

Lab Session 6 
TurtleBot Class + roslaunch + rosparams

1. Creating the TurtleBot Class

We want to spawn multiple turtles in our environment and move them in a
swarm configuration or individually. To do this, we will create our own
TurtleBot class that stores all the variables and methods(functions) relating to
each individual turtle. Each turtle therefore becomes an object of the
TurtleBot class.

Create a new package and add the following node and call it swarm.py :

import rospy
from turtlesim.srv import *
from turtlesim.msg import Pose
rospy.init_node(‘Swarm_Turtles')
class TurtleBot:

def __init__(self, name, initial_x, initial_y, initial_theta):

self.name = name
self.spawnTurtle(name, initial_x, initial_y, initial_theta)

self.position = Pose()
self.pose_subscriber = rospy.Subscriber(f'{name}/pose', Pose,

self.update_pose)
self.rate = rospy.Rate(10)

def spawnTurtle(self, name, x, y, theta):
rospy.wait_for_service('spawn')
server = rospy.ServiceProxy('spawn', Spawn)
request = server (x, y, theta, name)

def update_pose(self, data):

self.position.x = data.x
self.position.y = data.y

self.position.theta = data.theta

if __name__ == '__main__':
t1 = TurtleBot(‘T1’, 1, 1, 0)
t2 = TurtleBot(‘T2’, 1, 9, 0)
t3 = TurtleBot(‘T3’, 9, 1, 0)
t4 = TurtleBot(‘T4’, 9, 9, 0)

rospy.spin()

h"ps://manara.edu.sy/

 مادة نظم ال4شغ1ل
 محاضرة C٦C عملي

م. Iاهر خير Iك

https://manara.edu.sy/

To to add (spawn) a new turtle in our turtlesim environment, four parameters
need to be passed : the name of the turtle (make sure it’s unique) and the
initial location and configuration of the turtle in the turtlesim window. The
node above after running will spawn four turtles in each corner of the window.

Open three terminal tabs and run the following commands:

Tab1:

Tab2:

Tab3:

Make sure to add the swarm.py node to your CMAKELISTS.txt file.

After running the code you will get the following output on your turtlesim
window:

h"ps://manara.edu.sy/

$ roscore

$ rosrun turtlesim turtlesim_node

$ rosrun <your_package> swarm.py

https://manara.edu.sy/

h"ps://manara.edu.sy/

https://manara.edu.sy/

And your rqt_graph will look like this:

h"ps://manara.edu.sy/

https://manara.edu.sy/

2. Rosparam

rosparam contains the rosparam command-line tool for getting and setting
ROS Parameters on the Parameter Server using YAML-encoded files. It
contains a collection of parameters and variables that our project depends
on.

Instead of adding each turtle manually In our swarm.py node, we will modify
the node to retrieve all the parameters necessary from our rosparam file and
spawn the turtles based on the retrieved data. We will add each class
parameter as a list(array) inside our .yaml file. The .yaml file could be stored
anywhere in our package but it is common to be placed inside of a /config
directory inside our package.

Navigate to your package and add a /config directory inside

Add a params.yaml folder inside the /config directory

Add the following lines inside and save the file

h"ps://manara.edu.sy/

$ roscd <your_package>
$ mkdir config

$ cd config
$ gedit params.yaml

names : ['T1', 'T2', ‘T3', ‘T4']
initial_x : [1, 1, 9, 9]
initial_y: [1, 9, 1, 9]

https://manara.edu.sy/
http://wiki.ros.org/Parameter%20Server

Please note these parameters need to be loaded onto our environment using
the $rosparam command to use them:

Now your parameters should be loaded onto your environment and you can
view them inside your terminal using:

Now, modify the (if) block to load the parameters inside the node and spawn
the turtles accordingly:

if __name__ == '__main__':
names = rospy.get_param('names')
x = rospy.get_param('initial_x')
y = rospy.get_param('initial_y')

turtles = list(zip(names, x, y))
print(turtles)
objects = []
for i in turtles:

objects.append(TurtleBot(i[0], i[1], i[2], 0))

rospy.spin()

Now to run our node we will follow the same steps as before but we need to
add the command that loads our parameters.

h"ps://manara.edu.sy/

$ rosparam list
$ roscd <your_package>
$ rosparam load config/params.yaml
$ rosparam list

$ rosparam get names

https://manara.edu.sy/

Tab1:

Tab2:

Tab3:

Tab4:

(You can combine Tab2 with Tab3 or Tab4)

Now we will get the same output as before, the difference is the turtles
spawned were based on the information provided in our params.yaml file.

