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1. Introduction to Linear Transformations

Images And Preimages of Functions:

▪ Function T that maps a vector space V into a vector space W.

T: V                     W,  V, W: vector spaces
Mapping

▪ If v is in V and w is in W such that: T(v) = w, 
Then w is called the image of v under T. 

▪ The range of  T: The set of all images of vectors in V.

▪ The preimage of w: The set of all v in V such that T(v) = w.

: , ( , ) ( , ) ( , )v→ =  = − +T R R v v R T v v v v v v2 2 2
1 2 1 2 1 2 1 22

▪ Example 1: (A function from R2 into R2)
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(a) Find the image of v = (−1, 2)  (b) Find the preimage of w = (−1, 11)

( ) ( , ) ( ) ( , ) ( , ( )) (  )v v1 2 1 2 1 2 1 2 2 3 3,a T T= −  = − = − − − + = −

Thus {(3, 4)} is the preimage 

of w = (−1, 11)

( ) ( ) ( , ) ( , ) ( , ) (  )v w 1 2 1 2 1 21 11 2 1 11,b T T v v v v v v= = −  = − + = −

, 
− = −

  = =
+ =

v v
v v

v v
1 2

1 2
1 2

1
3 4

2 11

▪ Definition: If T ∶ V → W is a mapping from a vector space V to a vector space 

W, then T is called a linear transformation (LT) from V to W if the following 

two properties hold for all vectors u and v in V and for all scalars c:

(1) T(u + v) = T(u) + T(v)  [Additivity property]

 (2) T(cu) = cT(u)   [Homogeneity property]

When V = W, the linear transformation T is called a linear operator on 𝑉.
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: , ( , ) ( , ) ( , )v→ =  = − +T R R v v R T v v v v v v2 2 2
1 2 1 2 1 2 1 22

▪ Example 2: (Verifying a linear transformation T from R2 into R2)

( , ),  ( , )u u v v= =1 2 1 2u v vectors in R2, c: any real

( ) ( , )

(( ) ( ),( ) ( ))

(( ) ( ),( ) ( ))

( , ) ( , ) ( ) ( )

T T u v u v

u v u v u v u v

u u v v u u v v

u u u u v v v v T T

+ = + +

= + − + + + +

= − + − + + +

= − + + − + = +

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2

2 2

2 2

u v

u v

( ) ( , ) ( , ) ( , ) ( )u u= = − + = − + =T c T cu cu cu cu cu cu c u u u u cT1 2 1 2 1 2 1 2 1 22 2

Therefore, T is a linear transformation.

T: Pn → Pn−1: T(p) = T(p(x)) = p' (x)  derivative

▪ Example 3: (A Linear Transformation from Pn to Pn−1, n ≥ 1)
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p = p(x) = c0 + c1x + …+ cnxn  Pn

T: Pn → Pn+1: T(p) = T(p(x)) = xp(x) = c0x + c1x2 + …+ cnxn+1

▪ Example 4: (A Linear Transformation from Pn to Pn+1)

▪ Example 5: (Functions that are not linear transformations)

( ) ( ) sina f x x=

( ) ( ) 2b f x x=

sin( ) sin( ) sin( )1 2 1 2x x x x+  +

( )2 2 2
1 2 1 2x x x x+  +

( ) ( ) 1c f x x= +

( )1 2 1 2 1f x x x x+ = + +

( ) ( ) ( ) ( )1 2 1 2 1 21 1 2f x f x x x x x+ = + + + = + +

( ) ( ) ( )1 2 1 2f x x f x f x+  +

( ) ( )v v=d T ( ) ( ) ( )u v u v u v u v+  +  +  +T T T
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▪ Identity transformation:

▪ Zero transformation: : ( ) ,  0v vT V W T V→ =  

: ( ) ,  v v vT V V T V→ =  

▪ Theorem 1: (Properties of linear transformations)

: , ,u vT V W V→ 

(1) ( )0 0T = (2) ( ) ( )v vT T− = − (3) ( ) ( ) ( )u v u vT T T− = −

(4) If   then

     ( ) ( ) ( ) ( )

v v v v

v v v v v v v

= + + +

= + + + = + + +( )
n n

n n n n

c c c

T T c c c cT c T c T
1 1 2 2

1 1 2 2 1 1 2 2

▪ Example 6: (Functions that are not linear transformations)

