

Lab Session 5
ROS Services 

(Server node + Client Node + Creating custom services)

The publish / subscribe model is a very flexible communication paradigm, but its
many-to-many one-way transport is not appropriate for RPC request / reply
interactions, which are often required in a distributed system. Request / reply is
done via a Service, which is defined by a pair of messages(one for the request
and one for the reply). A providing ROS node offers a service under a
string name, and a client calls the service by sending the request message and
awaiting the reply.

But what is the difference between publisher/subscriber and server/client?
Think about the following cases:

1. Think of a robot and a simulator with the robot's model. The simulator
needs to update the robot's model in real-time (as the robot in the real
world changes configuration, the simulator needs to update the model to
reflect that change such that the robot model in the simulator is always up-
to-date with the current configuration of the real robot). 

https://manara.edu.sy/

 مادة نظم ال4شغ1ل
 محاضرة C٥C عملي

م. Iاهر خير Iك

https://manara.edu.sy/

2. Think of a node that controls a robot cashier. This node requires to detect a
customer using the robot's camera to start the interaction. 

In the first case, you will need a publishing/subscribing model because the
simulator will need data to flow in real-time while doing something else. So the
robot will publish its joint values to a topic and the simulator will subscribe to
that topic with a callback function that will update the robot model in the
simulator in real-time asynchronously.

In the second case, however, you don't want a node to constantly check for a
customer and is not something you want to do constantly. You know in your
program logic when you need to detect a customer. When you first start your
node, you know that you need to block and wait for a customer to come in. It's
more appropriate here to use a service. When you want to detect a customer
you send a request to the server (and as a result your program blocks waiting for
a response). The server will use the camera to detect a customer (using some
detection algorithm) and will respond accordingly back to you.

Generally speaking, you will use publishing/subscribing when you need data to
flow constantly and you want to act on these data asynchronously, and services
when you need a specific calculation to happen synchronously.

1. Creating our own Service

Defining our service is very similar to how we defined our own message
previously. We are going to create a new /srv directory inside our package and
we are going to add a new file called geometry.srv. like so:

https://manara.edu.sy/

$ roscd <your_package>
$ mkdir srv
$ cd srv
$ gedit geometry.srv

https://manara.edu.sy/

Add the following lines and save the file:

Next we are going to edit our package.xml file as well as the CMAKELISTS.txt
file.

Please note: some of these steps will have already been done if you have
previously created custom messages for your package

open the package.xml file and add these two line

1. Add message_generation to your list of dependencies (lines 10 -> 14) so it
looks like this:

2.Uncomment lines 58 -> 62 and add the service file

https://manara.edu.sy/

float32 length
float32 width
float32 height
- - -
float32 area
float32 volume

<build_depend>message_generation</build_depend>
 <exec_depend>message_runtime</exec_depend>

find_package(catkin REQUIRED COMPONENTS
 roscpp
 rospy
 std_msgs
 message_generation
)

add_service_files(
 FILES
 geometry.srv
)

https://manara.edu.sy/

3. Uncomment lines 73 -> 76 so it looks like this:

After modifying both files, we can now execute $catkin_make inside our
workspace.

Now use the $rossrv show command to ensure our message is visible within our
environment (make sure your workspace is sourced)

2. Creating the Server Node

In the /src directory of your package create a new python script with the name
server.py and add the following code inside:

import rospy
from manara_test1.srv import *
def geometry_server(request):

print("I Was Called Upon")
response = geometryResponse()
response.area = request.width * request.length
response.volume = response.area * request.height
return response

def serv():
rospy.init_node('SERVER_NODE')
rospy.Service('getGeometry', geometry, geometry_server)
print('Server is running')
rospy.spin()

if __name__ == '__main__':
serv()

https://manara.edu.sy/

generate_messages(
 DEPENDENCIES
 std_msgs
)

$ rossrv show geometry

https://manara.edu.sy/

Then add the node inside the CMAKELISTS.txt file as usual and run the node
using $rosrun:

After running the node, we can notice a new service called (getGeometry) is
shown:

We can directly call the service from the terminal window. Say we want to get
the area and volume of a rectangle with the following dimensions

(Length, Width, Height) = (1.2, 5.2, 8.9)

We can do the following inside our terminal:

3. Creating the Client Node

Say we want to create a node where the dimensions of the rectangle is given is
arguments to a node, and we want the node to print out the area and the
volume. In the /src directory of your package create a new python script with the
name client.py and add the following code inside:

https://manara.edu.sy/

$ rosservice show getGeometry

$ rosservice call /getGeometry 1.2 5.2 8.9

$ rosrun <your_package> server

https://manara.edu.sy/

import rospy
from manara_test1.srv import *
from sys import argv

def get_geometry_client(l, w, h):
rospy.wait_for_service('getGeometry')
server = rospy.ServiceProxy('getGeometry', geometry)
request = server(l, w, h)

return request.area, request.volume

if __name__ == '__main__':

area ,volume = get_geometry_client(float(argv[1]),
float(argv[2]), float(argv[3]))

print(f'The Area is : {area}\nThe Volume is: {volume}')

After adding the node to our CMAKELISTS.txt file and running $catkin_make, we
can run:

———————————————————————————————————

https://manara.edu.sy/

$ rosrun <your_package> client 1.2 5.2 8.9

https://manara.edu.sy/

	Lab Session 5

