2\

6)liaJl

LA A, LN Y

el e 2]

[stm& GRU Je dyaz]l @

LAYERS IN KERAS ¢ 1531 fe (8,22]l @

v RNN,GRU & LSTM

(RNN) are designed to work with sequential data. Sequential data(can be time-series) can be in form of text, audio, video etc.

RNN uses the previous information in the sequence to produce the current output. To understand this better I'm taking an example senience.
“My class is the best class”

At the time(T0), the first step is to feed the word “My” into the network. the RNN produces an output.

At the time(T1), then at the next step we feed the word "class” and the activation value from the previous step. Now the RNN has information of
both words “My” and “class”.

And this process goes until all words in the sentence are given input. d

What is vanishing gradient problem?

In RMNMN to train the network you backpropagate through time, at each step the gradient is calculated. The gradient is used to update weights in
the network. If the effect of the previous layer on the current layer is small then the gradient value will be small and vice-versa. If the gradient of
the previous layer is smaller then the gradient of the current layer will be even smaller. This makes the gradients exponentially shrink down as
we backpropagate. Smaller gradient means it will not affect the weight updation. Due to this, the network does not learn the effect of earlier
inputs. Thus, causing the short-term memaory problem

Solution for vanishing gradient

To overcome this problem two specialised versions of RNN were created. They are GRU(Gated Recurrent Unit) LSTM(Long Short Term
Memory). Suppose there are 2 sentences. Sentence one is "My cat is she was ill”, the second one is “The cats they were ill.” At the
ending of the sentence, if we need to predict the word “was”™ / "were” the network has to remember the starting word “cat™/"cats”. So, LSTM's
and GRU's make use of memory cell to store the activation value of previous words in the long sequences. Now the concept of gates come into
the picture. Gates are used for controlling the flow of information in the network. Gates are capable of learning which inputs in the sequence are
impeortant and store their information in the memory unit. They can pass the information in long sequences and use them to make predictions.

Gated Recurrent Units The workflow of GRU is same as RNHN but the difference is in the operations inside the GRU unit.

Gates are nothing but neural networks, each gate has its own weights and biases(but don't forget that weights and bias for all nodes in one
layer are same). Update gate

Update gate decides if the cell state should be updated with the candidate state({current activation value)or not.

Relevence gate

The reset gate is used to decide whether the previous cell state is imporiant or not. Sometimes the reset gate is not used in simple GRU.
In GRU the final cell state is directly passing as the activation to the next cell.

In GRU,

If reset close to 0, ignore previous hidden state (allows the model to drop information that is irrelevant in the future).

If gammal(update gate) close to 1, then we can copy information in that unit through many steps!

Gamma Controls how much of past state should matter now.

Long Short-Term Memory

Now you know about RNN and GRU, so let's quickly understand how LSTM works in brief. LSTMSs are pretty much similar to GRU's, they are also
intended to solve the vanishing gradient problem. Additional to GRU here there are 2 more gates forget gate, output gate. From GRU, you already
know about all other operations except forget gate and output gate.

All 3 gates(input gate, output gate, forget gate) use sigmoid as activation function so all gate values are between 0 and 1.
Forget gate

It controls what is kept vs forgotien, from previous cell state. In laymen terms, it will decide how much information from the previous state
should be kept and forget remaining.

Output gate

It controls which parts of the cell are output to the hidden state. It will determine what the next hidden state will be.

https://manara.edu.sy/

https://manara.edu.sy/
https://manara.edu.sy/

Wy

6)liaJl

From RNN to GRU
G, =0, Keep Memory Value “C**" Same as Previous Value “C***> of Updated Memory
It G, =1, Forget Previous Memory Value “C<*>

From RNN to GRU
[2] Adding Relevance Gate G_

G, =1,C""is Relevant to update Candidate Memory cell value “C™
G, =0,C*"is IrRelevant to update Candidate Memory cell value “C™

rs

https://manara.edu.sy/

https://manara.edu.sy/

[

>~ 6.@®c"+0-6,)@ c** = G

’i
2
H
'

From GRU to LSTM

[2] 222222
 Why Apply Constrain:
of C**+ Percentage of C* = 1 y
 {6,+(1:6)=1} |

ﬂ.. c‘“ﬂ." ‘l,.

https://manara.edu.sy/

https://manara.edu.sy/

[

ojliall

From GRU to LSTM
[2) Split “Update Gate” into two gates:
“Update Gate”
“Forget Gate"

%

'-"--u-‘lnﬂ‘

From GRU toLSTM

[2] Split “Update Gate” into two gates:
“Update Gate”
“Forget Gate”

[G, c*"+6, c*™] NOT Bounded by [-1.7"

