ) ( )kk
k

f z a z z


=−

= − 0

valid for r  |z − z0|  R. The coefficients ak are given by:

( )
, , 1, 2,

( )
k kC

f s
a ds k

i s z +
= =  

−
 1

0

1
0

2

where C is a simple closed curve that lies entirely within D 

and has z0 in its interior.
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▪ Example 10: Laurent Expansions

| |

( ) [ ]

z

f z z z z
z z z

z z z
z



= − = − + + + +
−

= − − − − − −

2 3

2 3

1

1 1 1
1

1

1
1

Expand                         in a Laurent series valid for (a) 0  |z|  1, (b) 1  |z|, 

(c) 0  |z − 1|  1, and (d) 1  |z − 1|.

( )
( )

f z
z z

=
−

1

1

(a)

converges for 0  |z|  1

( )

z

f z
zz z z z

z


 
= = + + + + 

 −
2 2 2 3

1
1

1 1 1 1 1 1
1

1
1

(b)
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( )f z
z z z z

= + + + +
2 3 4 5

1 1 1 1
converges for 1  |z|

| |

( )
( )

[ ( ) ( ) ( ) ]

z

f z
z z z z

z z z
z

− 

= =
− + − − + −

= − − + − − − +
−

2 3

1 1

1 1 1 1

1 1 1 1 1 1

1
1 1 1 1
1

(c)

converges for 0  |z − 1|  1( ) ( ) ( )f z z z
z

= − + − − − +
−

21
1 1 1

1

( )
( ) ( )

f z
z z z

z

= =
− + − − +

−

2

1 1 1 1
11 1 1 1 1
1

(d)
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( )
( ) ( ) ( )

z

f z
zz z z


−

 
= − + − + 

−− − − 
2 2 3

1
1

1

1 1 1 1
1

11 1 1

( )
( ) ( ) ( ) ( )

f z
z z z z

= − + − +
− − − −2 3 4 5

1 1 1 1

1 1 1 1
converges for 1  |z − 1|

▪ Example 11: Laurent Expansions

Expand                                    in a Laurent series valid for 

(a) 0  |z − 1|  2,

(b) 0  |z − 3|  2.

( )
( ) ( )

f z
z z

=
− −2

1

1 3
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( )
( )( ) ( ) ( ) ( )

f z
zzz z z z

−
= = =

−− + −− − − − −
2 2 2

1 1 1 1 1
12 11 3 1 2 1 1
2

(a)

( ) ( )
( )

( )

( )
( )( )

z z z
f z

z

z
zz

 − − − −
= + + + + 

−  

= − − − − − −
−−

2 3

2 2 3

2

1 1 1 1
1

22 1 2 2

1 1 1 1
1

4 1 8 162 1

( )
( )( ) ( ) [ ( )]

z
f z

z zz z z

−
− 

= = = + − −− − + −  

2

2 2

1 1 1 1 3
1

3 4 3 21 3 2 3
(b)

valid for 0  |z − 1|  2

using the general binomial theorem:
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( ) ( )( )
( )

( ) ! !

z z
f z

z

 − − − − −   
= + + +    

−      

2
1 2 3 2 3 3

1
4 3 1 2 2 2

( ) ( ) ( )
( )

f z z z
z

= − + − − − +
−

21 1 3 1
3 3

4 3 4 16 8

valid for 0  |z − 3|  2

▪ Example 12: Laurent Expansions

Expand                          in a Laurent series valid for 0  |z |  1.( )
( )

z
f z

z z

+
=

−

8 1

1

( ) ( )( )
( ) , ,

! !

m m m m m m
z mz z z z m Q

− − −
+ = + + + +  2 31 1 2
1 1 1

2 3
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▪ Example 13: Laurent Expansions

Expand the function                        in a Laurent series 

valid for 1  |z − 2|  2.

( )
( )

f z
z z

=
−

1

1

Find two series involving integer powers of z − 2: one 

converging for 1  |z − 2| and the other converging 

for |z − 2|  2.

