iz

6)li_aJl

FAMARA LNNERNTY

ol e LI

Tensorflow and Keras pldsciwls 4 guac 4 s by

v Building your First Neural Network on a Structured Dataset (using Keras)

Before starting, | would like to give an overview of how to structure any deep learning project

1-Preprocess and load data- As we have already discussed data is the key for the working of neural network and we need to process it before
feeding to the neural network. In this step, we will also visualize data which will help us to gain insight into the data.

2-Define model- Now we need a neural network model. This means we need to specify the number of hidden layers in the neural network and
their size, the input and output size.

3-Loss and optimizer- Now we need to define the loss function according to our task. We also need to specify the optimizer to use with learning
rate and other hyperparameters of the optimizer.

4-Fit model- This is the training step of the neural network. Here we need to define the number of epochs for which we need to train the neural
network

After fitting model, we can test it on test data to check whether the case of overfitting. We can save the weights of the model and use it later

whenever required.

Data processing We will use simple data of maobile price range classifier. The dataset consists of 20 features and we need to predict the price
range in which phone lies. These ranges are divided into 4 classes. The features of our dataset include

‘battery_power, blue’, ‘clock_speed’, 'dual_sim', 'fc’, four_g’, int_memory’, 'm_dep','mobile_wt', 'n_cores', ‘pc’, ‘px_height px_width’, ram’, 'sc_i,
'sc_w’, talk_time’, ‘three_g'"touch_screen, "wifl

#Dependencies

impert numpy as np

import pandas as pd

#dataset import

dataset = pd.read_csv("train.csv") #you need to change #directory accordingly
dataset.head(18) #Return 18 rows of data

https://manara.edu.sy/



https://manara.edu.sy/

iz

6)li_aJl

FAMARA LNNERNTY

":' battery_power blue clock_speed dual sim fc four_g int_memory m_dep mobile wt n_cores ... px_height px_width ram sch scw talk_time th
0 B2 0 22 01 0 7 06 188 2. 2 756 2543 9 7 19
1 1021 1 0s 10 1 8307 136 I 905 1988 2831 17 3 7
2 563 1 0s 1 2 1 41 D9 145 5. 1263 1716 2603 1M 2 9
3 B15 1 25 0o 0 0 08 131 B 1218 1786 2769 16 8 1
4 1821 1 12 013 1 4 08 141 2 . 1208 1212 1411 B 2 15
5 1859 0 0s 13 0 2 07 164 1 . 1004 1654 1067 17 1 10
[ 1821 0 17 0 4 1 0 08 139 I 8 1018 3220 13 8 18
7 1954 0 0s 10 0 24 08 187 4 512 1149 700 16 3 5
8 1445 1 0s 0o 0 807 174 [ 386 B 1083 17 1 il
9 509 1 1] 1 2 1 9 0 X 5. 137 1224 513 19 10 12

10 rows x 21 columng

#Changing pandas dataframe to numpy array
X = dataset.iloc[:,:20].values
y = dataset.iloc[:,28:21].values

This code as discussed in python module will make two arrays X and v. X contains features and y will contain classes.

#Normalizing the data

from sklearn.preprocessing import standardscaler
sc = StandardScaler()

X = sc.fit_transform(x)

This step is used to normalize the data. Normalization is a technique used to change the values of an amray to a common scale, without
distorting differences inthe ranges of values. It is an important step and you can check the difference in accuracies on our dataset by remaoving
this step. It is mainly required in case the dataset features vary a lot as in our case the value of battery power is in the 1000's and clock speed is
less than 3. So if we feed unnormalized data to the neural network, the gradients will change differently for every column and thus the leaming
will oscillate.

https://manara.edu.sy/



https://manara.edu.sy/

iz

6)li_aJl

FAMARA LNNERNTY

The X will now be changed to this form:

Normalized data:

[-8.98259726 -9.9998495  ©.83877942 -1,81918398 -8.76249466 -1.84396559
-1,38064353  9.34873951 1.34924881 -1,18197128 -1,3857581 -1.48894856
-1,14678483 9.39170341 -9,78498329 0.2831028  1,46249332 -1.78686897
-1.80601811 9.98689664]

-z- File "<ipython-input-8-fd11b&c5c399:", line 1
Normalized data:

-

syntaxErrer: invalid syntax

Next step is to one hot encode the classes. One hot encoding is a process to convert integer classes into binary values. Consider an example,
let's say there are 3 classes in our dataset namely 1,2 and 3. Now we cannot directly feed this to neural network so we convert it in the form:

1-100
2010
3001

Now there is one unigue binary value for the class. The new array formed will be of shape (n, number of classes), where nis the number of
samples in our dataset. We can do this using simple function by skleam:

from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
y = ohe.fit_transform(y).toarray()

Our dataset has 4 classes so our new label array will look like this:
One hot encoded array: [[0.1.0.0.][0.0.1.0][0.0.1.0] [0. 0. 1.0][0.1.0.0]

Generally, it is better to split data into training and testing data. Training data is the data on which we will train our neural network. Test data is
used to check our trained neural network. This data is totally new for our neural network and if the neural network performs well on this dataset,

https://manara.edu.sy/



https://manara.edu.sy/

2\

o)liaJl

FAMARA LNNERNTY

it shows that there is no overfitting

from sklearn.model selection import train_test_split
X_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 8.1)

This will split our dataset into training and testing. Training data will have 90% samples and test data will have 10% samples. This is specified
by the test_size argument.

Building Neural Network

Keras is a simple tool for constructing a neural network. It is a high-level framework based on tensorflow, theano or cntk backends.

