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Tension and Compression in Bars 
1. Stress
2. Strain
3. Constitutive Law
Objectives: Mechanics of Materials investigates the stressing and the deformations of structures subjected 
to applied loads,  starting by the simplest structural members, namely, bars in tension or compression. 

In order to treat such problems, the kinematic relations and a constitutive law are needed to complement 
the equilibrium conditions which are known from Engineering Mechanics (Statics). 

4 .Single Bar under Tension or Compression
5. Systems of Bars
6. Supplementary Examples

The kinematic relations represent the geometry of the deformation, whereas the behavior of the material 
is described by the constitutive law. The students will learn how to apply these equations and how to solve 
determinate as well as statically indeterminate problems. 

الإجهاد
(لالانفعا)التشوه 

قانون السلوك

 الناتجة عن الحمولات الخارجي( الهياكل الحاملة)يدرس ميكانيك المواد إجهادات وتشوهات الجمل الإنشائية 
ً
ة، مبتدأ

.  المشدودة أو المضغوطة( العناصر الطولية)بالعناصر الأبسط أي القضبان 

:  تقوم هذه الدراسة على
(علم السكون )معادلات التوازن التي دُرست في الميكانيك الهندس ي ( 1)
 أي تحدد شكل ومقدار تغيرات الشكل الجي( 2)

ً
.  ومتري العلاقات الكينماتيكية التي ستدرس وهي تصف التشوهات كميا

، قوانين تجريبية تعرّف السلوك الميكانيكي لمادة الهي(  3)
ً
.كل الحاملقوانين سلوك مادة الجملة وهي كما ستُعرض لاحقا

شد أو ضغط: قضيب مفرد
جمل القضبان
أمثلة إضافية

 وأخرى غير مقررة س
ً
 يعالج الطلبة مسائل مقررة سكونيا

ً
كونيا

؟؟
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1. Stress Consider a straight bar with a constant cross-sectional area 𝐴.
Its axis is connecting the centroids of the cross sections.
Its ends are subjected to the forces F  acting on the axis (Fig. a). 

The external load causes internal forces, which can be visualized by an imaginary cut of the bar (Fig. b).
They are distributed over the cross section and called stresses (Fig. c). 

They have the dimension force/area, for example, as multiples of 
MPa (1MPa=1N/mm2). The “Pascal” (1 Pa=1 N/m2) after the 
mathematician & physicist Blaise Pascal (1623–1662). The notion 
of “stress” was introduced by Augustin Louis Cauchy (1789–1857).

To determine the stresses we make an imaginary cut c-c perpendicular to the bar axis The stresses are 
shown in the free-body diagram (Fig. c); they are denoted by 𝜎. 

In (Statics) we only dealt with the resultant of the stresses : The 
internal forces.

الإجهاد
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We assume that they act perpendicularly to the exposed surface A of the cross section and that 
they are uniformly distributed. 

Since they are normal to the cross section they are called normal 
stresses. Their resultant is the normal force N shown in (Fig. b) . 

Therefore we have N =σA and the stresses σ can be calculated from 
the normal force N : 

𝜎 =
𝑁

𝐴

In the present example the normal force N is equal to the applied 
force F. Thus, we write the last equation as

𝜎 =
𝐹

𝐴

For a positive normal force N (tension) the stress σ is then positive (tensile stress). Reversely, if the normal 
force is negative (compression) the stress is also negative (compressive stress) 
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Let us now imagine the bar being sectioned by a cut which is not orthogonal to the axis of the bar 

so that its direction is given by the angle ϕ (Fig. d). 𝐴∗ = Τ𝐴 cos 𝜑. 

Again we assume that they are 
uniformly distributed.
Resolve the stresses into a 

component 𝜎  perpendicular to 
the surface (normal stress) & a 

component 𝜏 tangential to the 
surface (shear stress) (Fig. e). 