( ) ( )
( )

z z
f z z z z

z z z z z

+ +  
= = = + + + + + 

− −  

2 38 1 8 1 1 1
8 1

1 1

( )f z z z
z

= + + + +2
1
9 9 9 valid for 0  |z|  1
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( ) ( )
( )

z z z
f z

− − −
= − + − + −

2 3

1 2 3 4

1 2 2 2

2 2 2 2
converges for |z − 2|  2

( )
( ) ( )

f z
z z z z z z

z

 
= = = − + − + 

+ − − − − − − +
−

2 2 3

1 1 1 1 1 1 1
1

11 2 2 2 2 2 21
2

( ) ( ) ( )
( )

f z f z f z
z z z z

= = − + = +
− −

1 2

1 1 1

1 1

( ) = − = − = −
−+ −

+

f z
zz z1

1 1 1 1
22 2 2 1
2

( ) ( )
( )

 − − −
= − − + − + 

 

z z z
f z

2 3

1 2 3

1 2 2 2
1

2 2 2 2
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▪ Example 14: Laurent Expansions

Expand                  in a Laurent series valid for |z|  0./( ) zf z e= 3

! !

z z z
e z= + + + +

2 3

1
2 3

/

! !

ze
z z z

= + + + +
2 3

3
2 3

3 3 3
1

2 3
valid for |z|  0

( )
( ) ( ) ( )

f z
z z z z

= − + − +
− − − −

2 2 3 4

1 1 1 1

2 2 2 2
converges for 1  |z − 2| 

( ) ( )
( )

( ) ( )

z z z
f z

zz z

− − −
= + − + − + − + −

−− −

2 3

3 2 2 3 4

1 1 1 1 2 2 2

2 22 2 2 2 2

converges for 1  |z − 2|  2 
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4. Zeros and Poles

Classification of Isolated Singular Points

▪ A classification is given depending on whether the principal part of its Laurent 

expansion contains zero, a finite number, or an infinite number of terms.

z = z0 Laurent Series

Removable singularity

Pole of order n

Simple pole

Essential singularity ( ) ( )
( )

a a
a a z z a z z

z zz z
− −+ + + + − + − +

−−

22 1
0 1 0 2 02

00

( ) ( )
a

a a z z a z z
z z

− + + − + − +
−

21
0 1 0 2 0

0

( )
( ) ( )

( )nn
n n

aa a
a a z z

z zz z z z
− −− −

−
+ + + + + − +

−− −

1 1
0 1 01

00 0

( ) ( )a a z z a z z+ − + − +20 1 0 2 0
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▪ Example 14: Removable Singularity

sin 

! !

z z z

z
= − + −

2 4

1
3 5

z = 0 is a removable singularity of f(z) = (sin z)/z. 

▪ Example 15: Poles and Essential Singularity

sin 

! !

z z z

zz
= − + −

3

2

1

3 5

principal part 

↓
|z|  0, we see that a−1  0, and so z = 0 is a simple 

pole of the function f(z) = (sin z)/z2.

( )
( )( )2

1 1 1 1

4 1 8 162 1

z
f z

zz

−
= − − − − −

−−

principal part

The Laurent expansion of f(z) = 1/(z − 1)2(z − 3) valid for 0  |z − 1|  2

since a−2  0, we conclude that z = 1 

is a pole of order 2.
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The principal part of Laurent series of the function f(z) = e3/z contains an infinite 

number of terms. Thus z = 0 is an essential singularity.

Zeros

▪ z0 is a zero of a function f if f(z0) = 0. An analytic function f has a zero of order 

n at z = z0 if

( ) ( )( ) , ( ) , ( ) , , ( but ) , ( )n nf z f z f z f z f z− = = = = 1
0 0 0 0 00 0 0 0 0

▪ If an analytic function f has a zero of order n at z = z0, it follows that the Taylor 

series expansion of f centered at z0 must have the form:

( ) ( ) ( ) ( )

( ) [ ( ) ( ) ]

n n n
n n n

n
n n n

f z a z z a z z a z z

z z a a z z a z z

+ +
+ +

+ +

= − + − + − +

= − + − + − +

1 2
0 1 0 2 0

2
0 1 0 2 0
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▪ Theorem 11 (Zero of Order n): A function f that is analytic in some disk 

|z − z0|  R has a zero of order n at z = z0 if and only if f can be written 

f(z) = (z − z0)
n(z), where  is analytic at z = z0 and (z0)  0.

