
Microcontrollers
Arduino

1محاضرة

1تطبيقات ميكاترونيك

https://manara.edu.sy/

عيس ى الغنام .فادي متوج د. د

كلية الهندسة
روبوت والأنظمة الذكية قسم هندسة ال

2023-2024

https://manara.edu.sy/

50: العملي50: النظري

.تحتاج للتجريب والتدريب والدراسة بشكل ذاتي منزلي وخلال الجلسات

%15في الأسبوع السادس1اختبار

%15في الأسبوع الثاني عشر2اختبار
ي الأسبوع فأمام لجنة حكممشروع تطبيقي بحثي يتضمن عرض تقديمي

الرابع عشر
20%

%50امتحان نهائي كتابي

https://manara.edu.sy/

توزيع الدرجات و مواعيد الاختبارات

https://manara.edu.sy/

https://manara.edu.sy/

Arduino

1- Getting started and Blinking with the Arduino
- Exploring the Arduino
- Creating our First Program

2- Digital Inputs, Outputs, and Pulse-Width Modulation
- Digital Outputs
- Pulse-Width Modulation with analogWrite()
- Reading Digital Inputs
- Building a Controllable RGB LED Nightlight

3- Reading Analog Sensors
- Understanding Analog and Digital Signals
- Reading Analog Sensors with the Arduino: analogRead()

4- Driving Motors
- Driving DC Motors
- Driving Servo Motors

الرئيسة التي يغطيها المقرر الموضوعات
القسم الأول

https://manara.edu.sy/

الرئيسة التي يغطيها المقرر الموضوعات
القسم الأول

https://manara.edu.sy/

Arduino
5- USB and Serial Communication
- Understanding the Arduino’s Serial Communication Capabilities
- Listening to the Arduino
- Talking to the Arduino
6- Interfacing with Liquid Crystal Displays
- Setting Up the LCD
- Using the LiquidCrystal Library to Write to the LCD
- Building a Personal Thermostat
7- Control Arduino Board using an Android Phone and a Bluetooth Module
- Getting Started with MIT App Inventor
- Creating Android App using MIT app inventor
- A Simple Project : Control LED using MIT App Inventor and Arduino
Raspberry Pi
Getting Started with Raspberry Pi
- Raspberry Pi setup & hardware overview
- Raspbian (Linux)
- Python, Hello in Python
- Raspberry Pi General Purpose IO (GPIO) Pins

https://manara.edu.sy/

.Eagle and Altium Designerالتصميم الإلكتروني برامج •

بمحرك تيار مستمر وبدرجة الحرارةPIDالمقاطعات والتحكم •

في المتحكمات وتوظيفهاالتايمرات•

قيادة روبوت على عجلات تخطيط مسار وتحكم حركة•

•ROS2

https://manara.edu.sy/

الرئيسة التي يغطيها المقرر الموضوعات
القسم الثاني

https://manara.edu.sy/

المشروع

للوصول إلى آخر المسارروبوتينمنافسة بين •

.توزع النقاط عل التصميم وعلى التنفيذ والبرمجة وإنجاز المهام•

.لة نسبيااستخدام تقنيات حساسات مركبة على روبوت تفاضلي بعجلات عادية للتعرف على بيئة مجهو •

(خط أسود)الروبوت مقيد بالمش ي على مسار مرسوم •

لروبوتالبيئة عبارة عن حلبة تحوي عوائق تكون موضوع بجانب أو على الخط الأسود بحيث تعيق حركة ا•

.العوائق عبارة عن علبة كرتونية لا يجب أن يصطدم الروبوت بها•

عندما يصادف الروبوت عائق عليه العودة إلى تقاطع ليجرب مسار آخر حتى الوصول للأخير•

.يجب على الروبوت تجاوز شرط فجائي معين•

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Microcontrollers

https://manara.edu.sy/

•Microcontrollers are found everywhere. You
can find them in microwaves ovens,
automobiles, televisions, etc.
• These microcontrollers control and sense the
surrounding electronics and environment.
•The microcontroller is considered to be a
computer on a chip. The microcontroller is able
to execute a set of instructions in the form of a
program.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

What is an embedded system?