Equilibrium of the forces acting on the left portion of the bar (see Fig. e) yields:

→:  𝜎𝐴∗ cos 𝜑 + 𝜏𝐴∗ sin 𝜑 − 𝐹 = 0
↑:  𝜎𝐴∗ sin 𝜑 − 𝜏𝐴∗ cos 𝜑 = 0
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It is practical to write these equations in a different form. Using the trigonometric relations 

→:  𝜎𝐴∗ cos 𝜑 + 𝜏𝐴∗ sin 𝜑 − 𝐹 = 0
↑:  𝜎𝐴∗ sin 𝜑 + 𝜏𝐴∗ cos 𝜑 = 0

These Eq. Eqs. are written for the forces, not 
for the stresses. With 𝐴∗ = Τ𝐴 cos 𝜑 we obtain 

𝜎 + 𝜏 tan 𝜑 = 𝐹
𝐴  

𝜎 tan 𝜑 − 𝜏 = 0

Solving yields 

𝜎 = 1
1+tan2 𝜑

𝐹
𝐴

𝜏 = tan 𝜑
1+tan2 𝜑

𝐹
𝐴

1

1 + tan2 𝜑
 = cos2 𝜑 = 1

2(1 + cos 2𝜑),
tan 𝜑

1 + tan2 𝜑
= sin 𝜑 cos 𝜑 ,  sin 2𝜑 =

2 tan 𝜑

1 + tan2 𝜑
, cos 2𝜑 =

1 − tan2 𝜑

1 + tan2 𝜑

and the abbreviation 𝜎0 = 𝐹/𝐴 (normal stress in a section perpendicular to the axis) we get 

𝜎 = 𝜎0
2

1 + cos 2𝜑 , 𝜏 = 𝜎0
2

sin 2𝜑

Stresses depend on the direction of the cut. If σ0 is known, σ  & τ  can be calculated for any ϕ. The maximum 
value of σ  is obtained for ϕ = 0, where σmax= σ0; the maximum value of τ is found for ϕ = π/4 where τmax = σ0/2. 
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Two dangerous cuts:

If we section a bar near an end which is subjected to a concentrated force 𝐹 (Fig. a, section c-c) 
we find that the normal stress is not distributed uniformly over area.

It can be shown that this stress concentration is restricted to sections 
close to the end concentrated force: the high stresses decay rapidly 

towards the average value σ0 far from the end of the bar. This fact is 
referred to as Saint-Venant’s principle (Adhémar Jean Claude Barré 
de Saint-Venant, 1797-1886). 

The uniform distribution of the stress is also disturbed by holes, notches or any abrupt changes 
(discontinuities) of the geometry. If, for example, a bar has notches the remaining cross-sectional area 
(section c-c) is also subjected to a stress concentration (Fig. c). The determination of these stresses is not 
possible with the elementary analysis presented in this course. 

The concentrated force produces high stresses near it (Fig.b).
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General Case Let us now consider a bar with only a slight taper (See Example 1). In this case the 

normal stress may be not calculated from 𝜎 =
𝑁

𝐴
 , with a sufficient accuracy.

𝜎 𝑥 =
𝑁(𝑥)

𝐴(𝑥)

In the General case the area 𝐴 and the stress 𝜎 depend on the location along the axis. If volume forces act 
in the direction of the axis in addition to the concentrated forces, then the normal force 𝑁 also depends on 
the location. Introducing the coordinate 𝑥 in the direction of the axis we can write: 

Here it is also assumed that the stress is uniformly distributed over the cross section at 𝑥. 
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In the case of a bar this requirement means that the absolute value of the stress σ must not exceed a 
given allowable stress 𝜎𝑎𝑙𝑙𝑜𝑤: |𝜎| ≤ 𝜎𝑎𝑙𝑙𝑜𝑤. The required cross section 𝐴𝑟𝑒𝑞 of a bar for a given load 
and thus a known normal force 𝑁 can then be determined from : 

𝐴𝑟𝑒𝑞 = Τ𝑁 𝜎𝑎𝑙𝑙𝑜𝑤

This is referred to as dimensioning of the bar. Alternatively, the allowable load can be calculated from 
|𝑁| ≤ 𝐴𝜎𝑎𝑙𝑙𝑜𝑤 in the case of a given cross-sectional area 𝐴. 

Note that a slender bar which is subjected to compression may fail due to buckling before the stress attains 
an inadmissibly large value. We will investigate buckling problems in Mechanics of Materials 2.