▪ Example 16: Order of a Zero

The analytic function f(z) = z sin z2 has a zero of order 3 at z = 0.

sin 
! ! ! !

z z z z
z z z z z

   
= − + − = − + −   

   

6 10 4 8
2 2 3 1

3 5 3 5

Poles

▪ Theorem 12 (Pole of Order n): A function f that is analytic in a deleted 

neighborhood of z0, 0  |z − z0|  R has a pole of order n at z = z0 if and only if f 
can be written f(z) = (z)/(z − z0)

n, where  is analytic at z = z0 and (z0)  0.
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▪ Example 17: Order of Poles

▪ Theorem 13 (Pole of Order n): If the functions f and g are analytic at z = z0 and 

f has a zero of order n at z = z0 and g(z0)  0, then the function F(z) = g(z)/f(z) 

has a pole of order n at z = z0.

z = 0 is a zero of order 3 of f(z) = z sin z2 ⇒ F(z) = 1/(z sin z2) has a pole of order 

3 at z = 0.

▪ If a function has a pole at z = z0, then |f(z)| → ∞ as z → z0 from any direction.

( )
( )( )( )4

2 5

1 5 2

z
f z

z z z

+
=

− + −

The denominator has zeros of order 1 at z = 1 and z = −5, and a zero of order 

4 at z = 2. Since the numerator is not zero at any of these points, it follows that 

f has simple poles at z = 1 and z = −5, and a pole of order 4 at z = 2.
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5. Residues and Residue Theorem

▪ If the complex function f has an isolated singularity at the point z0, then f has a 

Laurent series representation:

( ) ( ) ( ) ( )
( )

k
k

k

a a
f z a z z a a z z a z z

z zz z


− −

=−

= − = + + + + − + − +
−−


22 1

0 0 1 0 2 02
00

which converges for all z near z0. More precisely, the representation is valid in 

some deleted neighborhood of z0, 0  |z − z0|  R.

Residue

▪ The coefficient a−1 of 1/(z - z0) in the Laurent series given above is called the 

residue of the function f at the isolated singularity z0.

 ( ( ), )− =a Res f z z1 0
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▪ Example 18: Residues

z = 1 is a pole of order 2 of the function f(z) = 1/(z − 1)2(z − 3). From the 

Laurent series we see that the coefficient of 1/(z − 1) is a−1 = Res (f(z), 1) = −¼.

z = 0 is an essential singularity of f(z) = e3/z. From the Laurent series we see 

that the coefficient of 1/z is a−1 = Res (f(z), 0) = 3.

▪ Theorem 14 (Residue at a Simple Pole): If f has a simple pole at z = z0, then:

 ( ( ), ) lim ( ) ( )
→

= −
z z

Res f z z z z f z
0

0 0

▪ Theorem 15 (Residue at a Pole of Order n): If f has a pole of order n at z = z0, 

then

 ( ( ), ) lim ( ) ( )
( )!

−

−→
= −

−

n
n

nz z

d
Res f z z z z f z

n dz0

1

0 01

1

1
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▪ Example 19: Residue at a Pole

The function f(z) = 1/(z − 1)2(z − 3) has a simple pole at z = 3 and a pole of 

order 2 at z = 1

 ( ( ), ) lim ( ) ( ) lim
( )→ →

= − = =
−z z

Res f z z f z
z 23 3

1 1
3 3

41

 ( ( ), ) lim ( ) ( ) lim
! → →

= − = = −
−z z

d d
Res f z z f z

dz dz z
2

1 1

1 1 1
1 1
1 3 4

▪ Suppose a function f can be written as a quotient f(z) = g(z)/h(z), where g and h 

are analytic at z = z0. If g(z0)  0 and if the function h has a zero of order 1 at z0, 

then f has a simple pole at z = z0 and

( )
 ( ( ), )

