
https://manara.edu.sy/

https://manara.edu.sy/General Vector Spaces 1/342024-2025

CECC122: Linear Algebra and Matrix Theory

Lecture Notes 5: General Vector Spaces

Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Informatics

Manara University

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/General Vector Spaces 2/342024-2025

1. Real Vector Spaces

2. Subspaces of Vector Spaces

3. Spanning Sets and Linear Independence

4. Basis and Dimension

5. Rank and Nullity of a Matrix

6. Coordinates and Change of Basis

Chapter 4

General Vector Spaces

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/General Vector Spaces 3/342024-2025

1. Real Vector Spaces

▪ Definition: Let V be a set on which two operations (vector addition and 

scalar multiplication) are defined. If the following axioms are satisfied for 

every  u, v, and w in V and every scalar c and d, then V is called a vector 

space.

(1)  u + v is in V      Closure under addition

(2)  u + v = v + u      Commutative property

(3)  u + (v + w) = (u + v) + w    Associative property

(4) V  has a zero vector 0: for every u in V, u + 0 = u Additive identity

(5)  For every u in V, there is a vector in V denoted by –u: u + (–u) = 0

Addition:

Scalar identity
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Scalar multiplication:

(6) cu is a vector in V   Closure under scalar multiplication

(7) c(u + v) = cu + cv   Distributive property

(8) (c + d)u = cu + du   Distributive property

(9) c(du) = (cd)u    Associative property

(10) 1(u) = u     Scalar identity

▪ Notes:

(1)  A vector space (V, +, .) consists of four entities:

a nonempty set V of vectors, a set of scalars, and two operations (+, .)

(2) V = {0}  zero vector space
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▪ Examples of vector spaces:

(1) Euclidean vector space: V = Rn

Example: (m = n = 2)

vector addition

scalar multiplication

( , , , ) ( , , , ) ( , , , )n n n nu u u v v v u v u v u v+ = + + +1 2 1 2 1 1 2 2

( , , , ) ( , , , )n nk u u u ku ku ku=1 2 1 2

(2) Matrix space: V = Mmxn (the set of all m×n matrices with real values)

u u v v u v u v
u u v v u v u v

+ +     
+ =     + +     

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u ku ku
k

u u ku ku
   

=   
   

11 12 11 12

21 22 21 22

vector addition

scalar multiplication
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(3) n-th degree polynomial space: V = Pn(x)

    (the set of all real polynomials of degree n or less)

( ) ( ) ( ) ( ) ( ) n
n np x q x a b a b x a b x+ = + + + + + +0 0 1 1

( ) n
nkp x ka ka x ka x= + + +0 1

(4) Function space: ( ),V c= −   (the set of all real functions)

( )( ) ( ) ( )f g x f x g x+ = +

( )( ) ( )kf x kf x=

▪ Theorem 1: (Properties of scalar multiplication)

Let v any element of a vector space V, and let c be any scalars. Then the 

following properties are true: 

(1) 0v = 0 (2) c 0 = 0 (3) If cv = 0, then c = 0 or v = 0 (4) (–1)v = –v
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vector addition:

scalar multiplication: Verify that V is not a vector space

( , ) ( , ) ( , )u u v v u v u v+ = + +1 2 1 2 1 1 2 2

( , ) ( ,0)c u u cu=1 2 1

▪ Note: To show that a set is not a vector space, you need only find one axiom 

that is not satisfied.

▪ Example 1: V = R2 = the set of all ordered pairs of real numbers

1(1, 1) = (1, 0) ≠ (1, 1) ⇒ V with the given operations is not a vector space.

▪ Example 2: Set of all real polynomials of degree n Is Not a vector space. Why?

▪ Definition: A non-empty subset W of a vector space V is called a subspace of V 

if it is also a vector space with respect to the same vector addition and scalar 

multiplication as V.

2. Subspaces of Vector Spaces
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▪ Trivial subspace: Every vector space V  has at least two subspaces:

(1) Zero vector space {0} is a subspace of V.

(2) V  is a subspace of V.

If W is a nonempty subset of a vector space V, then W  is a subspace of V if 

and only if the following conditions hold:

(1) If u and v  are in W, then  u + v  is in W.

(2) If u is in W and c is any scalar, then cu is in W.

