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Lecture 6-7-8
Flexural Members

v -I- Laterally Restrained Beams
v'lI- Laterally Unrestrained Beams
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Introduction: Beams, Response to loads doots

6jliall
A beam is a structural member which is subjected to transverse
loads, and accordingly must be designed to withstand
predominantly shear and moment, Generally, it will be bent
about its major axis.. s
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Action applied
vertically Slender structural elements loaded in a stiff
plane tend to fail by buckling in a more

flexible plane (out-of-plane buckling)
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Introduction: Unrestrained Beams Goola
6 )liall

» this lecture covers the design of unrestrained beams that are
prone to lateral torsional buckling.

« Beams without continuous lateral restraint are prone to
buckling about their major axis, this mode of buckling is
called lateral torsional buckling (LTB).

Lateral torsional buckling can be discounted when:

 The section is bent about its minor axis

* Full lateral restraint is provided

* Closely spaced bracing is provided making the
slenderness of the weakaxis low

« The compressive flange is restrained again torsion

 The section has a high torsional and lateral bending
stiffness
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Introduction: Unrestrained Beams “
I 8)LiaJl
Behaviour 5)ti-al

Beam is Perfectly elastic, initially straight, loaded by equal and
opposite end moments about its major axis.

v' Beam is Unrestricted along its length.
v End Supports
v Twisting and lateral deflection prevented.
v'Free to rotate both in the plane of the web and on plan.
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Introduction: Unrestrained Beams i%v

Syl
Beam is Perfectly elastic, initially straight, loaded by equal and
opposite end moments about its major axis.

N

Three components of displacement are observed i.e
« Vertical (y)

 Horizontal (x)
« and torsional (¢) displacement
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Introduction: Unrestrained Beams-Elastic Critical Moment doota
gtial

Elastic critical moment

Consider the following assumptions:
« Perfect beam, without any type of
iImperfections (geometrical or

material);
 Doubly symmetric cross section;
« Material with linear elastic
behavior;
« Small displacements (cos($)=1 ;
sin(9) = ¢)
The critical value of the moment
about the major axis My , denoted as
ME,, (critical moment of the "standard
case") resulting in lateral torsional
buckling is obtained:

Plant - seement A-C )
] sHie Cross-section C

n El,
L'Gl,

ME =% GI.,,.EI:[H
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Introduction: Unrestrained Beams-Elastic Critical Moment roon
. .. ojligJl
Elastic critical moment S bt

It can be observed that the critical moment of a member under bending
depends on several factors, such as:
* loading (shape of the bending moment diagram);

e support conditions;
« length of the member between laterally braced cross sections;

« lateral bending stiffness; torsion stiffness; warping stiffness.

Besides these factors, the point of application of the loading also has a
.directinfluence on the elastic critical moment of a beam

M.y 1> M.,
Stabilizing effect

My 2<M,,
Destabilizing effect

P p=====""

o
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

* In reality beams are not free from imperfection, not purely
elastic, not always simply supported, not always loaded
with only a constant flexure and are not of a doubly
symmetric sections, consequently, subject to different
bending moment diagrams.

 The derivation of an exact expression for the critical
moment for each case of real beams is not practical, as
this implies the computation of differential equations of
some complexity.

 Therefore, in practical applications approximate formulae
are used, which are applicable to a wide set of situations.
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for
several support conditions and types of loading.

[ . ) 0.5
: (k.Y I, (k.LyGI, 1
e BT || = “+I['1}I r+(~‘.’:;:,—f_",.:I.]' '
M, =C, k) 1. EL e i
(k. L) o |
—(E'z z, = C; :.-') |
L Is the distance between points of lateral restraint (L, )
E is the Young's Modulus = 210000 N/mm?
(3 is the shear modulus = 80770 N/mm?

Is the second moment of area about the weak axis

Is the torsion constant

« 15 the warping constant

Is an effective length factor related to rotations at the end section about the
weak axis z (can be conservatively taken as 1.0)

k, Is an effective length factor related to warping restriction in the same cross
sections (can be conservatively taken as 1.0)

&

=3

4
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams EL%V
)l
Real Steel Beams
As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for

several support conditions and types of loading.

-

0.5

,.'-'1'3 El I(ﬁ:: I[;'+{k:{a} GIT.-F(CL-E._C_;SJ]E |
\ &, 7 El. ¢ r

I.