In applications structures have to be designed in such a way that a given maximum stressing is not 

exceeded. 
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Example 1
A bar (length 𝑙 ) with a circular cross section and a slight taper (linearly varying from 
radius 𝑟0 to 2𝑟0) is subjected to the compressive forces F as shown in Fig.a. Determine 
the normal stress σ in an arbitrary cross section perpendicular to the axis of the bar. 

Solution We introduce the coordinate x, see 
Fig.b. Then the radius of an arbitrary cross 
section is given by 

𝑟 𝑥 = 𝑟0 +
𝑟0

𝑙
𝑥 = 𝑟0(1 +

𝑥

𝑙
)

Using 𝜎 = Τ𝑁 𝐴 with the cross section 𝐴(𝑥) = 𝜋 𝑟2(𝑥) and the constant normal force 𝑁 = −𝐹 , yields 

𝜎 𝑥 =
𝑁

𝐴(𝑥)
=

−𝐹

𝜋𝑟0
2(1 + 𝑥

𝑙 )2

The minus sign indicates that 𝜎 is a compressive stress. Its value at the left end (𝑥 = 0) is four 
times the value at the right end (𝑥 = 𝑙). 
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Example 2 A water tower (height 𝐻, density 𝜌) with a cross section in the form of a circular ring 
carries a tank (weight 𝑊0) as shown in Fig. a. The inner radius 𝑟𝑖 of the ring is constant. 

Determine the outer radius 𝑟 in such a way that the normal stress 𝜎0 in the tower is constant along 
its height. The weight of the tower cannot be neglected. 

Solution: Consider the tower to be a slender bar. The relation between 
stress, normal force and cross-sectional area is given by 𝜎 = Τ𝑁 𝐴.
In this example the constant compressive stress 𝜎 = 𝜎0 

is given; 
the normal force (here counted positive as compressive force) 
and the area 𝐴 are unknown. 
The equilibrium condition furnishes a second equation. We introduce the 
coordinate 𝑥 as shown in Fig.b and consider a slice element of length 𝑑𝑥. The 
cross-sectional area of the circular ring as a function of 𝑥 is: 𝐴 = 𝜋(𝑟2 − 𝑟𝑖

2) 

where 𝑟 = 𝑟(𝑥) is the unknown outer radius. The normal force at the location 𝑥 
is given by 𝑁 = 𝜎0𝐴. At the location 𝑥 + 𝑑𝑥, the area and the normal force are 
𝐴 + 𝑑𝐴 and 𝑁 + 𝑑𝑁 = 𝜎0(𝐴 + 𝑑𝐴). 
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The weight of the element is 𝑑𝑊 = 𝜌𝑔 𝑑𝑉 where 𝑑𝑉 = 𝐴 𝑑𝑥 is the volume of the element. 
Note that terms of higher order are neglected.  Equilibrium in the vertical direction yields 

Separation of variables and integration lead to 

න
𝑑𝐴

𝐴
= න

𝜌𝑔

𝜎0
𝑑𝑥  ⇒ ln

𝐴

𝐴0
=

𝜌𝑔𝑥

𝜎0
 ⇒ 𝐴 = 𝐴0𝑒

𝜌𝑔𝑥
𝜎0 .

The constant of integration 𝐴0 follows from the condition that 
the stress at the upper end of the tower (for 𝑥 = 0 : 𝑁 = 𝑊0) 
also has to be equal to 𝜎0: 

𝑊0

𝐴0
= 𝜎0  ⇒  𝐴0 =

𝑊0

𝜎0
.

Substituting this into the above two Equations yield the outer radius: 

𝑟2 𝑥 = 𝑟𝑖
2 +

𝑊0

𝜋𝜎0
𝑒

𝜌𝑔𝑥
𝜎0

↑: 𝜎0 𝐴 + 𝑑𝐴 − 𝜌𝑔𝑑𝑉 − 𝜎0𝐴 = 0 ⇒ 𝜎0𝑑𝐴 − 𝜌𝑔𝐴𝑑𝑥 = 0 .

Mechanics of Materials 1 - 2024-2025 -S1 - L5



12/2/2024 12

Example 3 A slender bar (density 𝜌) is suspended from its 
upper end as shown in Fig. It has a rectangular cross section 
with a constant depth and a linearly varying width. The cross 
section at the upper end is 𝐴0.
Determine the stress 𝜎(𝑥) due to the force 𝐹 and the weight of 
the bar. Calculate the minimum stress 𝜎min  and its location. 

