2\

6)liogJl

ol e 2L41)

CNNMODEL e 3,2l ®

SOME TYPES OF OPTIMIZERS e

v Face Recognition with CNN

import tensorflow as tf

import numpy as np

import cv2

import os

import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image

import kagglehub

Download latest version
path = kagglehub.dataset_download(“vasukipatel/face-recognition-dataset™)

print("Path to dataset files:", path)

5% Downloading from https://www.kaggle.com/api/vl/datasets/download/vasukipatel/face-recognition-dataset?dataset_version_number=1...
1ee%| | 726M/726M [@@:09<08:00, 83.4MB/s]Extracting files...

Path to dataset files: /root/.cache/kagglehub/datasets/vasukipatel/face-recognition-dataset/versions/1

train_dir="/root/. cache/kag_glehuh_/datasets/vasukipatelfface-recognitinn-dataset/ver;ions/l/original Images/Original Images/"

generator = ImageDataGenerator()
train_ds = generator.flow_from_directory(train_dir,target_size=(224, 224),batch_size=32)
classes = list(train_ds.class_indices.keys())

5% Found 2562 images belonging to 31 classes.

fig = plt.figure(figsize=(10,5))

src_path="/root/.cache/kagglehub/datasets/vasukipatel/face-recognition-dataset/versions/1/0riginal Images/Original Images/Akshay Kumar/Aksha
img = plt.imread(src_path)

plt.imshow(img)

3% <matplotlib.image.AxesImage at @x799cfofee3e>

200

400 ¢

600

800 §

1000

import numpy as np

import tensorflow as tf

import keras

from keras.models import Sequential

from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
import matplotlib.pyplot as plt

from keras.layers.normalization import BatchNormalization

https://manara.edu.sy/

https://manara.edu.sy/
https://manara.edu.sy/

2\

6)liaJl

SRS LR TR T

from tensorflow.keras.layers import BatchNormalization

model = Sequential()

model.add(Conv2D(32, kernel_size = (3, 3), activation='relu', input_shape=(224,224,3)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add{BatchNormalization())

model.add(Conv2D(64, kernel_size=(3,3), activation='relu’))
model. add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

model.add(Conv2D(96, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

model.add(Conv2D(32, kernel_size=(3,3), activation='relu'))
model . add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())

model.add{Dropout(8.2))

model.add(Flatten())

model.add(Dense(128, activation="relu'))
#model.add(Dropout(®.3))
model.add(Dense(len{classes),activation="softmax"))

model. compile(
loss = 'categorical_crossentropy',
optimizer = 'adam’,
metrics = ["accuracy"])

model. summary{)

5% Model: "sequential_2"

Layer (type) Qutput Shape Param #)
conv2d_6 (Conv2D) (None, 222, 222, 32) 896)
max_pooling2d_6 (MaxPooling2D) (None, 111, 111, 32)])
batch_normalization_5 (None, 111, 111, 32) 128 I’
(BatchNormalization) !
conv2d_7 (Conv2D) (None, 1€9, 189, 64) 18,496 :|
max_pooling2d 7 (MaxPooling2D) (None, 54, 54, 64) a)
batch_normalization_6 (None, 54, 54, 64) 256 I\
(BatchNormalization) J
conv2d_8 (Conv2D) (None, 52, 52, 64) 36,928)
max_pooling2d_8 (MaxPooling2D) (None, 26, 26, 64) a :|
batch_normalization_7 (None, 26, 26, 64) 256 I’
(BatchNormalization) !
conv2d_9 (Conv2D) (None, 24, 24, 96) 55,392)
max_pooling2d_9 (MaxPooling2D) (None, 12, 12, 96) a :|
batch_normalization_8 (None, 12, 12, 96) 384 I’
(BatchNormalization) !
conv2d_18 (Conv2D) (None, 16, 18, 32) 27,688 :|
max_pooling2d_18 (MaxPooling2D) (None, 5, 5, 32) a)
?atch_narma}?zat%anTB (None, 5, 5, 32) 128 I}

https://manara.edu.sy/

https://manara.edu.sy/

2\

ojliall

SRS LR TR T

max_pooling2d 7 (MaxPooling2D) (None, 54, 54, 64) a]
batch_normalization_6 (None, 54, 54, 64) 256 I\
(BatchNormalization) I\
conv2d_8 (ConvzD) (None, 52, 52, 64) 36,928)
max_pooling2d_8 (MaxPooling2D) (None, 26, 26, 64) a :|
batch_normalization_7 (None, 26, 26, 64) 256 I/
(BatchNormalization) |
conv2d_9 (Conv2D) (None, 24, 24, 96) 55,392