Let T: R3 →R3 be a linear transformation such that 

Find T(2, 3, −2)

( , , ) ( , , ), ( , , ) ( , , ), ( , , ) ( , , )= − = − =T T T1 0 0 2 1 4 0 1 0 1 5 2 0 0 1 0 3 1
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( , , ) ( , , ) ( , , ) ( , , )− = + −2 3 2 2 1 0 0 3 0 1 0 2 0 0 1

( , , ) ( , , ) ( , , ) ( , , )

                ( , , ) ( , , ) ( , , ) ( , , )

− = + −

= − + − − =

T T T T

T

2 3 2 2 1 0 0 3 0 1 0 2 0 0 1

2 2 1 4 3 1 5 2 2 0 3 1 7 7 0

The function T: R2 →R3 is defined as ( )v v
 

  = =
    − − 

v
T A v

1

2

3 0
2 1
1 2(a) Find T(v), where v = (2, −1)

(b) Show that T is a linear transformation from R2 into R3 

(a) v = (2, −1) ( )v v
   

    = = = −    − −   

T A
3 0 6

2
2 1 3

1
1 2 0

R3 vectorR2 vector

⇒ T(2,−1) = (6, 3, 0)

▪ Example 7: (A linear transformation defined by a matrix)
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(vector addition)

(scalar multiplication)

(b) T(u + v) = A(u + v) = Au + Av = T(u) + T(v) 

T(cu) = A(cu) = c(Au) = cT(u) 

▪ Theorem 2: (The linear transformation given by a matrix)

Let A be an mxn matrix. The function T defined by T(v) = Av is a linear 

transformation from Rn into Rm.

 

Show that the LT T: R2 →R2 given by the matrix

has the property that it rotates every vector in R2 counterclockwise about the 

origin through the angle . 

cos sin

sin cos
A

 
 

− 
=   

▪ Example 8: (Rotation in the plane)

v = (x, y) = (r cos , r sin ) (polar coordinates)
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Thus, T(v) is the vector that results from rotating the 

vector v counterclockwise through the angle . 

cos sin cos sin cos
( )

sin cos sin cos sin

cos cos sin sin
 

sin cos cos sin

cos( )
                 

sin( )

v v
    
    

   
   

 
 

− −       
= = =              

− 
=  + 

+ 
=  + 

x r
T A

y r

r r
r r

r
r

is called a projection in R3.

The LTT: R3 →R3 is given by the matrix
 
 =
 
 

A
1 0 0
0 1 0
0 0 0

▪ Example 9: (A projection in R3)
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2. The Kernel and Range of a Linear Transformation

(a) T(v) = 0 (the zero transformation) ker(T) = V

(b) T(v) = v (the identity transformation) ker(T) = {0}

▪ Definition: Let T∶ V → W be a Linear transformation. Then the set of all vectors 

v in V that satisfy T(v) = 0 is called the kernel of T and is denoted by ker(T).

ker(T) = {v|T(v) = 0, ∀v V}

▪ Example 10: (The kernel of the zero and identity transformations)

T(v) = (x, y, 0) T: R3 →R3

ker(T) = {(0, 0, z)| z is a real number}

▪ Example 11: (Finding the kernel of a LT)
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( ) ( : )x x
 

− −   = = → −   
 

x
T A x T R R

x

1
3 2

2

3

1 1 2
1 2 3

▪ Example 12: (Finding the kernel of a linear transformation)

ker( ) {( , , )| ( , , ) ( , ), ( ) }x= = = , ,T x x x T x x x x x x R31 2 3 1 2 3 1 2 30 0

( , , ) (0,0)
 

− −    =  =   −    
 

x
T x x x x

x

1

1 2 3 2

3

1 1 2 0
1 2 3 0

1 1 2 0

1 2 3 0

− − 
 − 

Gauss-J. Elimination 1 0 1 0

0 1 1 0

− 
 
 

1

2

3

1
1
1

    
    = − = − 
         

tx
x t t
x t

⇒ ker(T) = {t(1, −1, 1)|t is a real number} = span{(1, −1, 1)
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The range of a LT T: V → W is a subspace of the W.