https://manara.edu.sy/

https://manara.edu.sy/

• Arduino platform is whatever you want it to be.
•The Arduino could be an automatic plant-watering control system. It
can be a web server. It could even be a quadcopter autopilot.
•The Arduino is a microcontroller development platform paired with a
programming language that we develop using the Arduino integrated
development environment (IDE).
•By equipping the Arduino with sensors, actuators, lights, speakers,
shields, and other integrated circuits, we can turn the Arduino into a
programmable “brain” for just about any control system.

https://manara.edu.sy/

What is an Arduino?

https://manara.edu.sy/

https://manara.edu.sy/

Basic components

https://manara.edu.sy/

■ Atmel microcontroller
■USB programming/communication interface(s)
■ Voltage regulator and power connections
■ I/O pins
■Debug, Power, and RX/TX LEDs
■ Reset button
■ In-circuit serial programmer (ICSP) connectors.

https://manara.edu.sy/

Basic components

https://manara.edu.sy/

•At the heart of every Arduino is an Atmel microcontroller unit (MCU)
•Most Arduino boards, including the Arduino Uno, use an AVR ATMega
microcontroller.
•The Arduino Uno uses an ATMega 328p.
•The Arduino Due is an exception; it uses an ARM Cortex microcontroller.
•A 16 MHz ceramic resonator is wired to the ATMega’s clock pins, which serves
as the reference by which all program commands execute.
•You can use the Reset button to restart the execution of your program.
•Most Arduino boards come with a debug LED already connected to pin 13,
which enables you to run your first program (blinking an LED) without
connecting any additional circuitry.

https://manara.edu.sy/

Atmel Microcontroller

https://manara.edu.sy/

•Ordinarily, ATMega microcontroller programs are written in C or
Assembly and programmed via the ICSP interface using a
dedicated programmer.

https://manara.edu.sy/

Programming Interfaces

AVR ISP MKII programmer

https://manara.edu.sy/

•Perhaps the most important characteristic of an Arduino is that
we can program it easily via USB, without using a separate
programmer.
•This functionality is made possible by the Arduino bootloader.
•The bootloader is loaded onto the ATMega at the factory (using
the ICSP header), which allows a serial USART (Universal
Synchronous/Asynchronous Receiver/Transmitter) to load our
program on the Arduino without using a separate programmer.

https://manara.edu.sy/

https://manara.edu.sy/

•A bootloader is a chunk of code that lives in a reserved space
in the program memory of the Arduino’s main MCU.
•In general, AVR microcontrollers are Programmed with an
ICSP, which talks to the microcontroller via a serial peripheral
interface (SPI).
•Programming via this method is fairly straight-forward, but
necessitates the user having a hardware programmer such as
an STK500 or an AVR ISP MKII programmer.

https://manara.edu.sy/

The Arduino Bootloader

https://manara.edu.sy/

•In the case of the Arduino Uno and Mega 2560, a
secondary microcontroller (an ATMega 16U2 or 8U2)
serves as an interface between a USB cable and the
serial USART pins on the main microcontroller.
•In older Arduino boards, an FTDI brand USB-to-serial
chip was used as the interface between the ATMega’s
serial USART port and a USB connection.

https://manara.edu.sy/

https://manara.edu.sy/

•The general-purpose I/O pins can serve as digital
inputs and outputs.
•The ADC pins can also act as analog inputs that can
measure voltages between 0 and 5V
•Many of these pins serve additional functions.
These special functions include various
communication interfaces, serial interfaces, pulse-
width-modulated outputs, and external interrupts.

https://manara.edu.sy/

General I/O and ADCs

https://manara.edu.sy/

•For the majority of your projects, you will simply use the 5V power that is
provided over your USB cable.
•When you’re ready to separate your project from a computer, you have other
power options. The Arduino can accept between 6V and 20V (7-12V
recommend) via the direct current (DC) barrel jack connector, or into the Vin
pin.
•The Arduino has built-in 5V and 3.3V regulators:
• 5V is used for all the logic on the board. In other words, when you toggle a
digital I/O pin, you are toggling it between 5V and 0V.
• 3.3V is broken out to a pin to accommodate 3.3V shields and external circuitry.

https://manara.edu.sy/

Power Supplies

https://manara.edu.sy/

https://manara.edu.sy/

Arduino Boards

https://manara.edu.sy/

https://manara.edu.sy/

Arduino Uno

https://manara.edu.sy/

https://manara.edu.sy/

Arduino Mega 2560

https://manara.edu.sy/

• The Mega 2560 employs an ATMega 2560 as the main MCU, which has
54 general I/Os to enable us to interface with many more devices.

