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Time Domain Analysis of First-Order System
a,y" +a,y"P +.....+a ¥y +ay=bx™ +bx"™P + . +b X +b_x

* Where x is the input of the system and y is the output of the system.

(o.o]

Laplace Transformation L| f()|=F(s) = I f (t)e 'dt
0
¥ [output
Transfer function = G(s) = — ,QE-PUJ
J[l nPUt] zero imtial conditions
L[output] Y(s) by,s"+bs™ " +....+b,,;s+b,

G(s) =

L[input] X(s) a,s"+as"t+...+a ,s+a
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dx
° +bx. = cX (t
dt : (0)

(as +Db) X, ,(s) =cX.,(s)

G(s) = >><(0 (8) = as(:Lb

>y

6jliaJl

K steady-state gain constant

T: time constant (seconds)
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Steady-state gain
The steady-state of a TF can be used to calculate the steady-state change in an output due to a steady-state change in the
input. For example, suppose we know two steady states for an input, &, and an output, y. Then we can calculate the steady-

state gain, K from:

K — Y= ¥
u, —u,

Time constant
In brief, the time constant relates to the analytical solution for the unit step response of a first order differential equation,

and is the time taken for the output to reach 63% of the steady-state value
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Examples of First-Order Systems

6jligJi
FE dv
e m—+cv = f
T m dt m
e
jmE :
o r-2
C
AAA——
p- RC ﬁ+v=1.r$
o C— = &t
N . T = RC
To
D)
AR —+ pgh = Rq,
ol . 3
v Ps
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Laplace transform £\ f(1)]

o

s(s + a)

&)liaJl
Step Response of First-Order System
Xis)=8B/s - K > X.(5)
1+Ts
BK i Time function (1)
XO(S) — = BK T 1 .
s(1+Ts) s(s+ ) ] —e
¢ T
x, () =BK@—e T)
B=1(unit step)
K=1(unity gain) i

x.(t)=1—e T
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clf) |
I
0.632
= =2 = =
e ok =2 > i
) = W) [ =] an
W o ==} [ am
0 T 2T AT AT 5T t

In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value. At = 37.4T,
and 57, the response reaches 95%. 98.2%. and 99.3%. respectively. of the final value. Thus,
for t = 4T, the response remains within 2% of the final value.
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Time Domain Analysis of Second-Order System

d?®x dx
S +b—2 +cXx. =ex (t
dt? dt © (0)

(as® +bs+c) X, (s) =eX,(s)

X e
G(s)=—=2(s) =
(<) Xi() as’ +bs+c
e
c K Kw._?
G(s) = = G(s)=— 5 G(s)=— 2
A2, P19 <2 L 25 o1 S® 4+ 24W,. S + W,
C C an W

K: steady-state gain constant
w : undamped natural frequency(rad/s)

¢: damping ratio
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N e . .
S = = mE e Stk = f
2
Id f+cd9+k9:T
dt dt
AT
2
é? T L G RC Gy
: dh
e RA L+ pg(h, — h,) = Rq,
h£|: 3N ; 1-‘\ ”Th}qmﬁhm d;:rz + pg(h, — h)+ pgh, = 0
R R
RLC1£+T — Tb
|| 7 R |~ dt
o dr,
c R\R,C, + (R, + R,)T, = R,T + RT,
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Roots of the Characteristic Equation

The time response of any system has two components:

(a) Transientresponse

(b) Steady-state response

(as® +bs+c)X,(s)=0

Discriminant Roots Transient response type
(aSZ 4 bS + C) — O b* > 4ac 51 and s> real Overdamped
and unequal Transient
Response

Characteristic Equation

=

b° = 4ac 51 and s» real
and equal

—b++/b%—4ac

S,,S, = b* < 4dac s and s> complex
2a conjugate of the

form: 51, 2 = —~o % jw

Criucally

Damped Transient
Response
Underdamped
Transient
Response

https://manara.edu.sy/
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X,(t)

Underdamping (s;and sz complex)

Critical damping
(5, and s: real and equal)

Owverdamping
(s, and s, real and unegual)
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Critical Damping and Damping Ratio
Critical damping

When the damping coefficient C of a second-order system has its critical value C. the system, when disturbed, will reach its

steady-state value in the minimum time without overshoot. This is when the roots of the Characteristic Equation have equal
negative real roots.

Damping ratio

The ratio of the damping coefficient C in a second-order system compared with the value of the damping coefficient C,

required for critical damping is called the Damping Ratio C_,

( =0 No damping

C ( <1 Underdamping
é/ — C ( =1 Critical damping
¢ > 1 Overdamping

https://manara.edu.sy/
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EXAMPLE

Find the value of the critical damping coefficient C.: in terms of K and m for the
spring-mass-damper system shown in Figure

N
N C
\ E
N
N m Lumped Parameter Diagram
(a)
K
Ft) —»
N
— XO(”
Cx, «—
m —— F({t) Free-Body Diagram
b
K, (b)
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From Newton’'s second law

From the free-body diagram
F(1) — Kxo(1) — Cxo(1) = mx,(7)
Taking Laplace transforms, zero initial conditions
F(s) — KXo(s) — CsXo(s) = msXo(s)
or

(ms® + Cs + K)X(s) = F(s)

Characteristic Equation is ms2 +Cs+ K =0

. C K
ie. s +—+—=0
m m

https://manara.edu.sy/
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I C i
S|, 2 ==—( — —:t\/<£) _45
2 m m m

For critical damping. the discriminant is zero, hence the roots become

and the roots are

C.
S = & = — Y
Also, for critical damping
C: 4K
mZ  m
2 - 4Km?
m

giving

C. = 2v Km
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Generalized Second-Order System Response to a unit Step Input