( )
=



g z
Res f z z

h z
0

0
0

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Series and Residues 40/602024-2025

▪ Example 20: Residue at a Pole

The function 1/(z4 + 1) has four simple poles

/ / / /, , , i i i iz e z e z e z e   = = = =4 3 4 5 4 7 4
1 2 3 4

/

/

/

/

 ( ( ), )

 ( ( ), )

 ( ( ), )

 ( ( ), )









−

−

−

−

= = = − −

= = = −

= = = +

= = = − +

i

i

i

i

Res f z z e i
z

Res f z z e i
z

Res f z z e i
z

Res f z z e i
z

3 4
1 3

1

9 4
2 3

2

15 4
3 3

3

21 4
4 3

4

1 1 1 1

44 4 2 4 2

1 1 1 1

44 4 2 4 2

1 1 1 1

44 4 2 4 2

1 1 1 1

44 4 2 4 2
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Residue Theorem

▪ Theorem 16 (Cauchy’s Residue Theorem): Let D be a simply connected 

domain and C a simple closed contour lying entirely within D. If a function f is 

analytic on and within C, except at a finite number of singular points z1, z2, ..., 

zn within C, then

( )  ( ( ), )
=

= 
n

kC
k

f z dz i Res f z z
1

2

▪ Example 21: Evaluation by the Residue Theorem

Evaluate                                , where
( ) ( )C

dz
z z− −

 2

1

1 3
(a) C is the rectangle defined by x = 0, x = 4, y = −, y = 1, and

(b) C is the circle |z| = 2.
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(a) [  ( ( ), )  ( ( ), )]
( ) ( )C

dz i Res f z Res f z i
z z

 
 

= + = − + = − −  
 2

1 1 1
2 1 3 2 0

4 41 3

(b)  ( ( ), )
( ) ( )C

dz i Res f z i i
z z


 

 
= = − = − 

− −  
 2

1 1
2 1 2

4 21 3

▪ Example 22: Evaluation by the Residue Theorem

Evaluate                    , where C is the circle |z − i| = 2
C

z
dz

z

+

+
 2

2 6

4

 ( ( ), ) ( )
C

z i
dz i Res f z i i i

iz
  

+ +
= = = +

+
 2

2 6 3 2
2 2 2 3 2

24

▪ Example 23: Evaluation by the Residue Theorem

Evaluate                 , where C is the circle |z| = 2tan 
C

zdz
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tan [ ( ( ), / ) ( ( ), / )] [ ]
C

zdz i Res f z Res f z i i    = − + = − − = − 2 2 2 2 1 1 4

tan z has simple poles at the points where cos z = 0. z = (2n + 1)/2, n = 0, 1, 

2, .... Since only −/2 and /2 are within the circle |z| = 2,

▪ Example 24: Evaluation by the Residue Theorem

Evaluate               , where C is the circle |z| = 1
/z

C
e dz
3

/ ( ( ), )z

C
e dz i Res f z i = =
3 2 0 6

▪ Note: L’Hôpital’s rule is valid in complex analysis. If f(z) = g(z)/h(z), where g 

and h are analytic at z = z0, g(z0) = h(z0) = 0, and h’(z0)  0, then

( )( )
lim

( ) ( )z z

g zg z

h z h z→


=

0

0

0
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6. Evaluation of Real Integrals

Integrals of the Form (cos , sin )F d


  
2

0

▪ The basic idea here is to convert this integral into a complex integral where 

the contour C is the unit circle centered at the origin. z = cos  + i sin  = ei,

0    2

, cos , sin 

, cos ( ), sin ( )

i i i i
i e e e e

dz ie d
i

dz
d z z z z

iz i

   
   

  

− −

− −

+ −
= = =

= = + = −1 1

2 2
1 1

2 2

( ), ( )
C

dz
F z z z z

i iz
− − 

+ − 
 


1 11 1

2 2
where C is |z| = 1.
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▪ Example 25: A Real Trigonometric Integral