• The Mega also has more ADC channels, and has four hardware serial
interfaces (unlike the one serial interface found on the Uno)

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Arduino Nano

https://manara.edu.sy/

•The Nano is designed to be mounted right into a breadboard
socket.
•Its small form factor makes it perfect for use in more finished
projects.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

LilyPad Arduino

https://manara.edu.sy/

•The LilyPad is unique because it is designed to be sewn into
clothing.
•Using conductive thread, we can wire it up to sewable sensors,
LEDs, and more.
•To keep size down, we need to program it using an FTDI cable.

https://manara.edu.sy/

https://manara.edu.sy/

•The Arduino is open source hardware. As a result, we can find
dozens and dozens of “Arduino compatible” devices available for sale
that will work just fine with the Arduino IDE.
• Some of the popular third-party boards include the Seeduino, the
adafruit 32U4 board, and the SparkFun Pro Mini Arduino boards.
•Many third-party boards are designed for very particular applications,
with additional functionality already built in to the board. For
example, the ArduPilot is an autopilot board for use in autonomous
DIY quadcopters.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Quadcopter and ArduPilot Mega controller

https://manara.edu.sy/

•Access the Arduino website at www.arduino.cc and download the newest
version of the IDE from the Download page.
•After completing the download, unzip it. Inside, you’ll find the Arduino IDE.

https://manara.edu.sy/

Downloading and Installing theArduino IDE

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Running the IDE and
Connecting to the

Arduino

https://manara.edu.sy/

https://manara.edu.sy/

Our First Program
Blink program

https://manara.edu.sy/

1. This is a multiline comment:
– Comments are important for documenting your code. Everything you write

between these symbols will not be compiled or even seen by your Arduino.
–Multiline comments start with /* and end with */
–Multiline comments are generally used when you have to say a lot (like the

description of this program).

2. This is a single-line comment.
– When you put // on any line, the compiler ignores all text after that symbol on

the same line.
– This is great for annotating specific lines of code or for “commenting out” a

particular line of code that you believe might be causing problems.

https://manara.edu.sy/

https://manara.edu.sy/

3- This code is a variable declaration.
▪A variable is a place in the Arduino’s memory that holds information.

▪Variables have different types. In this case, it’s of type int, which means it
will hold an integer. In this case, an integer variable called led is being set to the
value of 13, the pin that the LED is connected to on the Arduino Uno.
▪Throughout the rest of the program, we can simply use led whenever we want to
control pin 13.
▪Setting variables is useful because you can just change this one line if you hook
up your LED to a different I/O pin later on; the rest of the code will still work as
expected

https://manara.edu.sy/

https://manara.edu.sy/

4. void setup() is one of two functions that must be included in
every Arduino program.

– A function is a piece of code that does a specific task.

– Code within the curly braces of the setup() function is executed once at
the start of the program.

– This is useful for one-time settings, such as setting the direction of pins,
initializing communication interfaces, and so on.

https://manara.edu.sy/

https://manara.edu.sy/

5. The Arduino’s digital pins can function as input or outputs.

– To configure their direction, use the command pinMode().

– This command takes two arguments.

– The first argument to pinMode determines which pin is having
its direction set.

– The second argument sets the direction of the pin: INPUT or
OUTPUT.

– Pins are inputs by default, so we need to explicitly set them to
outputs if we want them to function as outputs.

https://manara.edu.sy/

https://manara.edu.sy/

6. The second required function in all Arduino programs is void
loop().

– The contents of the loop function repeat forever as long as the
Arduino is on.

– If we want our Arduino to do something once at boot only, we still
need to include the loop function, but we can leave it empty.

https://manara.edu.sy/

https://manara.edu.sy/

7. digitalWrite()is used to set the state of an output pin.

– It can set the pin to either 5V or 0V.