—(E'zz:_,—-i'_-,;:l.-) J

is the distance between points of lateral restraint (L, )

is the Young's Modulus = 210000 N/mm?2

is the shear modulus = 80770 N/mm?

Is the second moment of area about the weak axis

A Is the torsion constant

" Is the warping constant

k. Is an effective length factor related to rotations at the end section about the
weak axis z (can be conservatively taken as 1.0)

« 15 an effective length factor related to warping restriction in the same cross
sections (can be conservatively taken as 1.0)

oam r—

F
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Real Steel Beams

W

o)Ll

As an alternative to some of the expressions, the elastic critical moment can
be estimated using expression below proposed by Clark and Hill (1960) and
Galea (1981) . It is applicable to members subject to bending about the
strong axis, with cross sections mono-symmetric about the weak z axis, for

several support conditions and types of loading.

- ) 0.5
1}'—. | 2 (ﬁ:: . IIF' {k: L}_ GI.I' _ )2 |
| | | M“-=C|H hf-.-‘h"fu} + P EI +(C£“’;:_C=";] L
(k. L) . ’ |
S 4 S L_(Cz z, — G :J J
F z  Isaparameter that reflects degree of asymmeiry of the cross section in

:,.g‘-“-*[l a=

z; =2, - O.SJ.(yz +:2)(:/II1;)dA

z; = 0 0for beams with doubly symmetric cross
section (such as lor H cross sections with equal

—flanges)

‘g

relation to the y axis. / \

Is the distance between the point of
load application and the shear
center. The value will be positive or
negative depending on where the
load is applied as shown In the
figure.
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

C1, C2, andC3 are coefficients depending on the shape of the bending moment L

diagram and on support conditions,

Diagram of

Loading and k. | C s

support conditions moments w, <0 v, >0

¥=+111.01.00 1.000

0.5 ]1.05 1.019

P=+34 110 1.14 1.000

LTI fos | 110 1.017

w=+12 | 1.0 | 1.31 1.000

[T | 05 | 137 1.000

I_I_m_rn‘.ll‘_a;i 1.0 | 1.52 1.000

0.5 | 1.60 1.000

M 1.0 | 1.77 1.000

0.5 | 1.86 1.000
r M M -l w=—-1/4 | 1.0 ]2.06 1.000 (0.850

5 = IIDIEDL,:

0.5 2.15 1.000 0.650

v

v

gl
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams %V

C1, C2, andC3 are coefficients depending on the shape of the bending moment &5
diagram and on support conditions,

)

Loading and Diagram of k. | C Oy
support conditions moments w, <0 w, >0
M M =1 1.0 | 2.06 1.000 0.850
{ o}
> 2} | [ 05 |2.15 1.000 0.650
W=-12 | 1.0 |2.35 1.000 1.3-12y,
jID:D}“‘IU 05 (242 0950 077y
: ;
Y==34 | 1.0 ]2.60 1.000 0.55—;;.«}-
U]% 05 (245 0850 035—u
_ ;
My, P77 |10 260 ~, —y,

051245 | _o125-07y, | —0.125-0.7y,

* In beams subject to end moments, by definition C, z, = 0.

f,. =1
"y, = !’r‘ !_;, , where .er. and fﬁ are the second moments of area of the
. L : :
e T

compression and tension flanges respectively, relative to the weak axis of the section (z
axis):

» C, must be divided by 1.05 when z_ |Ely <1.0,but C, 21.0.
k., LYGI,
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams
I

C1, C2, andC3 are coefficients depending on the shape of the bending moment i
diagram and on support conditions,

Loading and Diagram of k. C G 5
support conditions moments
p 1.0 1.12 0.45 0.525
zrvrve vy 0.5 | 097 | 036 | 0478
lP W 1.0 1.35 0.59 0.411
P~ = 0.5 1.05 0.4% 0.338
P] - lP 1.0 1.04 0.42 0.562
- = | L7 | os | 095 | 031 | 0539
K qu.f o ] o ]

In case of mono-symmetric | or H cross sections, the tables can be used if the
following condition is verified

-09=<w=<09
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

Resistance of Real Steel Beams

W

o)Ll

Real beams differ from an ideal beams in much the same way as do real
compression members.

