2\

6)liaJl

LI EE R S A

el e L)

RNN model slug Tensorflow as Jalasll

over fitting Uiw ao Jolail] Glall (any (e 8yl

v Recurrent Neural Networks

Recurrent Neural Networks (RNN) are designed to work with sequential data. Sequential data(can be time-series) can be in form of text, audio,
video etc.

RNN uses the previous information in the sequence to produce the current output. To understand this better I'm taking an example sentence.
“My class is the best class.”
At the time(T0), the first step is to feed the word “My” into the network. the RNN produces an output.

At the time(T1), then at the next step we feed the word "class” and the activation value from the previous step. Now the RNN has information of

both words "My" and “class”
+ Code |~ + Text

from google.colab import files
uploaded = files.upload()

or | Choo l2< No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

anahls

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Embedding

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import SimpleRNN

#from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.utils import to_categorical

filename = "wonderland.txt"
raw_text = open(filename, 'r', encoding='utf-8').read()
raw_text = raw_text.lower()

raw_text
5% '\nalice was beginning to get very tired of sitting by her sister on the\nbank, and of having nothing to do: once or twice she had peep

ed into\nthe book her sister was reading, but it had no pictures or\nconversations in it, “and what is the use of a book,” thought alic
e\n“without pictures or conversations?”\n\nso she was considering in her own mind (as well as she could, for the\nhot day made her feel
very sleepy and stupid), whether the pleasure of\nmaking a daisy=-chain would be worth the trouble of getting up and\npicking the daisie
s, when suddenly a white rabbit with pink eyes ran\nclose by her.\n\nthere was nothing so _very_ remarkable in that; nor did alice thin
k it\nso _very_ much out of the way to hear the rabbit say to itself, “oh\ndear! oh dear! i shall be late!” (when she thought it over a
frarwards . \nit accurred ta har that che nusht tn have wondered at thic. hut at theintime it A1l seemed anite naturall: hot when the rah

»

from tensorflow.keras.preprocessing.text import Tokenizer
#inialize tokenizer

tokenizer=Tokenizer()

#fit the tokenizer on the text to creat a vocabulary
tokenizer.fit_on_texts([raw_text])
total_words=len(tokenizer.word_index)+1

https://manara.edu.sy/

https://manara.edu.sy/
https://manara.edu.sy/

2\

6)liaJl

LI EE R S A

#initialize an empty list to store input squences
input_sequence=[]
#split the text into lines using the newline charachter as a delimiter
for line in raw_text.split(‘'\n'):
token_list =tokenizer.texts_to_sequences([line])[@]
for i in range(1,len(token_list)):
n_gram=token_list [:i+1]
input_seguence.append(n_gram)

import numpy as np

from tensorflow.keras.preprocessing.sequence import pad_sequences

#add zeros to sequence to make it all the same length

max_sequence_len=max([len{seq) for seq in input_sequence])
input_sequence=np.array(pad_sequences(input_sequence,maxlen=max_sequence_len,padding="pre'))

X= input_sequence[:,:-1]
y=input_sequence[:,-1]

one hot encoding
import tensorflow as tf
y=np.array(tf.keras.utils.to_categorical(y,total_words))

define the model

model = Sequential()

#this layer maps input information from a high-dimensional to a lower-dimensiocnal space,

allowing the network to learn more about the relationship between inputs and to process the data more efficiently.
model.add(Embedding(total_words,108,input_length=max_sequence_len-1))

model.add(SimpleRN(15@))

model.add(Dropout(8.2))

model.add(Dense(total_words, activation='softmax'))

model.compile(loss="categorical_crossentropy', optimizer=‘adam’,metrics=["accuracy'])

5% /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:9@: UserWarning: Argument “input_length® is deprecated. Just
warnings.warn(

model.fit(X,y,epochs=1@,verbose=1)