max_pooling2d_9 (MaxPooling2D) (None, 12, 12, 96) a :|
batch_normalization_8 (None, 12, 12, 96) 384 I’
(BatchNormalization) |
conv2d_1@ (Conv2D) (None, 1@, 1@, 32) 27,688|
max_pooling2d_10 (MaxPooling2D) (None, 5, 5, 32) a)
batch_normalization_9 (None, 5, 5, 32} 128 I\
(BatchNormalization) I\
dropout_1 (Dropout) (None, 5, 5, 32) a :|
flatten_1 (Flatten) (None, 8@@) a :|
dense_2 (Dense) (None, 128) 102,528 :|
dense_3 (Dense) (None, 31) 3,999 :|

Total params: 247,071 (965.12 KB)
Trainable params: 246,495 (962.87 KB)

Man-#r3inshla narame: ©74 (7 95 VRN

history = model.fit(train_ds,epochs= 3, batch_size=32)

5% Epoch 1/3
81/8] =— 3135 4s/step - accuracy: ©.8192 - loss: ©.6978

Epoch 2/3
81/8] m———— 3075 4s/step - accuracy: @.8244 - loss: 8.646@
Epoch 3/3
81/81 329s 4s/step - accuracy: 0.8223 - loss: ©.5861

def predict_image(image_path):
img = image.load_img(image_path, target_size=(224,224,3))
plt.imshow(img)
plt.show()
x = image.img_to_array(img)
x = np.expand_dims(x, axis=8)
images = np.vstack([x])
pred = model.predict(images, batch_size=32)
print("Actual: "+(image_path.split("/")[-1]).split("_")[e])
print("Predicted: "+classes[np.argmax(pred)])

predict_image("/root/.cache/kagglehub/datasets/vasukipatel/face=recognition-dataset/versions/1/0riginal Images/Original Images/Brad Pitt/Bra

4

0 50 100 150 200

1/1
Actual: Brad Pitt

Dnadirtad: Bnaad Ditd

@s 246ms/step

predict_image("/root/.cache/kagglehub/datasets/vasukipatel/face-recognition-dataset/versions/1/0riginal Images/Original Images/Henry Cavill/

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

v Types of Optimizers

Stochastic Gradient descent

tochastic Gradient Descent (SGD) is an iterative optimization algorithm commonly used in machine learning and deep learning. It is a variant of
gradient descent that performs updates to the model parameters (weights) based on the gradient of the loss function computed on a randomly
selected subset of the training data, rather than on the full dataset.

The basic idea of SGD is to sample a small random subset of the training data, called a mini-batch, and compute the gradient of the loss
function with respect to the model parameters using only that subset. This gradient is then used to update the parameters. The process is
repeated with a new random mini-batch until the algorithm converges or reaches a predefined stopping criterion.

SGD has several advantages over standard gradient descent, such as faster convergence and lower memory requirements, especially for large
datasets. It is also more robust to noisy and non-stationary data, and can escape from local minima. However, it may require more iterations to

converge than gradient descent, and the learning rate needs to be carefully tuned to ensure convergence.

Stochastic Gradient descent with gradient clipping

Stochastic Gradient Descent with gradient clipping (SGD with GC) is a variant of the standard SGD algorithm that includes an additional step to
prevent the gradients from becoming too large during training, which can cause instability and slow convergence.

Gradient clipping involves scaling down the gradients if their norm exceeds a predefined threshold. This helps to prevent the "exploding
gradient" problem, which can occur when the gradients become too large and cause the weights to update too much in a single step.

In SGD with GC, the algorithm computes the gradients on a randomly selected mini-batch of training examples, as in standard SGD. However,
before applying the gradients to update the model parameters, the gradients are clipped if their norm exceeds a specified threshold. This
thresheld is typically set to a small value, such as 1.0 or 5.0.

The gradient clipping step can be applied either before or after any regularization techniques, such as L2 regularization. It is also common to
use adaptive learning rate algorithms, such as Adam, in conjunction with SGD with GC to further improve convergence.