Moment

£

M. &

Elastic buckling

.l‘drlrl (]

My 4

Inelastic

buckling - Elastic bending

and twisting

_ Curve A — equivalent initial
~ crookedness and twist
\

- Curve B — equivalent
residual stresses

Curve C — real beams

Lateral deflection and twist

Thus any small imperfections such as
Initial crookedness, twist,eccentricity of
load, or horizontal load components
cause thebeam to behave as if it had an
equivalent initial crookedness and twist,
as shown by curve A

Imperfections such as residual stresses
or variations in materialproperties cause
the beam to behave as shown by curve
B.

The behavior of real beams having both
types of imperfection isindicated by
curve C.

Curve C shows a transition from the
elastic behaviour of a beam with
curvature and twist to the inelastic post-
buckling behaviour ofa beam with

rocidcdiinl ctrocence
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams

The influence of Slenderness

Considering the analogy between Ncr and Mcr, the lateral-

torsional behavior of beams in bending is similar to a

compressed column. Therefore:

 The resistance of short/stocky members depends on the
value ofthe cross section bending resistance (plastic or
elastic bending moment resistance, depending of its cross
section class).

 The resistance of slender members depends on the value
of the critical moment (Mcr), associated with lateral-
torsional buckling.

 The resistance of members with intermediate slenderness
depends on the interaction between plasticity and
Instability
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams EL%V
)liall
The influence of Slenderness

Non-dimensional plot permits results from different test series to be compared.

Stocky beams (A.7<0.4) unaffected by
lateral torsional buckling

« Slender beams (A.>1.2) resistance
close to elastic critical moment M.

* Intermediate slenderness adversely
affected by inelasticity and geometric
imperfections.

Stocky ' Slender

0 10 o - EC3uses areduction factor x,,on
| A= | Mo plastic resistance moment to cover
» VM the whole slenderness range..
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Introduction: Unrestrained Beams- Behavior of Real Steel Beams .-
ool

The influence of Slenderness

Summary of factors to consider influence of Slenderness

Warping: is the distortion of the elements of a steel section out of the plane
perpendicular to the axis of the member under twisting/torsion.

Restraining this effects will have a favorable impact in avoiding lateral torsional

buckling
End Constraints: Restraints have a major influence on the occurrence of instability

and can be utilized to enhance the load carrying capacity of the beam whenever

instability is likely to occur.

The stiffness in the minor axis Vs stiffness in the major axis: Section with
relatively equal stiffness about both axis are almost never likelyto experience LTB.

Bracing: Lateral bracing of beams is the common measure to overcome the

occurrence of LTB
Point of Load application: In relation to the shear center of the section the point

of load application may have a favorable/stabilizing or unfavorable/destabilizing
effect
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Design According to EC3: Unrestrained Beams q%

6)ligJl
Lateral-Torsional Buckling Resistance =
The verification of resistance to lateral-torsional buckling of a prismatic member

consists of the verification of the following condition (clause6.3.2.1(1)):

E_<1.0>
Mh,f{d
Mb.rd IS the design buckling resistance, given by (clause6.3.2.1(3))

where : Wy =W for class 1 and 2 cross sections:

pLy
W, =W, forclass 3 cross sections;
W, =W, for class 4 cross sections;

Xt Is the reduction factor for lateral-torsional buckling.

In EC3-1-1 two methods for the calculation of the reduction coefficient ¥, in
prismatic members are proposed:

A General Method that can be applied to any type of cross section (more conservative)

Alternative Method that can be applied to rolled cross sections or equivalent welded
sections.
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Design According to EC3: Unrestrained Beams ool

)liall
A General Method-Any section

actis the imperfection factor, which depends
———5, but »,, <1.0, onthe buckling curve

DLy +(¢Lr‘ —ifr) 0.21, 0.34, 0.49 and for curves

a, b, c and

1

Xir =

Oy = 0-5[] tagr (Ifr - U.Z)+ Arr ]; _ S
Mecris the elastic critical moment.

Ay = [Wy fy[Me ]ﬂj

The buckling curves to be adopted depend on the geometry of the cross
section of the member

Section Limits Buckling curve
I or H sections hib<2 a
rolled hib>2 b
[ or H sections hib<2 c
welded hib>?2 d
Other sections --- d
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Design According to EC3: Unrestrained Beams foal

8)liadl

Alternative Method-Rolled or equivalent welded sections

Students are highly advised to read more on this topic. The discussion of this method
presented in “Design of Steel Structures Eurocode 3, 2010, by da Silva L.S. " is
recommended as a starting literature.
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Deflection Resistance -
6jliall
Deflections of flexural members must be limited to avoid damage to finish"és;"'“‘

ceilings and partitions, and should be calculated under SLS loads.