The kernel of a linear transformation T: V → W is a subspace of the domain V.

▪ Theorem 3: (The kernel is a subspace of V)

▪ Definition: Let T∶ V → W be a Linear transformation. Then the set of all vectors 

w in W that are images of vectors in V is called the range of T and is denoted 

by range(T) or R(T).  range(T) = {T(v)|∀v V}

▪ Theorem 4: (The range is a subspace of W)

▪ Rank of a linear transformation T: V → W:

rank(T) = the dimension of the range of T

▪ Nullity of a linear transformation T: V → W:

nullity(T) = the dimension of the kernel of T

https://manara.edu.sy/
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▪ Note: Let T: Rn → Rm be the LT given by T(x) = Ax. Then

rank(T) = rank(A),  nullity(T) = nullity(A)

Let T: V → W be a LT from an n-dimensional vector space V into a vector 

space W. Then:

 rank(T) + nullity(T) = n

 dim(range of T) + dim(kernel of T) = dim(domain of T)

▪ Theorem 5: (Sum of rank and nullity)

Find the rank and nullity of the LT T: R3 → R3 defined by 
1 0 2

0 1 1

0 0 0

− 
 =
 
 

Arank(T) = rank(A) = 2

nullity(T) = dim(domain of T) − rank(T) =  −  =  

▪ Example 13: (Finding rank and nullity of a linear transformation)
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Let T: R5 → R7 be a linear transformation

(a) Find the dimension of the kernel of T if the dimension of the range is 2

(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) = {0}

(a) dim(domain of T) = 5 ⇒ dim(ker of T) = n − dim(range of T) = 5 − 2 = 3

(b) rank(T) = n − nullity(T) = 5 – 4 = 1  (c) rank(T) = n − nullity(T) = 5 – 0 = 5

▪ Example 14: (Finding rank and nullity of a linear transformation)

▪ Definition: A function T: V → W is one-to-one when the preimage of every w in 

the range consists of a single vector. 

T is one-to-one if and only if, for all u and v in V, T(u) = T(v) implies u = v.

3. Compositions and Inverse Transformations

https://manara.edu.sy/
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▪ Definition: A function T: V → W is 

onto when every element in W has 

a preimage in V. (T is onto W 

when W is equal to the range of T). 

▪ Theorem 6: (One-to-one LT)

Let T: V → W be a LT. Then T is 

one-to-one iff ker(T) = {0}.

(a) The linear transformation T: M3x2 → M2x3 given by T(A) = AT is one-to-one 

because its kernel consists of only the mxn zero matrix. 

▪ Example 15: (One-to-one and not one-to-one linear transformation)

(b) The zero transformation T: R3 → R3 is not one-to-one because its kernel is 

all of R3.
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Let T: V → W be a linear transformation, where W is finite dimensional. Then 

T is onto iff the rank of T is equal to the dimension of W.

▪ Theorem 7: (Onto linear transformation)

▪ Theorem 8: (One-to-one and onto linear transformation)

Let T: V → W be a linear transformation, with vector space V and W both of 

dimension n. Then T is one-to-one iff it is onto.

▪ Example 16: (One-to-one and onto linear transformation)

▪ Example 17: (One-to-one and not onto linear transformation)

The LT T: P3 → R4 given by T(a + bx + cx2 + dx3) = (a, b, c, d).

T: Pn → Pn+1: T(p) = T(p(x)) = xp(x)

https://manara.edu.sy/
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Let T: Rn → Rm be a LT given by T(x) = Ax. Find the nullity and rank of T to 

determine whether T is one-to-one, onto, or neither.