▪ Theorem 2: (Test for a subspace)

▪ Notes:

(1) If  u and v  are in W, c and d are any scalars, then cu + dv is in W.⇒ W is 

a subspace of V.
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(1) {0}  (2) Lines through the origin (3) R2

(2) If W is a subspace of a vector space V, then W contains the zero vector 0 

of V.

▪ Example 3: Subspaces of R2
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(1) {0}  0 = (0, 0, 0)

(2) Lines through the origin

(3) Planes through the origin

(4) R3

▪ Example 5: Subspaces of R3

Show that the subset of R2 consisting of all points on 

x2 + y2 = 1 is not a subspace.

(not closed under addition)

points (1, 0) and (0, 1) are in the subset, but their 

sum (1, 0) + (0, 1) = (1, 1) is not.

▪ Example 4: (A Subset of R2 That Is Not a Subspace)
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Which of the following two subsets is a subspace of R2?

     (a) The set of points on the line given by x + 2y = 0.

     (b) The set of points on the line given by x + 2y = 1.

Yes

No

▪ Example 6: (Determining subspaces of R2)

Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of 

the vector space M2×2, with the standard operations of matrix addition and 

scalar multiplication.

▪ Example 7: (A subspace of M2×2)

▪ Example 8: (The set of singular matrices is not a subspace of M2×2)

Let W be the set of singular matrices of order 2. Show that W is not a 

subspace of M2×2 with the standard operations.
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▪ Theorem 3: (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V 

and W (denoted by V ∩W) is also a subspace of U.

3. Spanning Sets and Linear Independence

▪ Definition: A vector v in a vector space V is called a linear combination of the 

vectors v1, v2, …, vk in V if v can be written in the form v = c1v1 + c2v2 + … + ckvk 

where c1, c2, …, ck are scalars.

▪ Example 9: (Finding a Linear Combination)

Write the vector v = 1 + x + x2 in P2 as a linear combination of vectors in the 

set S = {v1 = 1, v2 = 1 − x, v3 = 1 − x2}.

v = 1 + x + x2 = 3v1 − v2 − v3. 
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▪ Definition: Let S = {v1, v2,…, vk} be a subset of a vector space V. The set S  is 

a spanning set of V if every vector in V can be written as a linear combination 

of vectors in S. In such cases it is said that S spans V.

▪ The set S = {1, x, x2} spans P2 because any polynomial p(x) = a + bx + cx2 in P2 

can be written as: p(x) = a(1) + b(x) + c(x2).

 1 1 2 2span( ) k k iS c c c c R= + + +  v v v

▪ Definition: If S = {v1, v2,…, vk} is a set of a vectors in a vector space V, then 

the span of S is the set of all linear combinations of the vectors in S.

The span of S is denoted by: span(S) or span{v1, v2,…, vk}.

When span(S) = V, it is said that V is spanned by {v1, v2,…, vk}, or that S 

spans V.
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v is a nonzero vector

span{v} is the line through 

the origin determined by v
span{v1, v2} is the plane through the

origin determined by v1 and v2

▪ Example 10: (A Geometric View of Spanning in R3)
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If S = {v1, v2,…, vk} is a set of vectors in a vector space V, then

(a) span(S) is a subspace of V.

(b) span(S) is the smallest subspace of V that contains S.

▪ Theorem 4: (Span(S) is a subspace of V)

▪ Example 11: (Finding subspace spanned by a set of vectors)

Find the vector subspace spanned by the vectors {v1 = (1, 1, 1), v2 = (1, 2, 3)} 

2 2

3 2

x x
y y x y z x
z z x

   

  

  

= + = −

= +  = +  − =

= + = +

x = (x, y, z)  span (v1, v2) ⇒ x = v1 + v2 = (1, 1, 1) + (1, 2, 3) 

⇒ span (v1, v2 ) = {(x, y, z)  R3|x − 2y + z = 0}
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▪ Definition: A set of vectors S = {v1, v2,…, vk} in a vector space V linearly 

independent (LI) when the vector equation c1v1 + c2v2 + … + ckvk =  has only 

the trivial solution c1 = c2 = … ck = 0.

 If there are also nontrivial solutions, then S is linearly dependent (LD).