In our dataset, the input is of 20 values and output is of 4 values. So the input and output layer is of 20 and 4 dimensions respectively.
#Dependencies

import keras

from keras.models import Sequential

from keras.layers import Dense

# Neural network
model = Seguential()
model.add(Dense(16, input_dim=28, activation="relu"))

model.add(Dense{12, activation="relu"))
model.add{Dense(4, activation="softmax")})

3v Jusr/local/lib/python3.18/dist-packages/keras/src/layers/core/dense.py:87: Userdarning: Do not pass an ~input_shape™ /" input_dim™ argument to a layer. Whe
super()._ init_ {activity_regularizer=activity_regularizer, **kwargs)

In our neural network, we are using two hidden layers of 16 and 12 dimension.
MNow | will explain the code line by line.
Sequential specifies to keras that we are creating model sequentially and the output of each layer we add is input fo the next layer we specify.

model.add is used to add a layer to our neural network. We need to specify as an argument what type of layer we want. The Dense is used to
specify the fully connected layer. The arguments of Dense are output dimension which is 16 in the first case, input dimension which is 20 for
input dimension and the activation function to be used which is relu in this case. The second layer is similar, we dont need to specify input
dimension as we have defined the model to be sequential so keras will automatically consider input dimension to be same as the output of last

layer i.e 16. In the third layer(output layer) the output dimension is 4(number of classes). Now as we have discussed earlier, the output layer
takes different activation functions and for the case of multiclass classification, it is softmax.

Now we need to specify the loss function and the optimizer. It is done using compile function in keras.

model. compile({loss="categorical crossentropy’, optimizer='adam', metrics=["accuracy'])

Here loss is cross eniropy loss as discussed earlier. Categorical_crossentropy specifies that we have multiple classes. The optimizer is Adam.
Metrics is used to specify the way we want to judge the performance of our neural network. Here we have specified it to accuracy.

Now we are done with building a neural network and we will train if.

Training model

Training step is simple in keras. model.fit is used to train it.

history = model.fit(x_train, y_train, epochs=18@, batch_size-g4)

https://manara.edu.sy/



https://manara.edu.sy/

2\

o)liaJl

FAMARA LNNERNTY

LYJ LY Ty NS SLEP - dllurdly . B.28ES5 - LULL, ¥.u3Y3
Epoch 85/188
29/29 = @5 ms/step - accuracy: @.9913 - loss! 0.0548
Epoch 86/18@
29/29 ———— 05 Ims/step - accuracy: @.9981 - loss: 8.8617
Epoch 87/188
29/29 = @5 3Ims/step - accuracy: 8.9985 - loss: @.8541
Epoch 88/18@
29/29 =5 ns/step - accuracy: @.9893 - loss: 0.8585
Epoch 89/188
29/29 —————— 05 3Ims/step - accuracy: @.9944 - loss: 0.8470
Epoch 98/18@
29/29 = 5 3ms/step - accuracy: @.9919 - loss: 9.8532
Epoch 91/188
29/29 ——— @5 3ms/step - accuracy: 8.9939 - loss: 9.8483
Epoch 92/188
29/29 —————— 05 3Ims/step - accuracy: @.9898 - loss: 0.8513
Epoch 93/18@
29/2§ =———————————— 05 3Ims/step - accuracy: 8.9919 - loss: 0.8496
Epoch 94/1ee
29/29 —————— 05 3Ims/step - accuracy: @.993@ - loss: 0.8477
Epoch 95/188
29/ 8s 3ms/step - accuracy: .9983 - loss: @.8495
Epoch 96/18@
29/29 —————— 05 4ms/step - accuracy: @.9887 - loss: 0.8501
Epoch 97/1@8
2929 = s 3ms/step - accuracy: ©.9919 - loss: 0.8516
Epoch 98/188
29/2§ =—————————— 05 3Ims/step - accuracy: 8.9983 - loss: 0.8472
Epoch 99/1@e
2929 = @5 3Ims/step - accuracy: 8.9945 - loss: @.8425
Epoch 188/188
79/ 79— g Ims/sten - Arcuracy: @ 9973 - Tnss A A439

Here we need to specify the input data-= X_train, labels-> y_train, number of epochs(iterations), and batch size. It returns the history of model
training. History consists of model accuracy and losses after each epoch. We will visualize it later.

Usually, the dataset is very big and we cannot fit complete data at once so we use batch size. This divides our data info batches each of size
equal to batch_size. Now only this number of samples will be loaded into memory and processed. Once we are done with one batch it is flushed
from memory and the next batch will be processed.

Now we have started the training of our neural network.

https://manara.edu.sy/



https://manara.edu.sy/

2\

o)liaJl

FAMARA LNNERNTY

it will take around a minute to train. And after 100 epochs the neural network will be frained. The training accuracy is reached 99.5 % s0 our
model is trained

Now we can check the model's performance on test data:

y_pred = model.predict(x_test)

#Converting predictions to label

pred = list()

for 1 in range(len(y_pred)):
pred.append{np.argmax(y_pred[i]})

#Converting one hot encoded test label to label

test = list()

for 1 in range(len(y_test)):
test.append({np.argmax(y_test[1i]})

5v 7/7 ——— 05 1Ims/step

This step is inverse one hot encoding process. We will get integer labels using this step. We can predict on test data using a simple method of
keras, model.predict(). It will take the test data as input and will return the prediction outputs as softmax.

from sklearn.metrics import accuracy_score
@ = accuracy_score(pred,test)
print('Accuracy is:', a*lee)

5% Accuracy is: 94.5

We can use test data as validation data and can check the accuracies after every epoch. This will give us an insight into overfitting at the time
of training only and we can take steps before the completion of all epochs. We can do this by changing fit function as:

history = model.fit(X_train, y_train,validation_data = (X_test,y test), epochs=10@, batch_size-64)

)

https://manara.edu.sy/



https://manara.edu.sy/