1 2 0 1 2 1 2 0
1 2 0

( ) 0 1 1 , ( ) 0 1 , ( ) , ( ) 0 1 1
0 1 1

0 0 1 0 0 0 0 0

a A b A c A d A
     

      = = = = −      
     

T: Rn → Rm   dim(domain of T)    rank(T)   nullity(T)  one-to-one     onto 

(a) T: R3 → R3    3         3     0     Yes    Yes

(b) T: R2 → R3    2         2     0     Yes    No

(c) T: R3 → R2    3         2     1     No    Yes

(d) T: R3 → R3    3         2     1     No    No

▪ Example 18: (One-to-one and not one-to-one linear transformation)
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Let T1 and T2 be linear transformations from R3 into R3 such that:

▪ Example 19: (Composition of linear transformations)

Definition: If T1: U → V  and T2: V → W are linear transformations, then the 

composition of T2 with T1, denoted by T2 ∘ T1 is the function defined by the 

formula (T2∘T1)(u) = T2(T1(u)), where u is a vector in U. 

▪ Theorem 9: (Composition of linear transformations)

If T1: U → V  and T2: V → W are linear transformations, then (T2∘T1): U → W  
is also a linear transformations.

https://manara.edu.sy/
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▪ Note: T2∘T1 ≠ T1 ∘T2

1 2( , , ) (2 , 0, ), ( , , ) ( , , )T x y z x y x z T x y z x y z y= + + = −

Find the compositions T = T2 ∘T1 and T’ = T1 ∘T2 

(T2∘T1)(x, y, z) = T2(T1(x, y, z)) = T2(2x + y, 0, x + z) = (2x + y, x + z, 0) 

(T1∘T2)(x, y, z) = T1(T2(x, y, z)) = T1(x − y, z, y) = (2x − 2y + z, 0, x) 

▪ Composition with the Identity Operator

If T: V → V is any linear operator, and if I: V → V is the identity, then for all 

vectors v in V, we have

(T ∘ I)(v) = T(I (v)) = T(v)

(I ∘ T)(v) = I (T(v)) = T(v)
T ∘ I = T and I ∘ T = T

https://manara.edu.sy/
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▪ Note: Let T1: Rn → Rm and T2: Rm → Rp be LT where T1(u) = A1u and 

T2(v) = A2v, then

 (1) The composition T: Rn → Rp, defined by T(v) = T2(T1(v)), is a LT.

 (2) The matrix A for T is given the matrix product A = A2A1, where T(u) = Au 

1 2( , , ) (2 , 0, ), ( , , ) ( , , )T x y z x y x z T x y z x y z y= + + = −

Find the composition T = T2∘T1

Let T1 and T2 be linear transformations from R3 into R3 such that:

▪ Example 20: (Composition of linear transformations)

1 2 2 1

2 1 0 1 1 0 1 1 0 2 1 0 2 1 0
0 0 0 , 0 0 1 0 0 1 0 0 0 1 0 1
1 0 1 0 1 0 0 1 0 1 0 1 0 0 0

− −         
         = =  = = =
                  

A A A AA
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2 1 0
( , , ) 1 0 1 (2 , , 0)

0 0 0

     
     = = = + +
          

x x
T x y z A y y x y x z

z z

▪ Notes:

(1) The inverse transformation T−1: R(T) → V exists iff T is one-to-one.

(2) If T: V → W  is a linear transformations, then T−1: R(T) → V is also a LT.

Definition: If T: V → W  is a linear transformations, then T is invertible if there is a 

transformation T−1 such that: T−1∘T = IV and T∘T−1
 = IW. We call T−1 the inverse 

of T.   T−1(T(u)) = u, ∀u  U   T (T−1(w)) = w, ∀w  R(T)

https://manara.edu.sy/
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▪ Example 21: (An Inverse Transformation)

T: Pn → Pn+1: T(p) = T(p(x)) = xp(x) = c0x + c1x2 + …+ cnxn+1 

is a one-to-one LT ⇒ T−1(c0x + c1x2 + …+ cnxn+1 ) = c0 + c1x + …+ cnxn 

▪ Note: Consider 𝑇∶ Rn → Rn where T(u) = Au

 (1) T is one-to-one if and only if A is invertible.

 (2) T−1 exists if and only if A is invertible.

 The inverse transformation is the matrix transformation given by A−1.

▪ Example 22: (Finding the inverse of a linear transformation)

Show that T is invertible, and find its inverse.

