

Lab Session 2
ROS Workspace and ROS Packages

1. ROS Workspace

A ROS workspace is a directory that contains one or more ROS packages. A
workspace is like a project folder where you can organize your ROS
packages and build them together.

To create a ROS Workspace, follow the steps:

h"ps://manara.edu.sy/

$ mkdir -p ~/catkin_ws/src
$ cd ~/catkin_ws
$ catkin_make

2. Create a new directory for your workspace (typically named catkin_ws
but you can choose any name you wish) and append another directory
within called src

1. Open a new terminal window

3. Navigate to your new directory and run the command $catkin_make

Inside the /devel folder there is a setup.bash executable file that we have to
manually source in each terminal session in order to overlay our workspace on
top of our ROS environment.

 مادة نظم ال4شغ1ل
 محاضرة C٢C عملي

م. Iاهر خير Iك

After the workspace builds, two new folders will be created inside the /catkin_ws
directory. One is the /devel directory which is where ROS dumps all the built files.
The second is the /build which is where we run $cmake from to build the
packages in the /src folder. The /src directory that we created will house all of the
ROS Nodes (We will go in depth about these topics in the next session)

https://manara.edu.sy/

The following tree demonstrates the file structure of a ROS Workspace

catkin_ws/ -- WORKSPACE
 src/ -- SOURCE SPACE
 ...
 build/ -- BUILD SPACE
 devel/ -- DEVEL SPACE
 setup.bash \
 setup.sh |-- Environment setup files
 setup.zsh /
 etc/ -- Generated configuration files
 include/ -- Generated header files
 lib/ -- Generated libraries and other artifacts
 package_1/
 bin/
 etc/
 include/
 lib/
 share/
 ...
 package_n/
 bin/
 etc/
 include/
 lib/
 share/
 share/ -- Generated architecture independent artifacts
 ...

h"ps://manara.edu.sy/

$ source devel/setup.bash

https://manara.edu.sy/

2. ROS Package

The ROS packages are the most basic unit of the ROS software. They
contain the ROS runtime process (nodes), libraries, configuration files, and so
on, which are organized together as a single unit. You can think of a ROS
Package as one standalone project.

To create a ROS Package, follow the steps:

$catkin_create_pkg requires that you give it a package_name and
optionally a list of dependencies on which that package depends

The dependencies are all the elements that our package will depend on. In
our case, we will want to write our nodes in both C++ and Python which is
why we added the roscpp and rospy dependencies. The std_msgs
dependency contains common message types representing primitive data
types and other basic message constructs, such as Int, String and multiarray.

h"ps://manara.edu.sy/

1. Open a new terminal window

2. $cd into the src folder inside the workspace that we created.

3. Use $catkin_create_pkg command to create a new package and add dependencies

4. Build the package in the catkin workspace using $catkin_make

$ cd ~/catkin_ws/src
$ catkin_create_pkg lecture2 std_msgs rospy roscpp
$ cd ..
$ catkin_make

This is an example, do not try to run this
catkin_create_pkg <package_name> [depend1] [depend2] [depend3] …..

https://manara.edu.sy/

The following tree demonstrates the file structure of a ROS Package

workspace_folder/ -- WORKSPACE

 src/ -- SOURCE SPACE

 CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin

 package_1/

 CMakeLists.txt -- CMakeLists.txt file for package_1

 package.xml -- Package manifest for package_1

 ...

 package_n/

 CMakeLists.txt -- CMakeLists.txt file for package_n

 package.xml -- Package manifest for package_n

 
inside the package, there are 2 new files that were created each with distinct
purposes. The package.xml file is an essential file used in the Robot
Operating System that defines the properties and metadata of a ROS
package. This file defines properties about the package such as the package
name, version numbers, authors, maintainers, and dependencies on other
catkin packages.

The following elements are what we need to pay attention to:

- DESCRIPTION TAG

Change the description to anything you like, but by convention the first
sentence should be short while covering the scope of the package. If it is
hard to describe the package in a single sentence then it might need to be
broken up.

h"ps://manara.edu.sy/

<description>The lecture2 package</description>

https://manara.edu.sy/

- MAINTAINER TAGS

- DEPENDENCIES TAGS

Next is the CMakeLists.txt which contains a set of directives and instructions
describing the project's source files and targets (executable, library, or both)
which represents the input to the CMake build system for building software
packages. In future sessions, we will constantly be editing our CMakeLists.txt
file to match our package needs such as custom messages and services.

h"ps://manara.edu.sy/

<!-- One maintainer tag required, multiple allowed, one person per tag -->
 <!-- Example: -->
 <!-- <maintainer email="baher.kherbek@outlook.com">Jane Doe</maintainer> —>
 <maintainer email="user@todo.todo">user</maintainer>

This is a required and important tag for the package.xml because it lets others
know who to contact about the package. At least one maintainer is required,
but you can have many if you like. The name of the maintainer goes into the
body of the tag, but there is also an email attribute that should be filled out.

 <buildtool_depend>catkin</buildtool_depend>
 <build_depend>roscpp</build_depend>
 <build_depend>rospy</build_depend>
 <build_depend>std_msgs</build_depend>
 <exec_depend>roscpp</exec_depend>
 <exec_depend>rospy</exec_depend>
 <exec_depend>std_msgs</exec_depend>

<build_depend> and <exec_depend> tags are generated based on the
dependencies that we generated in our package. We will also be editing these
dependencies tags in later sessions.

https://manara.edu.sy/

3. Bashrc file and ROS commands

The .bashrc file contains a set of commands that get executed upon the
launch of a new terminal session. We can setup our .bashrc file to
automatically $source our ROS Workspace without having to source it
manually in each individual session.

There are two options, either open the .bashrc file using gedit and add the
$source command manually or we can append it directly using the $echo
command like so:  

h"ps://manara.edu.sy/

$ echo ‘source ~/catkin_ws/devel/setup.bash’ >> ~/.bashrc
$ source ~/.bashrc

Now we can neglect having to $source our workspace each time because it
will have been sourced automatically upon the launch of a terminal window.
After the workspace has been sourced we can run ros related commands on
our packages. $roscd and $rospack are two main ones. The $roscd command
allows us to immediately navigate to our package directory without having to
manually $cd into the entire path. So instead of typing out:

$ cd ~/catkin_ws/src/lecture2

We can call the $roscd command anywhere no matter where our current
directory is in our terminal

$ roscd lecture2

But make sure the workspace is sourced otherwise the package will not be
found.

https://manara.edu.sy/

——————————————————————————————————

h"ps://manara.edu.sy/

The $rospack commands displays all the dependencies of a specific package

$ rospack depends1 lecture2

https://manara.edu.sy/

	Lab Session 2