EC3 states that limits for vertical deflections should be specified for each
project and agreed with the client. The UK National Annex to EC3 suggests:

NA.2.23 Vertical deflections [BS EN 1993-1-1:2005, 7.2.1(1)B]

The following table gives suggested limits for calculated vertical
deflections of certain members under the characteristic load
combination due to variable loads and should not include permanent
loads. Circumstances may arise where greater or |lesser values would
be more appropriate. Other members may also need deflection limits.

On low pitch and flat roofs the possibility of ponding should be
investigated.

Vertical deflection

Cantilevers Length/180

Beams carrying plaster or other brittle finish Span/360

Other beams (except purlins and sheeting rails) Span/200

Purlins and sheeting rails To suit the characteristics of particular cladding
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BEEAM BENDING

Standard rules for maximum deflection:

L = overall length

W = point load, M= moment EndSlope | Max Deflection | 14oxbending
w = load per unit length moment
2
N ML ML Y
N EI 2E]
W 2 3
\ ¥l oy,
N 2El 3EI
§mmmgﬂm wL WL WL
R\ 6El SE] 2
M, M| M M y
C = | =
| W Z5 WL
L Bl & 16E] 48E] 4
NS wL' Swi’ wl
24L] 384 E7 8
2
A‘ *W k"_ c _}B gﬂ - Wﬂﬂ Wacs ﬂ
e g de— p—F iiEg YT 7
- pOsiti under load
ash, cz."%b{,{_;.a) & L+a & | (at position c)| ( _ )

Va

o)Ll
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Deflection Resistance Summary

Define Service loads (Actions)

Define Section and beam prosperities

Draw the bending moment diagram

Determine Maximum deflection of beam

Determine Deflection limits

Compare Maximum deflection of beam with Deflection limits

o0k whE
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Design According to EC3: Unrestrained Beams a%v

8)Lial
Conditions for ignoring the lateral-torsional buckling verification

The verification of lateral-torsional buckling for a member in bending may be ignored if at
least one of the following conditions is verified:

— — p 2
Ay A9 or Mg, M. <Airo

Where; Aito = 0,4 (maximum value)

Improving the lateral torsional buckling resistance

In practical situations, for given geometrical conditions, support conditions and
assumed loading, the lateral-torsional buckling behaviour of a member can be
improved in two ways:

* Dby increasing the lateral bending and/or torsional stiffness, by increasing the
section or changing from IPE profiles to HEA or HEB or to closed hollow
sections (square, rectangular orcircular);

* Dby laterally bracing along the member the compressed part of the section (the
compressed flange in the case of | or H sections). This is more economical,
although sometimes it is not feasible.
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8)liadl

Bending Moment Resistance Summary:

1.Draw the bending moment diagram to obtain the value of the
maximum bending moment, Mgg.

2.Determine fy and calculate the class of the section. Once you know
the class of the section then you will know which value of the

section modulus you will need to use in the equation for M, .

3.Work out the effective length, L.

4 Work out the value of M, the critical moment.

5.Work out the lateral torsional slenderness ratio using either the
general case or alternative expression.

6.Work out @ ; using either the general case or alternative expression.

7.Work out ¥, + using either the general case or alternative expression.

8.Calculate the design buckling resistance M gy

9.Carry out the buckling resistance M. grq > Mgy.
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Worked Example: Example on cross-section resistance in bendi%
6)Lial
Example4.4.
Consider the beam, supported by web cleats and loaded by two concentrated
loads, P=70.0kN (design loads). Design the beam usinga HEA profile, inS235
steel (E=210GPa and G=81GPa), according to EC3-1-1. Consider free
rotation at the supports with respect to the y-axis and the z-axis. Also assume
free warping at the supports but consider that the web cleats donot allow
rotation around the axis of the beam (x axis). Assume:

a) Unbraced beam,;
b) Beam is braced at points of application of the concentrated loads.

lp—m.ﬂw 1P—?0.D kN

,  15m | 3.0 m | 15m B L
1 1 7 7
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Worked Example: Example on cross-section resistance in bendir%V

6)liadl
Solution :a
Step1: Draw the internal action diagrams to get Mz, &
vEd-
T00 kN
Via
T0.0 &N
e \ /
105.0 kNm

Step2: Select a trial section and carryout the section
classification.