"~
. o

https://manara.edu.sy/

https://manara.edu.sy/

[

6)liaJl

LA A, LN Y

From GRU toLSTM

[4) Add “Output Control Gate”

Can Bypass / Block Cell Output a™ N
{ without Aftecting Cell MEMORY Value C*) —
w

S SRR SRS PRS I S

C*¥e E"'
' '
: ah
.
1" &
: « S) ¢
; 14 :
. >
E Wes | :
' '
' :
: w,, :
' '
|‘. *g wh :

From GRU to LSTM

(3) Differentiate between Cell Memory value C**” and Cell Qutput a8

a* =tanh (C™*) (squashOptobe[1 . 1)} "T

Note: Input to Softmax s *a™™ [not “"C™ as GRU)

-

b4

K
N

c‘"’\o

%

e R e EEETEE- - ..‘...“’

-

.
-

3

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

LA A, LN Y
v Keras - Layers

A Keras layer requires shape of the input (input_shape) to understand the structure of the input data, initializer to set the weight for each input
and finally activators to transform the output to make it non-linear. In between, constraints restricts and specify the range in which the weight of
input data to be generated and regularizer will try to optimize the layer (and the model) by dynamically applying the penalties on the weights
during optimization process.

To summarise, Keras layer requires below minimum details to create a complete layer.

axis represent the dimension in which the constraint to be applied. e.. in Shape (2,3,4) axis 0 denotes first dimension, 1 denotes second

dimension and 2 denotes third dimension

MinMaxNorm

Constrains weights to be norm between specified minimum and maximum values.
my_constrain = constraints.MinMaxhorm(min_value = @.8, max_value = 1.0, rate = 1.8, axis = @)
where, rate represent the rate at which the weight constrain is applied.

Keras - Convolution Layers
Keras contains a lot of layers for creating Convolution based ANN, popularly called as Convolution Neural Network (CNN). All convolution layer
will have certain properties (as listed below), which differentiate it from other layers (say Dense layer).

Filters - It refers the number of filters o be applied in the convolution. It affects the dimension of the output shape
kemel size - It refers the length of the convolution window.
Strides - It refers the stride length of the convolution.

Padding - It refers the how padding needs to be done on the output of the convolution. It has three values which are as follows -

valid means no padding
causal means causal convolution

same means the output should have same length as input and so, padding should be applied accordingly

keras . 1ayers. Convin(
Filters,
kernel_size,
strides = 1,
padding = 'valid',
data_format = ‘channels_last’,
dilation_rate = 1,
activation = Hone,
use_bia:
kernel
bias_initializer = ‘zeros’,
kernel_regularizer = None,
bias_regularizer = None,
activity_regularizer = None,
kernel_constraint = None,
bias_constraint = none

)

keras.layers.ConvzD
(Filters, kernel size,
strides = (1, 1),
padding = 'valid',
data_format = None,
dilation_rate = (1, 1),
activation = Hone,
use_bias = True,
kernel_initializer = ‘glorot_uniform’,
bias_initializer - ‘zeros’,
kernel_regularizer = None,
bias_regularizer = None,
activity_regularizer = None,
kernel_constraint = None,
bias_constraint = none

)

Flatten Layer
Flatten Layer is used to flatten the input. For example, if flatten is applied to layer having input shape as (batch_size, 2,2), then the output shape
of the layer will be (batch_size, 4)

https://manara.edu.sy/

https://manara.edu.sy/

From keras.models import Sequential

2\

6)liaJl

LA A, LN Y

from keras.layers import Activation, Dense, Flatten

model = sequential()

layer_1 = Dense(16, input_shape=(8,8))
model.add(layer_1)

layer_2 = Flatten()

model.add(layer_2)

Taver 5 fnmrt chana fMne 8 181

where, the second layer input shape is (Non

e, 8, 16) and it gets flattened into (None, 128)

Keras - Reshape Layers Reshape is used to change the shape of the input. For example, if reshape with argument (2,3) is applied ta layer
having input shape as (batch_size, 3, 2), then the output shape of the layer will be (batch_size, 2, 3)

model = Sequential()

layer_1 = Dense(1s, input_shape = (8,8))
model.sdd(layer_1)

layer_2 = Reshape((16, 8))
model.add(layer_2)

layer_2.input_shape (none, 8, 16)
layer_2.output_shape (None, 16, 8)

Pooling layers

Itis used to perform max pooling operations on temporal data. The signature of the MaxPooling1D function and its arguments with default

value is as follows

keras.layers. Maxpoolingld (
pool_size = 2,
strides = None,
padding = 'valid',
data_format = ‘channels_last’

Embedding layer

It performs embedding operations in input layer. It is used to convert positive into dense vectors of fixed size. Its main application is in text

https://manara.edu.sy/

https://manara.edu.sy/