Evaluate
( cos )

d 

+

2

20 2

( )C

z
dz

i z z+ +
 2 2

4

4 1

( )
( ) ( ) ( )

z z
f z

z z z z z z
= =

+ + − −2 2 2 2
0 14 1

,z z= − − = − +0 12 3 2 3 only z1 is inside the unit circle C,

( ( ), )
( )C

z
dz i Res f z z

z z
=

+ +
 12 2

2
4 1

 ( ( ), ) lim ( ) ( ) lim
( )z z z z

d d z
Res f z z z z f z

dz dz z z→ →
= − = =

−1 1

2
1 1 2

0

1

6 3
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( )C

z
dz i

i iz z


= =

+ +
 2 2

4 4 1 4
2

4 1 6 3 3 3

( cos )

d  


=

+

2

20

4

2 3 3

Integrals of the Form ( )f x dx


−
▪ When f is continuous on (−∞, ∞), ( ) lim ( ) lim ( )

R

rr R
f x dx f x dx f x dx



− −→ →
= +  

0

0

▪ If both limits exist, the integral is said to be convergent; if one or both of the 

limits fail to exist, the integral is divergent. 

▪ In the event that we know (a priori) that an integral                  converges:( )f x dx


−
( ) lim ( )

R

RR
f x dx f x dx



− −→
= 
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▪ This limit is called the Cauchy principal value of the integral and is written:

( ) lim ( ). .
R

RR
PV f x dx f x dx



− −→
= 

▪ When an integral of the form                 converges, its Cauchy principal value is 

the same as the value of the integral. If the integral diverges, it may still 

possess a Cauchy principal value. For ex., the integral           diverge, but:

( )f x dx


−

xdx


−
( )

lim lim. .
R

RR R

R R
PV xdx xdx



− −→ →

 −
= = − = 

 
 

2 2

0
2 2

▪ To evaluate an integral        , where f(x) = P(x)/Q(x) is continuous on 

(−∞, ∞), by residue theory we replace x by the complex variable z and 

integrate the complex function f over a closed contour C that consists of the

( )f x dx


−
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interval [−R, R] on the real axis and a semicircle CR of 

radius large enough to enclose all the poles of 

f(z) = P(z)/Q(z) in the upper half-plane Re(z)  0.

( ) ( ) ( ) ( ( ), )
R

nR

kC C R
k

f z dz f z dz f x dx i Res f z z
−

=

= + =   
1

2

where zk, k = 1, 2, ..., n, denotes poles in the upper half-plane. 

If we can show that the integral                                         , then we have:( )   → → 
RC
f z dz R0 as

( ) lim ( ) ( ( ), ). .
nR

kRR
k

PV f x dx f x dx i Res f z z


− −→
=

= =  
1

2
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▪ Example 26: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of

( )
( )( )( )( )( )( )

f z
z i z i z i z iz z

= =
+ − + −+ +2 2

1 1

3 31 9

( )( )
dx

x x



− + +
 2 2

1

1 9

( )( ) ( )( ) ( )( )R

R

C R C
dz dx dz I I

z z x x z z−
= + = +

+ + + + + +
   1 22 2 2 2 2 2

1 1 1

1 9 1 9 1 9

[ ( ( ), ) ( ( ), )]I I i Res f z i Res f z i i
i i


 

  
+ = + = + − =  

  
1 2

1 1
2 3 2

16 48 12

On CR, ( )( ) ( )( )z z z z z z R R+ + = + +  − − = − −
2 22 2 2 2 2 21 9 1 9 1 9 1 9
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ML-inequality

( )( ) ( )( )RC R

R
I dz

z z R R



→
=  →

+ + − −
2 2 2 2 2

1
0

1 9 1 9

lim
( )( ) ( )( )