Solution It is reasonable to introduce the 𝑥-coordinate at the intersection of the extended 
edges of the trapezoid. The 𝑥 dependent cross section area follows then as: 𝐴(𝑥) = 𝐴0𝑥/ℎ 

With the weight: 𝑊(𝑥) = 𝜌𝑔𝑉(𝑥) = 𝜌𝑔 𝑎

𝑥
𝐴(𝜉)𝑑𝜉 = 𝜌𝑔𝐴0

𝑥2 −𝑎2

2ℎ

of the lower part equilibrium provides: 𝑁(𝑥) = 𝐹 + 𝑊(𝑥) = 𝐹 + 𝜌𝑔𝐴0
𝑥2 −𝑎2

2ℎ

This leads to the stress 𝜎 𝑥 =
𝑁(𝑥)

𝐴(𝑥)
=

𝐹ℎ + 1
2𝜌𝑔𝐴0(𝑥2 − 𝑎2)

𝐴0𝑥
The location 𝑥∗ of the minimum is determined by condition: 

𝑑𝜎

𝑑𝑥
= 0 

𝑑𝜎

𝑑𝑥
=

𝜌𝑔𝐴0𝑥 𝐴0𝑥 − 𝐴0𝐹ℎ − 1
2𝜌𝑔𝐴0

2(𝑥2 − 𝑎2)

𝐴0
2𝑥2

=
𝜌𝑔𝐴0(𝑥2 + 𝑎2) − 2𝐹ℎ

2𝐴0𝑥2
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𝑑𝜎

𝑑𝑥
= 0 ⇒

𝜌𝑔𝐴0(𝑥2 + 𝑎2) − 2𝐹ℎ

2𝐴0𝑥2
= 0 ⇒ 𝑥∗ =

2𝐹ℎ

𝜌𝑔𝐴0
− 𝑎2

Where the value of the minimum stress is 

𝜎𝑚𝑖𝑛 = 𝜎 𝑥∗ = 𝜌𝑔
2𝐹ℎ

𝜌𝑔𝐴0
− 𝑎2 = 𝜌𝑔𝑥∗

Note:
• For 𝜌𝑔 = 0 (“weightless bar”) no minimum exists. The largest stress occurs at 𝑥 =  𝑎. 

• The minimum will be located within the bar, only if 𝑎 < 𝑥∗ < ℎ or
𝜌𝑔𝐴0𝑎2/(2ℎ) < 𝐹 < 𝜌𝑔𝐴0(ℎ2 + 𝑎2)/(2ℎ) holds. 
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Example 4 The contour of a light-house with circular thin-walled 

cross section follows a hyperbolic equation

𝑦2 −
𝑏2 − 𝑎2

ℎ2
𝑥2 = 𝑎2

Determine the stress distribution as a consequence of weight W of the 
lighthouse head (the weight of the structure can be neglected). Given: 
𝑏 = 2𝑎, 𝑡 ≪ 𝑎 

Solution As the weight 𝑊 is the only acting external load, the 

normal force 𝑁 is constant (compression): 𝑁 = −𝑊 

The cross section area 𝐴 is changing. It is approximated by (thin-walled structure with 𝑡 ≪ 𝑦) 

𝐴 𝑥 = 2𝜋𝑦𝑡 = 2𝜋𝑡 𝑎2 + 𝑏2 − 𝑎2

ℎ2 𝑥2 = 2𝜋𝑡 𝑎2 + 3𝑎2

ℎ2 𝑥2 = 2𝜋𝑎𝑡 1 + 3𝑥2

ℎ2

The stress follows now as 𝜎 =
𝑁

𝐴
= − ൗ𝑊 2𝜋𝑎𝑡 1 + 3𝑥2

ℎ2

Especially at the top & bottom position we get:  𝜎 𝑥 = 0 = −𝑊/2𝜋𝑎𝑡, 𝜎(𝑥 = ℎ) = −𝑊/4𝜋𝑎𝑡

Note: The stress at the top is twice as large as the stress at the bottom, which is a inefficient use of 
material. This situation changes if the weight of the thin-walled structure is included in the analysis. 
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