Considering a HEA 240 profile.
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Worked Example: Example on cross-section resistance in bendi%v

The cross section class of a HEA 240 is obtained as follows L

Web in bending, E:;ij:ﬂ.'}-::?z.e:nxl:?lﬂ
7.

Flange in compression, The HEA 240 is class 1,
240/2-75/2 -2 confirming the use of W,
€ _ / fr =7.9{‘}£={}x1={}5235 f
y 12 or t=16mm
Material Properties:
HEA 24[1 | » f =235 MPa
> W, Y—?dd.?cm » |=41.55cm* » f,= 390 MPa
> | =7763cm > 1,=3285X10°cm® p E=210 Gpa
> | =2769cm* » G=81 GPa
Step3: Check for Lateral-torsional buckling without intermediate
bracing [a]. M g, <1.0-
MJ'I.H-:F

otep3.1: Compute the buckling resistance

Mypa =X W, f}-/?’m ’
W, =W, forclass 1= 744.6cm?
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Worked Example: Example on cross-section resistance in bendi%v

6)liadl

1

Air = . \Os e but AT < ]D.,
Ui> 2 32
Gy + ('53’1_?" — Ay )

¢rr =0.5 [l Ty ("?'_LT - 0-2)+ Ay ]; <:|—|

g:> ILII" - [Wn f:r/Mm‘ ]0.5
[ - 0.5
2 koY Iy kLY GI 0y
M”_zq;‘r h!si'[k“) I + HZEI_, +(C3.».£ C_q-.#.]}

h_{CI or -G :f)

L = 6.00m
k, = k, = 1.0, as the standard case suppo

z, = 115 mm ﬁlﬁ

S 4

4
t
3
|
2
t
1

S
.

=0
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Worked Example: Example on cross-section resistance in bendi%v
8yLiall
z, =0 for beams with doubly symmetric cross section (such as | e

or H cross sections with equal flanges)
C,=104,C,= 042 and C,= 0.562

Loading and Diagram of k. ' Cs C
support conditions moments |
Pl - lP < > 1.0 1.04 0.42 | 0.562
‘f“' \d | d| ‘IT 0.5 0.95 0.31 0.539
1 | M_,=2315kNm = A,,=087. 2

Since a7 =0.21 (H rolled section, with s/ < 2)

3 | ¢,=095 = z,=075| 4

Compute the buckling resistance

My wa = X17 W_}' f_v/f“mf] '

3
M, oy =0.75x744.6x10° x 2351’1:“ =131.2kNm> M ; =105.0kNm O.K.
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Worked Example: Example on cross-section resistance in bendir%v
solution :b )liall
Stepd: Check for Lateral-torsional buckling with intermediate
restraints [b].

Step4.1: Compute the buckling resistance

If the beam is laterally braced at the points of application
of the loads, the lateral-torsional buckling behavior is improved.

P=T0.0kN lﬁ' 00N ] -
M .
E_<1.0
M b.Rd
| 1.5m L 3.0 m 1.5 m B _L
A q A
M g /

105.0 kNm

Here a lesser profile of HEA 240 is selected which is checked
to be of class 1, confirming the use of W,

HEA 220

» W, =568.5cm? p | = 28.46cm?

» |,=1955cm* » 1,=193.3 X 10°cm®
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Worked Example: Example on cross-section resistance in bendi%v
Deflection Verification: SLS unfactored imposed actions. ae)

Unfactored variable loads are shown below
lpstKN 1P:30kN

| LS m | 3.0m |, 1.5 m L
Bl A 7 7
. . wal?
Consider max deflection © =

12EI
W =30 kN, a=1.5 m, L=6m, E= 210000 N/mm?2, 1=7763 10* mm*

__wal?_ 30000x1500x60002

0 = = =8.28 mm
12EI 12x210000x77630000

Vertical deflection limit:

L _6000
360 360 — lo7mm 16,67 mm>8.28 mm O.K.
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Worked Example: Example on cross-section resistance in bendi%v

8)liall
Step4: Check for Lateral-torsional buckling with intermediate e

restraints [b].

Stepd.1: Compute the buckling resistance

If the beam is laterally braced at the points of application
of the loads, the Iateral torsional buckling behavior is improved.

T lp Ti0 kN 1::' 00N 1T
M .,

<1.0> I N S

1.5m L 3.0 e L5 m L
1 1

M eq /

105.0 kNm

Here a lesser profile of HEA 240 is selected which is checked
to be of class 1, confirming the use of W,

HEA 220
» W, ,=568.5cm? p | = 28.46cm?