. .
R

RR
dx PV dx

x x x x



− −→
= =

+ + + +
 2 2 2 2

1 1

121 9 1 9

▪ Theorem 17 (Behavior of Integral as R → ∞): Suppose f(z) = P(z)/Q(z), where 

the degree of P(z) is n and the degree of Q(z) is m  n + 2. If CR is a 

semicircular contour z = Rei, 0    , then                   → 0 as R → ∞.( )
RC
f z dz

▪ Example 27: Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of dx
x



− +
 4

1

1
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 ( ( ), )  ( ( ), )Res f z z i Res f z z i= − − = −1 2

1 1 1 1

4 2 4 2 4 2 4 2

[ ( ( ), ) ( ( ), )]. .PV dx i Res f z z Res f z z
x






−
= + =

+
 1 24

1
2

1 2

Integrals of the Forms ( ) cos  or ( ) sinf x x dx f x x dx 
 

− − 

( ) ( ) cos ( ) sini xf x e dx f x x dx i f x x dx  
  

− − −
= +  

whenever both integrals on the right side converge. When f(x) = P(x)/Q(x) is 

continuous on (−∞, ∞) we can evaluate both integrals at the same time by 

considering the integral                    , where   0 and C again consists of the( ) i z
C
f z e dz



Using Euler’s formula eix = cos x + i sin x, where  is a positive real number
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interval [−R, R] on the real axis and a semicircle CR of radius large enough to 

enclose all the poles of f(z) in the upper half-plane Re(z)  0.

▪ Theorem 18 (Behavior of Integral as R → ∞): Suppose f(z) = P(z)/Q(z), where 

the degree of P(z) is n and the degree of Q(z) is m  n + 1. If CR is a 

semicircular contour z = Rei, 0    , and   0, then:

( )  as 
R

i z

C
f z e dz R → →  0

▪ Example 28: Using Symmetry

Evaluate the Cauchy principal value of
sinx x

dx
x



+
 20 9

sin sinx x x x
dx dx

x x

 

−
=

+ +
 2 20

1

29 9
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With  = 1, we now form the contour integral
iz

C

z
e dz

z +
 2 9

where C is the same contour as example 26

( ( ) , )
R

Riz ix iz

C R

z x
e dz e dx i Res f z e i i

z x e




−
+ = =

+ +
 2 2 3

2 3
9 9

( )  as . .
R

iz ix

C

x
f z e dz R PV e dx i

x e



−
→ →   =

+
  4 3

0
9

cos sinix ixx x x xx
e dx dx i e dx i

x x x e

  

− − −
= + =

+ + +
  2 2 2 39 9 9

cos sin
,. . . .

x x x x
PV dx PV dx

x x e

 

− −
= =

+ +
 2 2 3

0
9 9

sin sin
. .

x x x x
dx PV dx

x x e

 

−
= =

+ +
 2 2 30

1

29 9 2
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Indented Contours

▪ When f(x) = P(x)/Q(x) have poles on the real axis, we 

must modify the procedure used in previous Examples. 

For example, to evaluate                by residues when f (z) 

has a pole at z = c, where c is a real number, we use an 

indented contour.

( )f x dx


−

▪ Theorem 19 (Behavior of Integral as r → 0): Suppose f has a simple pole 

at z = c on the real axis. If Cr is the contour defined by z = c + rei, 0    , 

then:

lim ( ) ( ( ), )
rCr
f z dz i Res f z c

→
=0
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( ( ) , )
( ) R r

iz r R iz

C C R C r

e
dz i Res f z e i

z z z


−

− −
= + + + = +

− +
    2

2 1
2 2

▪ Example 29: Using an Indented Contour

Evaluate the Cauchy P.V. of
sin

( )

x
dx

x x x



− − +
 2 2 2

The function f(z) = 1/z(z2 − 2z + 2) has simple poles 

at z = 0 and at z = 1 + i in the upper half-plane.

where
r rC C−
= − 

Taking the limits R → ∞ and r → 0, we find

( ( ) , ) ( ( ) , )
( )

. .
ix

iz ize
PV dx i Res f z e i Res f z e i

x x x
 



−
− = +

− +
 2

0 2 1
2 2
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cos
(sin cos )

( )
. .

x
PV dx e

x x x

 −

−
= +

− +


1
2

1 1
22 2

sin
[ (sin cos )]

( )
. .

x
PV dx e

x x x

 −

−
= + −

− +


1
2

1 1 1
22 2

( )
( )

. .
ix ie e

PV dx i i i
x x x

 
− +



−

  
= + +  

− +    


1

2

1
2 1

2 42 2

Integration along a Branch Cut

Branch Point at z = 0 We will examine integrals of the form                . 