5% Epoch 1/18@

788/788 ——————————— 265 29ms/step - accuracy: 0.08633 - loss: 6.3662
Epoch 2/1@
788/788 m———— 435 31ms/step - accuracy: ©.1119 - loss: 5.4491
Epoch 3/18@
788/788 —————————— 41s 32ms/step - accuracy: ©.1532 - loss: 4.8868
Epoch 4/10

n

788/788 m———)
Epoch 5/1@

3ems/step - accuracy: ©.1849 - loss: 4.5890

788/788 m———)35 20ms/step - accuracy: ©.2192 - loss: 4.0974
Epoch 6/10
788/788 = 435 31ms/step - accuracy: 8.2495 - loss: 3.77@6
Epoch 7/1@
788/788 235 29ms/step - accuracy: ©.2910 - loss: 3.4344
Epoch 8/19
788/788 =—— 24s 31lms/step - accuracy: ©.3265 - loss: 3.1881
Epoch 9/1@
788/788 = 465 38ms/step - accuracy: 0.3670 - loss: 2.9373

Epoch 10/18

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

LI EE R S A

seed_text='1 want to '
next_words =3
for i in range (next_words):
token_list=tokenizer.texts_to_sequences ([seed_text])[@]
token_list=pad_sequences([token_list],maxlen=max_sequence_len-1,padding="pre')
predicted=np.argmax(model.predict(token_list),axis==1)
output_word=""
for word,index in tokenizer.word_index.items():
if index==predicted:
output_word=word
break
seed_text+=""+output_word
print(seed_text)

5% 1/1 ———— @5 23ms/step
1/1 =——— 05 21ms/step
1)1 — @5 23ms/step
i want to be

v Some Techniques to Prevent Overfitting in Neural Networks

1. Simplifying The Model

The first step when dealing with overfitting is to decrease the complexity of the model. To decrease the complexity, we can simply remove
layers or reduce the number of neurons to make the network smaller. While doing this, it is important to calculate the input and output
dimensions of the various layers involved in the neural network. There is no general rule on how much to remove or how large your network
should be. But, if your neural network is overfitting, try making it smaller.

2. Early Stopping

Early stopping is a form of regularization while training a model with an iterative method, such as gradient descent. Since all the neural
networks learn exclusively by using gradient descent, early stopping is a technique applicable to all the problems. This method update the
model so as to make it better fit the training data with each iteration. Up to a point, this improves the model's performance on data on the test
set. Past that point however, improving the model's fit to the training data leads to increased generalization error. Early stopping rules provide

guidance as to how many iterations can be run before the model begins to overfit.

min_delta: The minimum change in the monitored metric to qualify as an improvement, i.e., an absolute change less than min_delta will count
as no improvement.

patience: Number of epochs with no improvement after which training will be stopped.

mode: Defines what should be considered as an improvement, depending on the monitored metric. Commonly set to 'min' for loss where a
decrease is better.

model.fit(x_train, y_train, epochs=18@, validation_data=(x_val, y_val), callbacks=[early_stopping])

3. Use Data Augmentation

In the case of neural networks, data augmentation simply means increasing size of the data that is increasing the number of images present in
the dataset. Some of the popular image augmentation techniques are flipping, translation, rotation, scaling, changing brightness, adding noise
etcetera This technique is shown in the diagram. As we can see, using data augmentation a lot of similar images can be generated. This helps
in increasing the dataset size and thus reduce overfitting. The reason is that, as we add more data, the model is unable to overfit all the

samples, and is forced to generalize

DATA AUGMENTATION
. ==
L

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

LI EE R S A

4. Use Regularization

Regularization is a technigue to reduce the complexity of the model. It does so by adding a penalty term to the loss function. The most
common techniques are known as L1 and L2 regularization:

The L1 penalty aims to minimize the absolute value of the weights. This is mathematically shown in the below formula.

LG6Y) =) 0 — ko))+) 64
i=1 i

The L2 penalty aims to minimize the squared magnitude of the weights. This is mathematically shown in the below formula.

L(x,y) = Z(yt- — hy(x))? + AZ 6?2
i=1 i

layer = layers.Dense(units=5,
kernel_initializer="ones’,
kernel_regularizer=regularizers.11(8.81),

activity_regularizer=regularizers.L2(@.81))

5. Use Dropouts

Dropout is a regularization technique that prevents neural networks from overfitting. Regularization methods like L1 and L2 reduce overfitting by
madifying the cost function. Dropout on the other hand, medify the network itself. It randomly drops neurons from the neural network during
training in each iteration. When we drop different sets of neurons, it's equivalent to training different neural networks. The different networks will
overfit in different ways, so the net effect of dropout will be to reduce overfitting.

(a) Standard Neural Net

https://manara.edu.sy/

https://manara.edu.sy/