▪ Example 12:  (Testing for linearly independent)

Determine whether S = {v1 = 1 + x – 2x2, v2 = 2 + 5x – x2, v3 = x + x2} in P2 is LI or LD

1 2

1 2 3 3 1 2 3

1 2 3

2 0

5 0

2 0

c c
c c c c c c

c c c

+ =

+ + =  + + =

− − + =

v v v
1 2

0

1 2 0 0

1 5 1 0

2 1 1 0

 
 
 
− − 

1 2 0 0

1 1 1/3 0

0 0 0 0

 
 
 
 

Gauss Elimination ⇒ Infinitely many solutions 

⇒ S is linearly dependent

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/General Vector Spaces 17/342024-2025

4. Basis and Dimension

Generating

Sets
Basis

Linearly

Independent

Sets

▪ Definition: A set of vectors S = {v1, v2,…, vn} in a vector space V is a basis for 

V when the conditions below are true 

 1. S spans V. 2. S is linearly independent.

▪ The standard basis for Rn 
:

S = {e1, e2, …, en}    e1 = (1,0,…,0), e2 = (0,1,…,0), en = (0,0,…,1)

Example: R4 S = {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

▪ The standard basis for Mmn matrix space: {Eij | 1  i  m, 1  j  n}

Example: M2x2
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

S         
=                 
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If S ={v1, v2, …, vn} is a basis for a vector space V, then every vector in V can 

be written in one and only one way as a linear combination of vectors in S.

▪ Theorem 5: (Uniqueness of basis representation)

If S ={v1, v2, …, vn} is a basis for a vector space V, then every set containing 

more than n vectors in V is linearly dependent.

▪ Theorem 6: (Bases and linear dependence)

If a vector space V  has one basis with n vectors, then every basis for V  has n 

vectors.

▪ Theorem 7: (Number of vectors in a basis)

▪ Definition: A vector space V  is called finite dimensional, if it has a basis 

consisting of a finite number of elements.
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(the number of vectors in S)

▪ Definition: The dimension of a finite dimensional vector space V  is defined to 

be the number of vectors in a basis for V.

V: a vector space, S: a basis for V  dim(V) = #(S)

▪ Notes:

(1) dim({0}) = 0

(2) dim(V) = n, S  V

S: a generating set   #(S)  n

S: a LI set                #(S)  n

S: a basis    #(S) = n

Generating

Sets
Basis

Linearly

Independent

Sets

#(S)  n #(S) = n #(S)  n

dim(V) = n
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5. Rank and Nullity of a Matrix

The Three Fundamental Spaces of a Matrix If A is an mxn matrix, then 

▪ Definition: The subspace of Rn spanned by the row vectors of A is denoted by 

row(A) = RS(A) and is called the row space of A.

▪ Definition: The subspace of Rm spanned by the column vectors of A is 

denoted by col(A) = CS(A) and is called the column space of A.

▪ Definition: The solution space of the homogeneous system Ax = 0, which is a 

subspace of Rn, is denoted by null(A) = NS(A) and is called the null space of A.

If A is an mxn matrix, then the row space and the column space of A have the 

same dimension dim(RS (A)) = dim(CS (A)).

▪ Theorem 8: (Row and column space have equal dimensions)
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▪ Theorem 9: (Solution of a system of linear equations)

The system of linear equations Ax = b is consistent if and only if b is in the 

column space of A.

▪ Definition: The dimension of the row (or column) space of a matrix A is called 

the rank of  A and is denoted by rank(A): rank(A) = dim(RS (A)) = dim(CS (A)).

▪ Definition: The dimension of the nullspace of A is called the nullity of A: 

nullity(A) = dim(NS (A)).

▪ Theorem 10: If A is any matrix, then rank(A) = rank(AT).

▪ Notes:

(1) The maximum number of linearly independent vectors in a matrix is equal 

to the number of non-zero rows in its row echelon matrix.
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(3) The number of free variables in the reduced row-echelon form of A is 

equal to the nullity of A.

If rank([A|b]) = rank(A), then the system Ax = b is consistent.

(2) The number of leading 1’s in the reduced row-echelon form of A is equal 

to the rank of A.

▪ Theorem 11: (Consistency of Ax = b)

▪ Notes:

(1) If rank(A) = rank(A|b) = n, then the system Ax = b has a unique solution.

(2) If rank(A) = rank(A|b)  n, then the system Ax = b has ∞-many solutions.