– When an LED and resistor is connected to a pin, setting it to 5V will
enable you to light up the LED.

– The first argument to digitalWrite() is the pin we want to control.

– The second argument is the value we want to set it to, either HIGH (5V)
or LOW (0V).

– The pin remains in this state until it is changed in the code

https://manara.edu.sy/

https://manara.edu.sy/

8. The delay() function accepts one argument: a delay time in milliseconds.
– When calling delay(), the Arduino stops doing anything for the amount of time

specified.
– In this case, we are delaying the program for 1000ms, or 1 second.
– This results in the LED staying on for 1 second before we execute the next

command.

9. Here, digitalWrite() is used to turn the LED off, by setting the pin state to
LOW.

10. Again, we delay for 1 second to keep the LED in the off state before the
loop repeats and switches to the on state again

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Digital Inputs, Outputs, and
Pulse-Width Modulation

https://manara.edu.sy/

• LEDs are polarized; in other words, it matters in what direction we connect them.
The positive lead is called the anode, and the negative lead is called the cathode.

• If we look at the clear top of the LED, there will usually be a flat side on the lip of
the casing. That side is the cathode.

• Another way to determine which side is the anode and which is the cathode is by
examining the leads. The shorter lead is the cathode.

• LEDs must always be wired in series with a resistor to serve as a current limiter.
The larger the resistor value, the more it restricts the flow of current and the
dimmer the LED glows.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

const int LED=9; //define LED for pin 9

void setup()

{

pinMode (LED, OUTPUT); //Set the LED pin as an output

digitalWrite(LED, HIGH); //Set the LED pin high

}

void loop()

{

//we are not doing anything in the loop!

}

https://manara.edu.sy/

Turning on an LED

https://manara.edu.sy/

const int LED=9; //define LED for Pin 9
void setup()
{
pinMode (LED, OUTPUT); //Set the LED pin as an output
}
void loop()
{
for (int i=100; i<=1000; i=i+100)
{
digitalWrite(LED, HIGH);
delay(i);
digitalWrite(LED, LOW);
delay(i);
}
}

https://manara.edu.sy/

LED with Changing Blink Rate

https://manara.edu.sy/

The for loop declaration always contains three semicolon-separated entries:

■ The first entry sets the index variable for the loop. In this case, the index
variable is i and is set to start at a value of 100.

■ The second entry specifies when the loop should stop. The contents of
the loop will execute over and over again while that condition is true. <=
indicates less than or equal to. So, for this loop, the contents will continue to
execute as long as the variable i is still less than or equal to 1000.

■The final entry specifies what should happen to the index variable at the
end of each loop execution. In this case, i will be set to its current value plus
100.

https://manara.edu.sy/

Using For Loops

https://manara.edu.sy/

To better understand these concepts, consider what happens in two passes through the
for loop:

1. i eqals 100.
2. The LED is set high, and stays high for 100ms, the current value of i.
3. The LED is set low, and stays low for 100ms, the current value of i.
4. At the end of the loop, i is incremented by 100, so it is now 200.
5. 200 is less than or equal to 1000, so the loop repeats again.
6. The LED is set high, and stays high for 200ms, the current value of i.
7. The LED is set low, and stays low for 200ms, the current value of i.
8. At the end of the loop, i is incremented by 100, so it is now 300.
9. This process repeats until i surpasses 1000 and the outer loop function repeats, setting the i
value back to 100 and starting the process again.

https://manara.edu.sy/

https://manara.edu.sy/

• Digital control of pins is great for blinking LEDs, controlling relays, and
spinning motors at a constant speed.

• But what if we want to output a voltage other than 0V or 5V?

• Well, we can’t—unless we are using an external digital-to-analog converter
(DAC) chip.

• However, we can get pretty close to generating analog output values by
using a trick called pulse-width modulation (PWM).

https://manara.edu.sy/

Pulse-Width Modulation with
analogWrite()

https://manara.edu.sy/

• On each Arduino, there are pins that can use the analogWrite()command to
generate PWM signals that can emulate a pure analog signal when used with
certain peripherals.

• These pins are marked with a ~ on the board.

• On the Arduino Uno, Pins 3, 5, 6, 9, 10, and 11 are PWM pins.

