

Lab Session 3 and 4
Publishers and Subscribers (rospy) + Custom messages

1. Creating the publisher node (rospy)

Before creating our nodes, create a new package with the name pubsub

In any ROS Workspace (make sure to source the workspace in every terminal
session)

Now we can start creating our nodes. In the /src directory create a new python
script with the name talker.py and add the following code inside: 

import rospy
from geometry_msgs.msg import Point
import random

def talker():
 rospy.init_node(‘Talker_Node', anonymous=True)
 pub = rospy.Publisher('LOCATION', Point, queue_size=10)

 rate = rospy.Rate(5) # five messages per second
 while not rospy.is_shutdown():
 msg = Point()

 msg.x = rospy.get_time()
 msg.y = random.randint(0, 1000)

 pub.publish(msg)
 rate.sleep()

talker() # Call the talker() function

https://manara.edu.sy/

$ cd /catkin_ws/src

$ catkin_create_pkg pubsub std_msgs rospy roscpp

$ cd ..

$ catkin_make

مقرر نظم ال4شغ1ل

محاضرة ٣C+C٤ عملي

م. Lاهر خير Lك

https://manara.edu.sy/

In order for the script to be recognized as a node, we need to edit our
CMAKELISTS.txt file and add the script we just created by uncommenting lines
(162 -> 164) and modifying it to look like:

After editing the CMAKELISTS.txt file, we can go ahead and execute
$catkin_make inside our workspace.

Initiate roscore in a separate command window

To run our nodes, we will use the $rosrun command.

In our case, we will run:

To check that the node is running fine and our topic is initiated, we will execute
$rosnode list to list all active nodes and $rostopic list to list all active topics.

https://manara.edu.sy/

This is an example, do not try to run this

rosrun package_name node_name

$ rosrun pubsub talker.py

$ rosnode list

$ rostopic list

catkin_install_python(PROGRAMS src/talker.py

 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

$ roscore

https://manara.edu.sy/

We can display the contents of any active topic straight through our terminal by
using the $rostopic echo command

2. Creating the subscriber node (rospy) 

In the /src directory create a new python script with the name listener.py and
add the following code inside

import rospy
from geometry_msgs.msg import Point

def ros_callback(msg):
 rospy.loginfo(f’The Sum of the Points is {msg.x+msg.y}’)

def listener():
 rospy.init_node(‘LISTENER_NODE', anonymous=True)
 rospy.Subscriber("LOCATION", Point, ros_callback)
 rospy.spin() # spin() simply keeps python from exiting 		

listener() # Call the listener() function

In order for the script to be recognized as a node, we need to edit our
CMAKELISTS.txt file and add the script we just created by uncommenting lines
(162 -> 164) and modifying it to look like: 

catkin_install_python(PROGRAMS src/talker.py src/listener.py

 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

After editing the CMAKELISTS.txt file, we can go ahead and execute
$catkin_make inside our workspace.

https://manara.edu.sy/

$ rostopic echo /LOCATION

https://manara.edu.sy/

Then use $rosrun to run the node

3. Creating our own message for our package

It is always better to create our own messages inside our package that
specifically meets the needs of our project. To do this we are going to create a
new /msg directory in our package and add a new file called person.msg which
will hold our custom message. Either open gedit and add the lines manually or
use the echo command inside the terminal

Now we need to modify both our CMAKELISTS.txt as well as our package.xml
file.

open the package.xml file and add these two lines

Next, open the CMAKELISTS.txt file and perform the following:

1. Add message_generation to your list of dependencies (lines 10 -> 14) so it
looks like this:

https://manara.edu.sy/

$ rosrun pubsub listener.py

$ roscd pubsub

$ mkdir msg

$ echo ‘string name’ >> msg/person.msg

$ echo ‘int32 age’ >> msg/person.msg

<build_depend>message_generation</build_depend>

 <exec_depend>message_runtime</exec_depend>

find_package(catkin REQUIRED COMPONENTS

 roscpp

 rospy

 std_msgs

 message_generation

)

https://manara.edu.sy/

2. Export the message_runtime dependency by adding it lines (106 -> 111) in so
it looks like this:

3. Uncomment lines (51 -> 55) and add your message file so it looks like this:

4. Now uncomment lines (72 -> 75) to ensure the generate_messages() function
is called upon build, it should look like this:

After modifying both files, we can now execute $catkin_make inside our
workspace.

Now use the $rosmsg show command to ensure our message is visible within
our environment

https://manara.edu.sy/

catkin_package(

 ...

 CATKIN_DEPENDS message_runtime ...

 …

)

add_message_files(

 FILES

 person.msg

)

generate_messages(

 DEPENDENCIES

 std_msgs

)

$ rosmsg show person

https://manara.edu.sy/

	Lab Session 3 and 4