(3) If rank(A)  rank(A|b), then the system Ax = b is inconsistent.
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1 1 1 3

2 2 6 8

3 5 7 8

A
− 

 = −
 − 

Gauss Elimination
1
2

1 1 1 3

0 1 2
0 0 0 0

− 
 − −
 
 

rank(A) = 2 (2 non-zero rows) nullity(A) = 2 (2 free variables) 

▪ Example 14 : (Finding the solution set of a nonhomogeneous system)

1 2 3

1 3

1 2 3

1
3

3 2 1

x x x
x x
x x x

+ − = −
+ =

+ − =

▪ Example 13:  (Rank by Row Reduction)

1 1 1

1 0 1

3 2 1

A
− 

 =
 − 

Gauss-Jordan Elimination
1 0 1

0 1 2

0 0 0

 
 −
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1 1 1 1

[   ] 1 0 1 3

3 2 1 1

A
− − 

 =
 − 

b
Gauss-Jordan Elimination

1 0 1 3

0 1 2 4

0 0 0 0

 
 − −
 
 

1 3 1 3

2 3 2 3

3 3

2 4 4 2

x x x x
x x x x

+ = = −

− = −  = − +

letting x3 = t, then the solutions are: {(3 − t, −4 + 2t, t)|t  R} 

So the system has infinitely many solutions (consistent)

▪ Note: rank(A) = rank([A ⁞ b]) = 2.

▪ Theorem 12: (Dimension Theorem for Matrices)

If A is a matrix with n columns, then rank(A) + nullity(A) = n.
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1 0 2 1 0

0 1 3 1 3

2 1 1 1 3

0 3 9 0 12

A

− 
 − −

=  − − −
 − 

G.J. Elimination

1 0 2 0 1

0 1 3 0 4

0 0 0 1 1

0 0 0 0 0

B

− 
 −

=  −
 
 

rank(A) = 3        (the number of nonzero rows in B)

nullity(A) = n – rank(A) = 5 − 3 = 2

▪ Example 15 : (Rank and nullity of a matrix)

Find the rank and nullity of

1 0 2 1 0

0 1 3 1 3

2 1 1 1 3

0 3 9 0 12

A

− 
 − −

=  − − −
 − 
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If A is an nxn  matrix, then the following conditions are equivalent:

▪ Summary of equivalent conditions for square matrices:

(1)  A is invertible

(2)  Ax = b has a unique solution for any n×1 matrix b.

(3)  Ax = 0  has only the trivial solution.

(4)  A  is row-equivalent to In.

(5)  |A| ≠ 0.              

(6)  rank(A) = n.

(7)  The n row vectors of A are linearly independent.

(8)  The n column vectors of A are linearly independent.
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6. Coordinates and Change of Basis

The scalars c1, c2, …, cn are called the coordinates of x relative 

to the basis B. The coordinate matrix (or coordinate vector) of x 

relative to B is the column matrix in Rn  whose components are 

the coordinates of x.

▪ Coordinate representation relative to a basis: Let B = {v1, v2, …, vn} be an 

ordered basis for a vector space V and let x be a vector in V such that: 

x = c1v1 + c2v2 + … + cnvn.

 
1

2
B
x

 
 

=  
 
 n

c
c

c

Find the coordinate matrix of x = (–2, 1, 3) in R3 relative to the 

standard basis S.

▪ Example 16 : (Coordinates and components in Rn)

( 2, 1, 3) 2(1, 0, 0) 1(0, 1, 0) 3(0, 0, 1)= − = − + +x

2

[ ] 1

3
S

− 
 =
 
 

x
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▪ Example 17 : (Finding a coordinate matrix relative to a nonstandard basis)

Find the coordinate matrix of x = (1, 2, −1) in R3 relative to the (nonstandard) 

basis B' = {u1, u2, u3} = {(1, 0, 1), ( 0, −1, 2), (2, 3, −5)}

1 2 3 1 2 3(1,2, 1) (1,0,1) (0, 1,2) (2,3, 5)c c c c c c= + +  − = + − + −
1 2 3

x u u u

1 3 1

2 3 2

1 2 3 3

2 1 1 0 2 1

   3 2  i.e.   0 1 3 2

2 5 1 1 2 5 1

c c c
c c c

c c c c

+ =      
      − + = − =
     

+ − = − − −     

1 0 2 1

0 1 3 2

1 2 5 1

 
  −
 − − 

G. J. Elimination
1 0 0 5

0 1 0 8  

0 0 1 2

 
 −
 − 

5

[ ] 8

2
B 

 
  = −
 − 

x
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▪ Change of basis: Given the coordinates of a vector relative to a basis B, find 

the coordinates relative to another basis B ′.