SGD with GC is particularly useful when training deep neural networks, where the gradients can easily become unstable and cause convergence
problems. By limiting the size of the gradients, the algorithm can converge faster and with greater stability, leading to improved performance on
the test set.

Momentum

Momentum is an optimization technique used in machine learning and deep learning to accelerate the training of neural networks. It is based
on the idea of adding a fraction of the previous update to the current update of the weights during the optimization process.

In momentum optimization, the gradient of the cost function is computed with respect to each weight in the neural network. Instead of updating
the weights directly based on the gradient, momentum optimization introduces a new variable, called the momentum term, which is used to
update the weights. The momentum term is a moving average of the gradients, and it accumulates the past gradients to help guide the search
direction.

The momentum term can be interpreted as the velocity of the optimizer. The optimizer accumulates momentum as it moves downhill and helps
to dampen oscillations in the optimization process. This can help the optimizer to converge faster and to reach a better local minimum.

Momentum optimization is particularly useful in situations where the optimization landscape is noisy or where the gradients change rapidly. It
can also help to smooth out the optimization process and prevent the optimizer from getting stuck in local minima.

Overall, momentum is a powerful optimization technique that can help accelerate the training of deep neural networks and improve their
performance.

Adagrad

Adagrad (Adaptive Gradient) is an optimization algorithm used in machine learning and deep learning to optimize the training of neural
networks.

The Adagrad algorithm adjusts the learning rate of each parameter of the neural network adaptively during the training process. Specifically, it
scales the learning rate of each parameter based on the historical gradients computed for that parameter. In other words, parameters that have
large gradients are given a smaller learning rate, while those with small gradients are given a larger learning rate. This helps prevent the learning
rate from decreasing too quickly for frequently occurring parameters and allows for faster convergence of the training process.

The Adagrad algorithm is particulary useful for dealing with sparse data, where some of the input features have low frequency or are missing.
In these cases, Adagrad is able to adaptively adjust the learning rate of each parameter, which allows for better handling of the sparse data.

Overall, Adagrad is a powerful optimization algorithm that can help accelerate the training of deep neural networks and improve their
performance

https://manara.edu.sy/

https://manara.edu.sy/

2\

6)liaJl

LI EE R S A

Adadelta

Adadelta is an optimization algorithm used in machine learning and deep learning to optimize the training of neural networks. It is a variant of
the Adagrad algorithm and addresses some of its limitations.

The Adadelta algorithm adapts the learning rate of each parameter in a similar way to Adagrad, but instead of storing all the past gradients, it
only stores a moving average of the squared gradients. This helps to reduce the memory requirements of the algorithm.
Additionally, Adadelta uses a technique called "delta updates” to adjust the learning rate. Instead of using a fixed learning rate, Adadelta uses

the ratio of the root mean squared (RMS) of the past gradients and the RMS of the past updates to scale the learning rate. This helps to further
prevent the learning rate from decreasing too quickly for frequently occurring parameters.

RMSProp

RMSProp (Root Mean Square Propagation) is an optimization algorithm used in machine learning and deep learning to optimize the training of
neural networks.

Like Adagrad and Adadelta, RMSProp adapts the learning rate of each parameter during the training process. However, instead of accumulating
all the past gradients like Adagrad, RMSProp computes a moving average of the squared gradients. This allows the algorithm to adjust the
learning rate more smoothly, and it prevents the learning rate from decreasing too quickly.

The RMSProp algorithm also uses a decay factor to control the influence of past gradients on the learning rate. This decay factor allows the
algorithm to give more weight to recent gradients and |ess weight to older gradients

One of the main advantages of RMSProp over Adagrad is that it can handle non-stationary objectives, where the underlying function that the
neural network is trying to approximate changes over time. In these cases, Adagrad may converge too quickly, but RMSProp can adapt the
learning rate to the changing objective function.

Overall, RMSProp is a powerful optimization algorithm that can help accelerate the training of deep neural networks and improve their
performance, particularly in situations where the objective function is non=stationary.

Adam

Adam (Adaptive Moment Estimation) is an optimization algorithm used in machine learning and deep learning to optimize the training of neural
networks.

Adam combines the concepts of both momentum and RMSProp. It maintains a moving average of the gradient's first and second moments,
which are the mean and variance of the gradients, respectively. The moving average of the first moment, which is similar to the momentum

https://manara.edu.sy/

https://manara.edu.sy/