These integrals require a special type of contour because when f(x) is converted 

to a complex function, the resulting integrand f(z) has, in addition to poles, a 

nonisolated singularity at z = 0.

( )
0
f x dx





https://manara.edu.sy/
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▪ Example 30: Integration along a Branch Cut

Evaluate
( )0

1

1
dx

x x



+


( )
( )

1

1
f z

z z
=

+
The origin is a branch point since z1/2 has two values for 

any z  0.

We can force z1/2 to be single valued by choosing the positive x-axis as a 

branch cut (0    2).

The integrand f(z) is single valued and analytic on and 

within C, except for the simple pole at z = −1 = ei.

/
( ( ), )

( )
= + + + = −

+
    

R rC C ED C AB
dz i Res f z

z z1 2

1
2 1

1
On AB, z = xe0i, and on ED, z = xe(0 + 2)i = xe2i 
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/ / /( )
( )

2 1 2 1 2 1 2
2

2 1 11

ir r Ri
iED R R r

xe x x
f z dz e dx dx dx

x xxe






− − −

= = − =
+ ++

   
/ /( )

( )
0 1 2 1 2

0
0 11

iR Ri
iAB r r

xe x
f z dz e dx dx

xxe

− −

= =
++

  

z = rei and z = Rei on Cr and CR, ⇒

( ( ), ) ( )
( )

  


= − = − =
+

 dx i Res f z i i
x x0

1
2 2 1 2 2

1

( )




=
+

 dx
x x0

1

1

/
/( )

1 2
1 2

0

2
2 0

1 1rC r

r
f z dz r r

r r




−

→
 = →

− −
/

/
( )

1 2

1 2

2 1
2 0
1 1RC R

R R
f z dz R

R R R




−

→
 = →

− −and
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▪ Example 31: Integration around a Point Cut

Evaluate
ln

( )



+


x
dx

x 2 20 1
log

( ) , , arg
( )2 2

3
0
2 21

z
f z z z

z

 
=  −  

+

The branch cut consists of the origin and the negative imaginary axis.

On L1, z = xe0i = x, and on L2, z = xei = −x

In order that the isolated singularity z = i be inside the closed path, we 

require that r  1  R.

log
( ( ), )

( )


−

− −
= + + + =

+
    

R r

r R

C C R C r

z
dz i Res f z i

z 2 2
2

1
ln

( ) , ( )
( )





+
= =

+

i
i

r i
f z z re

r e2 2 21
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ln
( )

( )
=

+
 

R

L r

x
f z dz dx

x1
2 21

z = rei & z = Rei on Cr and CR, ⇒

ln
( ( ), )

( ) ( )

   
 

  
+ = = + = − + 

+ +  
 

R

r

x i
dx dx i Res f z i i i i

x x

2

2 2 2 20

1
2 2 2

8 4 2 41 1
ln

,
( ) ( )

  

= − =
+ +

 
x
dx dx

x x2 2 2 20 0

1

4 41 1

ln ln
( )

( ) ( )

 
 

→

− + −
 = →

− −

rC r

r r r r
f z dz r

r r2 2 2 2 0
0

1 1
ln

( )
( )




→

+
 = →

−

RC r

R
f z dz R

R2 2 0
0

1
and

ln( ) ln ln
( )

( ) ( ) ( )

  −

−

− + + +
= = − =

+ + +
   

r r R

L R R r

x i x i x i
f z dz dx dx dx

x x x2
2 2 2 2 2 21 1 1
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