Consider a second-order system whose steady-state gain 1s K, undamped natural

frequency is w, and whose damping ratio is ¢, where < 1. For a unit step input, the
block diagram is as shown in Figure

- — 'E XD[S}
. Ke? x@=ve ) ki >
ol5) = ."i'l:."i'z + 2Cn s + i-ua} S +2Cw,S + W
A Bs + C | i .
Xo($) =+ 12 T 200ns T 02 multiply by s(s* + 2¢was + w;)

Kw: = A(s* +2¢wns + ) + Bs” + Cs

https://manara.edu.sy/


https://manara.edu.sy/

Equating coefficients
(s°): 0=A+ B
(s"): 0=2@w.A+C
(s") : Kmﬁ — wﬁfl

A=K, B=-K and C = —2@w.K

1 s + 2Cwy
Xols) = K |:? B {sz + 2¢wns + w2 }]

Completing the square

Xo(s) = K[l - { = 2@: > "H - K|S~ = zc%ﬁ/ 2
s (s + Cwn)™ + wy — CFwy * (s + wn)® + (“"’“ L= Cz)

https://manara.edu.sy/
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The terms in the brackets { } can be written in the standard forms

Term (1) = — .
(s + Cwn) + (u;n v 1 — {3)
Yo w1 — 2
Tcrm{Z}zw{ ZCWn _,} VA 2
eVl = | (s + n)+ (wa/T— Q)
e 'sinot "*"} .
(s+a) +w
e "cosmt >ra
Inverse transform (s+a) +o

o) = K [1 _ e_‘:“““’{cns (cas/T—C)e + ( ﬁ) in (w \/fgz)f}]
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When ¢ =0
xXo(t) = K[l — en{cosmnf + 0}]
= K[l — cos wy!]
From equation it can be seen that when there i1s no damping, a step input will
cause the system to oscillate continuously at w, (rad/s).
Damped natural frequency wy

wg =waV 1 —C

where wy 1s called the damped natural frequency.

* s . |
Xo(?) = K |1 — e **'{ coswat + = | sinwat
! { (\/ P C“) }J

e—Cent JI—&
= K|l — =sIn (wa? + @) tan ¢ =
Y ] ¢
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Definitions of Transient-Response Specifications

The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of
a control system to a unit-step input, it is common to specify the following:

1. Delay time, 1,

2. Rise time, 1,

3. Peak time, 1,

4. Maximum overshoot, M,
S. Settling time, 7,

These specifications are defined in what follows and are shown graphically in Figure

https://manara.edu.sy/
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c(r) A

Allowable tolerance

https://manara.edu.sy/



https://manara.edu.sy/

Py

1. Delay time, 7,;: The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, 7,: The rise time is the time required for the response to rise from 10%
to 90%, or 0% to 100% of its final value.

3. Peak time, 7,:'The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, M ,: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum

percent overshoot. It is defined by
) C(tp) — ¢(o0)
Maximum percent overshoot =
c(o0)

5. Settling time, 7,: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the

largest time constant of the control system.

=< 100%
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https://manara.edu.sy/

Py

LR LT T

Second-Order System and Transient-Response Specifications

Peak time t,,: Referring to Equation , we may obtain the peak time by differen-
tiating c(#) with respect to time and letting this derivative equal zero. Since

dc Lot
I = {w, € """ | COSwyl +

v,lg—‘:zsin mdr)

— . g
+ e *3'“'"’(md Sin w,f — 5

N COS mdr)
— ¢

and the cosine terms in this last equation cancel each other, dc/dt, evaluated att = iy,
can be simplified to

E
dt

e
= (sinwgt,) - e tutp = ()
d®p 7
t=t,, 1 — ¢

https://manara.edu.sy/
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This last equation yields the following equation:

sin wyt, = 0
or

wyt, = 0, 7, 27, 37, ...

Since the peak time corresponds to the first peak overshoot, w,f, = 7. Hence

https://manara.edu.sy/
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Maximum overshoot M,: The maximum overshoot occurs at the peak time or at
t =1, = m/w,. Assuming that the final value of the output is unity, M , is obtained from

Equation as

M, = c(t,) — 1
= _.e-{wn(”/wd)(cosﬂ' -+ ¢ sin'n')
V1 — 72
o= {w,

ol . /N 1= . .
IR = g Ee where o is called the attenuation
The maximum percent overshoot is e /@™ x 100%.

If the final value ¢(oc) of the output is not unity, then we need to use the following

equation: o(t,) — c(o0)

Me = T o)

P

https://manara.edu.sy/
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Settling time t,:  For convenience in comparing the responses of systems, we commonly

define the settling time 7, to be

4 4 D
, = —=— (2% criterion)
l a gmﬂ'
or
3 3 L
[, = — = (5% criterion)
or L,

https://manara.edu.sy/
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EXAMPLE

Consider the system shown in Figure ,where { = 0.6 and ,, = 5 rad/sec. Let us obtain the

peak time 7,, maximum overshoot M, and settling time 7, when the system is subjected
to a unit-step input.

R(s) e " C(s)

2 ..
S +2(w,S + W

From the given values of ¢ and w,,. we obtain w; = ©,V1 — > = 4and o = {w, = 3.

Peak time t,: The peak timeis , = — = —— = 0.785 sec

https://manara.edu.sy/
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Maximum overshoot M,: The maximum overshoot is
M, = e o/wdm = ¢~ (3/4)x314 = 0,095
The maximum percent overshoot is thus 9.5%.

Settling time t,:

4 4
For the 2% criterion, the settling time is 1, = — = 5= 1.33 sec
o
R— 3 3
For the 5% criterion, [, = —=—=1sec
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