Change of Basis In Rn

In Example 17, let B be the standard basis. Finding the coordinate matrix of 

x = (1, 2, –1) relative to the basis B ′ becomes solving for c1, c2, and c3 in the 

matrix equation.
1

2

3

1 0 2 1

0 1 3 2

1 2 5 1

c
c
c

     
     − =
     

− −     
P [x]B ′ [x]B

P is the transition matrix from B′ to B,

P[x]B ′ = [x]B  Change of basis from B ′ to B

[x]B ′ = P−1 [x]B Change of basis from B to B ′
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1 4 2 1 5

3 7 3 2 8

1 2 1 1 2

−     
     − − = −
     

− − − −     
P−1   [x]B     [x]B ′

[x]B ′ = P−1
 [x]B

Coordinate
matrix of x

relative to B ′

Transition

matrix from
B to B ′

Coordinate
matrix of x

relative to B

▪ Theorem 13: (The inverse of a transition matrix)

If P is the transition matrix from a basis B ' to a basis B in Rn, then  

(1)  P is invertible.

(2)  The transition matrix from B to B ' is P
–1

.
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▪ Notes:

       

       

1 2 1 2

1 2

1

1 2

{ , , , }, ' { , , , }

[ ] , [ ] , , [ ]    

[ ] , [ ] , , [ ]    

u u u u u u

v u u u v v

v u u u v v
 

−

  

  = =

  = =

= =

... ...

...

...

n n

B B n BB B B

B B n BB B B

B B

P

P

Let B = {v1, v2, … , vn} and B ' = {u1, u2, …, un} be two bases for Rn. Then the 

transition matrix P–1 from B to B ' can be found by using Gauss-Jordan 

elimination on the nx2n matrix [B '⋮B] as follows: [B '⋮B] 

 

[In⋮P–1] 

 

▪ Theorem 14: (Transition matrix from B to B ')

B = {(–3, 2), (4,–2)} and B ' = {(–1, 2), (2,–2)} are two bases for R2 

(a) Find the transition matrix from B ' to B.

▪ Example 18: (Finding a transition matrix)
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(b) Let       find [v]B

(c) Find the transition matrix from B to B '.

1
[ ] ,

2'B

 
=  

 
v

B        B ' I      P (the transition matrix 

from B ' to B)

3 4 1 2

2 2 2 2

− − 
 − − 

  G. J. Elimination 1 0 3 2

0 1 2 1

− 
 − 

  3 2

2 1
P

− 
 =  − 

(a) 

(b) 
1 3 2 1 1

[ ] [ ] [ ]
2 2 1 2 0

v v v 

− −       
=  = = =       −       

B B BP

▪ Check:
1

[ ] (1)( 1, 2) (2)(2, 2) (3, 2)
2

1
[ ] ( 1)(3, 2) (0)(4, 2) (3, 2)

0

v v

v v



 
=  = − + − = −  

− 
=  = − − + − = −  

B

B
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(c) 

B '       B I P –1

1 2 3 4

2 2 2 2

− − 
 − − 

G. J. Elimination 1 0 1 2

0 1 2 3

− 
 − 

(the transition matrix 

from B to B ')

1 1 2

2 3
P − − 

 =  − 

▪ Check:
1

2

3 2 1 2 1 0

2 1 2 3 0 1
PP I− − −     

= = =     − −     

Find the transition matrix from B to B ' for The bases for R3 below.

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B ' = {(1, 0, 1), (0, −1, 2), (2, 3, −5)}

1 0 0 1 0 2
0 1 0 , 0 1 3
0 0 1 1 2 5

B B
   

   = = −
   −   

▪ Example 19: (Finding a transition matrix)
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B '        B I          P –1

1 0 2 1 0 0

0 1 3 0 1 0

1 2 5 0 0 1

 
 −
 − 

G. J. Elimination
1 0 0 1 4 2

0 1 0 3 7 3

0 0 1 1 2 1

− 
 − −
 − − 

1 4 2 1 5

3 7 3 2 8

1 2 1 1 2

−     
     − − = −
     − − − −     

the result is the  same as that obtained 

in Example 17
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