> I:1i—‘15'5u=:m4 2 IW—1933J< 103 em®
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Worked Example: Example on cross-section resistance in bendi%v
1 S)liol

ALt 0.5 = but AT EI.D.I,
5 y 2_72 | :
L1 ( LT LT)

=05 a,, (7, -02)+ 22, |.

L=, 1, /M,

.

| i 05
mt El. Fk" ) ol +{k: L) G, +c, z, —C, :;]ﬂ |

Wk, ) L. xt E1.
L_(El ‘g _C.‘!-:.-')

L = 3.00m
k, = k, = 1.0, as the standard case support
zZ, = 0, The elastic critical moment of the beam is not

aggravated by the fact that the loads are applied at the upper

flange, because these are applied at sections that are laterally
restrained.

W, =W, forclass 1= 568.5cm?
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Worked Example: Example on cross-section resistance in bendi%v

J

or H cross sections with equal flanges)
C;= 1.00,C;= notimportantas Z=0and C; = 1.0

6)Lial

z. =0 for beams with doubly symmetric cross section (such as |

Loading and Dagram of k. C (s

support conditions moments w, <0 w, >0
M WAL V=41 1.0 | 1.00 1.000

":i- é" 0.5 [ 1.05 1.019

M, =5513 kNm = A, =049,

As a;;y =0.21 (rolled H section, with h/b < 2),

by =065 = y,, =093

M, ps =0.93x568.5x107° x

235x%10°

=124.2kNm > M ¢, =105.0 kNm O .K.
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Worked Example: Example on cross-section resistance in bendi%v

Deflection Verification: SLS unfactored imposed actions. o
Unfactored variable loads are shown below
P = 35 kN P = 35 kN
Notes:

 Imposed (variable)

Loads must be

determined

- | T s, |ﬂ i  1sm L « Max deflection

! i T i must be calculated.
wal

Consider max deflection ©°= o

W =35 kN, a=1.5 m, L=6m, E= 210000 N/mm?, 1=54100000 10* mm?*

5 — wal®_ 35000x1500x6000°

= =13.86 mm
12EI 12x210000x54100000

Vertical deflection limit:

L 6000
360" 3c0 = =16.7mm  5516.67 mm>13.86 mm O.K.
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Worked Example: Example on cross-section resistance in bendir%v

8ol
Summary .
b—
Criteria ‘ Unbraced beam ‘ Braced beam s
I | ] -
—3
LTB (General
HEA 240 HEA 220
method) =
h _dh
TW\
Ly
G h b b t r A h; d Y R
kg/m mm mm mm mm mm mm? mm mm
x 10?
HE 240 AA® 47 4 M 240 6,5 9 21 60,4 206 164
HE 240 A 60,3 230 240 15 12 21 16,8 206 164
G ly Wely (Wply*| iy Az I, Welz (Wplzt| iz 35 I hw
kg/m] mm¢ mm? mm- mm mm? mm* mm? mm? mm mm mm? mm®
x 104 x10° | x10° x 10 x102 | x10* | x10° | x10° x 10 x10* | x10°
HE 240 M gl 58 50 Sl06 98 254 | W77 31 2644 547 | 4900 1298 2394
HE 240 A 6038 7763 675,1 7446 10,05 2518 | 2749 30,7 3517 6,00 5,00 4155 3285
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Worked Example: Example on cross-section resistance in bendir%v

8ol
Summary .
T
Criteria ‘ Unbraced beam ‘ Braced beam ] s
| ] -
1 —3
LTB (General '
HEA 240 HEA 220
method)
h y=4- dh
G h b fw f r A h; d Tw\
kg/m mm mm mm mm mm mm? mm mm LA
¥ —
| x 10° o
HE 220 A 5050 210 120 7 1 18 64,3 188 152 't
G ly Wely [Wely*| iy Ayvz Iz Welz [Wplzt| Iz 35 I hw
kg/m]| mm? mm? mm? mm mm? mm? mm? mm- mm mm mm? mm?®
I x 10¢ x 10° x 107 x 10 x 10% x 104 x 10° x 10° x 10 x 104 | x10°
HE 220 A 5[],5' 5410 515, 568,5 917 20,67 ‘ 1955 1717 206 5,51 50,09 846 1933
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