• The analogWrite() command accepts two arguments: the pin to control and the
value to write to it.

• The PWM output is an 8-bit value. In other words, we can write values from 0
to , or 0 to 255.

https://manara.edu.sy/

128 −

https://manara.edu.sy/

const int LED=9; //define LED for Pin 9
void setup()
{
pinMode (LED, OUTPUT); //Set the LED pin as an output
}
void loop()
{
for (int i=0; i<256; i++)
{
analogWrite(LED, i);
delay(10);
}
for (int i=255; i>=0; i--)
{
analogWrite(LED, i);
delay(10);
} }

https://manara.edu.sy/

Use PWM to change LED brightness

https://manara.edu.sy/

• we should observe the LED fading from off to on, then from on to off.

• Of course, because this is all in the main loop, this pattern repeats.

https://manara.edu.sy/

What does the LED do when we run this code?

https://manara.edu.sy/

• PWM control can be used in lots of circumstances to emulate pure
analog control, but it cannot always be used when we actually need
an analog signal.

• For instance, PWM is great for driving direct current (DC) motors at
variable speeds, but it does not work well for driving speakers unless
we supplement it with some external circuitry.

https://manara.edu.sy/

https://manara.edu.sy/

• PWM works by modulating the duty cycle of a square wave.

• Duty cycle refers to the percentage of time that a square wave is high versus
low.

• We are probably most familiar with square waves that have a duty cycle of
50%—they are high half of the time, and low half of the time.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

PWM signals with varying duty cycles

https://manara.edu.sy/

The analogWrite()command sets the duty cycle of a square wave depending on
the value we pass to it:

■Writing a value of 0 with analogWrite() indicates a square wave with a duty cycle
of 0 percent (always low).

■Writing a 255 indicates a square wave with a duty cycle of 100 percent (always
high).

■Writing a 127 indicates a square wave with a duty cycle of 50 percent (high half of
the time, low half of the time).

https://manara.edu.sy/

https://manara.edu.sy/

• For a signal with a duty cycle of 25 percent, it is high 25 percent of
the time, and low 75 percent of the time.

• The frequency of this square wave, in the case of the Arduino, is
about 490Hz. In other words, the signal varies between high (5V)
and low (0V) about 490 times every second.

https://manara.edu.sy/

https://manara.edu.sy/

➢So, if we are not actually changing the voltage being delivered to
an LED, why do we see it get dimmer as we lower the duty cycle?

• It is really a result of our eyes playing a trick on us!

• If the LED is switching on and off every 1ms (which is the case with a duty cycle of
50 percent), it appears to be operating at approximately half brightness because it is
blinking faster than our eyes can perceive. Therefore, our brain actually averages
out the signal and tricks us into believing that the LED is operating at half
brightness.

https://manara.edu.sy/

https://manara.edu.sy/

	Slide 1
	Slide 2: توزيع الدرجات و مواعيد الاختبارات
	Slide 3: الموضوعات الرئيسة التي يغطيها المقرر القسم الأول
	Slide 4: الموضوعات الرئيسة التي يغطيها المقرر القسم الأول
	Slide 5: الموضوعات الرئيسة التي يغطيها المقرر القسم الثاني
	Slide 6: المشروع
	Slide 7: Microcontrollers
	Slide 8
	Slide 9
	Slide 10: What is an embedded system?
	Slide 11: What is an Arduino?
	Slide 12: Basic components
	Slide 13: Basic components
	Slide 14: Atmel Microcontroller
	Slide 15: Programming Interfaces
	Slide 16
	Slide 17: The Arduino Bootloader
	Slide 18
	Slide 19: General I/O and ADCs
	Slide 20: Power Supplies
	Slide 21: Arduino Boards
	Slide 22: Arduino Uno
	Slide 23: Arduino Mega 2560
	Slide 24
	Slide 25: Arduino Nano
	Slide 26
	Slide 27: LilyPad Arduino
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Downloading and Installing the Arduino IDE
	Slide 32
	Slide 33: Running the IDE and Connecting to the Arduino
	Slide 34: Our First Program Blink program
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Turning on an LED
	Slide 46: LED with Changing Blink Rate
	Slide 47: Using For Loops
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