3. Roslaunch

roslaunch is a tool for easily launching multiple ROS nodes locally and
remotely. It includes options to automatically respawn processes that have
already died. roslaunch takes in one or more XML configuration (with
the .launch extension) files that specify the parameters to set and nodes to
launch, as well as the machines that they should be run on.

To demonstrate its use let’s look at what we previously had to execute to
launch our project. We opened four different tabs and executed different
commands in each. If we were to add any other nodes to our package we

h"ps://manara.edu.sy/

$ roscore

$ roscd <your_package>
$ rosparam load config/params.yaml

$ rosrun <your_package> swarm.py

$ rosrun turtlesim turtlesim_node

http://ros.org/wiki/Nodes
https://manara.edu.sy/

would have to also open another separate tab. This is where roslaunch
comes to play, it will allow us to run all our nodes as well as run our
parameters file using the $roslaunch command. To create a launch file, create
a /launch directory inside your package and add a swarm.launch file

Add the following lines inside and save:

The $roslaunch file has the following syntax:

Open a single terminal window (without launching roscore) and run the
following:

Please not that $roslaunch also launches $roscore if it’s not already running.

h"ps://manara.edu.sy/

$ roscd <your_package>
$ mkdir launch
$ gedit swarm.launch

<launch>

<rosparam command="load" file="$(find <your_package>)/config/params.yaml” />
<node pkg="turtlesim" type="turtlesim_node" name="turtle" respawn="true" />
<node pkg=“<your_package>" type="swarm.py" name=“swarm” />

</launch>

$ roslaunch <package_name> <launch_file.launch>

$ roslaunch <your_package> swarm.launch

https://manara.edu.sy/

You should see the same output as before but now we have launched all our
nodes and parameters With a single command.

4. Controlling our Turtles

We will add a few methods inside our class that allows us to control the turtle
to navigate it to a desired (x, y) coordinate

Modify the TurtleBot class to include these methods:

class TurtleBot:
def __init__(self, name, initial_x, initial_y, initial_theta):

self.name = name
self.spawnTurtle(name, initial_x, initial_y, initial_theta)

self.position = Pose()
self.pose_subscriber = rospy.Subscriber(f'{name}/pose', Pose,

self.update_pose)
self.velocity_publisher = rospy.Publisher(f'{name}/cmd_vel', Twist,

queue_size=10)
self.rate = rospy.Rate(10)

def spawnTurtle(self, name, x, y, theta):
rospy.wait_for_service('spawn')
server = rospy.ServiceProxy('spawn', Spawn)
request = server (x, y, theta, name)

def update_pose(self, data):
self.position.x = data.x
self.position.y = data.y
self.position.theta = data.theta

def steering_angle(self, goal_pose):
return math.atan2(goal_pose.y - self.position.y, goal_pose.x -

self.position.x)

def angular_velocity(self, goal_pose, constant=6):
return constant * (self.steering_angle(goal_pose)-self.position.theta)

def linear_velocity(self, goal_pose, constant=0.5):
return constant * self.euclidean_distance(goal_pose)

def euclidean_distance(self, goal_pose):
return math.sqrt((goal_pose.x - self.position.x)**2 + (goal_pose.y -

self.position.y)**2)

h"ps://manara.edu.sy/

https://manara.edu.sy/

def move_to_goal(self, x, y):
goal_pose = Pose()
goal_pose.x = x
goal_pose.y = y
tolerance = 0.5
velocity = Twist()
while self.euclidean_distance(goal_pose) >= tolerance:

velocity.linear.x = self.linear_velocity(goal_pose)
velocity.angular.z = self.angular_velocity(goal_pose)

self.velocity_publisher.publish(velocity)
self.rate.sleep()

velocity.linear.x = 0
velocity.angular.z = 0
self.velocity_publisher.publish(velocity)

if __name__ == '__main__':
names = rospy.get_param('names')
x = rospy.get_param('initial_x')
y = rospy.get_param('initial_y')
turtles = list(zip(names, x, y))
print(turtles)
objects = []
for i in turtles:

objects.append(TurtleBot(i[0], i[1], i[2], 0))

objects[2].move_to_goal(9, 9)
objects[2].move_to_goal(1, 1)

rospy.spin()

After adding the necessary functions as well as a velocity publisher to our
constructor to control our robot we will add two extra lines in the (if) block
that will allow the third the turtle ‘T3’ to move towards ‘T2’ then turn back
around towards ‘T1’. After running $roslaunch You should see the four turtles
spawning and then right afterwards the third turtle moving as explained
earlier:

h"ps://manara.edu.sy/

https://manara.edu.sy/

h"ps://manara.edu.sy/

https://manara.edu.sy/

	Lab Session 6 TurtleBot Class + roslaunch + rosparams