The linear transformations T: R3 → R3 defined by:

1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 3 , 3 3 , 2 4 )T x x x x x x x x x x x x= + + + + + +
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4. Geometry of Matrix Operators

▪ Example 23: (Transformation of the Unit Square)

Sketch the image of the unit square under multiplication by 

the invertible matrix:  
=  

 
A

0 1
2 1

,

,

           
= =           

           

           
= =           

           

0 1 0 0 0 1 1 0
2 1 0 0 2 1 0 2

0 1 0 1 0 1 1 1
2 1 1 1 2 1 1 3

The image of the unit square is a parallelogram with 

vertices (0, 0), (0, 2), (1, 1), and (1, 3).

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Linear Transformations 25/392024-2025

Reflections, Rotations, and Projections

T(x, y) = (−x, y)

T(x, y) = (x, −y)

T(x, y) = (y, x)
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T(x, y) = (x, 0)

T(x, y) = (x cos − y sin, x sin + y cos)

T(x, y) = (0, y)
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Expansions and Compressions

T(x, y) = (kx, y)

T(x, y) = (x, ky)
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Shears

T(x, y) = (x + ky, y)

T(x, y) = (x, kx +y)
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▪ Example 24: (Transformation of the Unit Square)

A
 

=  
 

1

1 2
0 1

(a) Find the standard matrix for the operator on R2 that first shears by a factor 

of 2 in the x-direction and then reflects the result about the line y = x. 

Sketch the image of the unit square under this operator.

(b) Find the standard matrix for the operator on R2 that first reflects about 

y = x and then shears by a factor of 2 in the x-direction. Sketch the image 

of the unit square under this operator. Conclude.

(a) The matrix for the shear is                   and for the reflection isA
 

=  
 

2

0 1
1 0

AA
     

= =     
     

2 1

0 1 1 2 0 1
1 0 0 1 1 2
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(b) AA
     

= =     
     

1 2

1 2 0 1 2 1
0 1 1 0 1 0

A1A2 ≠ A2A1
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Dilations and Contractions

▪ Note: The multiplication by A causes a compression or expansion of the unit 

square by a factor of k1 in the x-direction followed by an expansion or 

compression of the unit square by a factor of k2 in the y-direction.

T(x, y) = (kx, ky)

k k
A

k k
     

= =     
     

1 1

2 2

0 1 0 0
0 0 0 1
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▪ Reflection About the Origin: 

− −     
= =     − −     

A
1 0 1 0 1 0
0 1 0 1 0 1

− 
=  − 

A
1 0
0 1

Multiplication by the matrix                      has the geometric effect 

of reflecting the unit square about the origin.

The same result can be obtained by first reflecting the unit square about the 

x-axis and then reflecting that result about the y-axis.

▪ Reflection About the Line y = −x

− 
=  − 

A
0 1
1 0
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▪ Theorem 10: (Elementary matrix transformations)

If E is an elementary matrix, then TE: R2 → R2  is one of the following:

(a) A shear along a coordinate axis. (b) A reflection about y = x.

(c) A compression along a coordinate axis.

(d) An expansion along a coordinate axis.

(e) A reflection about a coordinate axis.

(𝑓) A compression or expansion along a coordinate axis followed by a 

reflection about a coordinate axis.

If TA: R2 → R2 is multiplication by an invertible matrix A, then the geometric 

effect of TA is the same as an appropriate succession of shears, 

compressions, expansions, and reflections.

▪ Theorem 11: (Invertible matrix transformations)
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▪ Example 25: (Decomposing a Matrix Operator)

In Example 23 we illustrated the effect on the unit square of multiplication by:

 
=  

 
A

0 1
2 1

Express this matrix as a product of elementary matrices, and then describe 

the effect of multiplication by the matrix A in terms of shears, compressions, 

expansions, and reflections.

      
= ⎯⎯→ ⎯⎯→ ⎯⎯→ =      

      
A I

1
20 1 2 1 1 01

2 1 0 1 0 10 1

r12
(1/2)r1

( / )−r 1 2
21

− − −       
= = =       

       
A E E E1 1 1

1 2 3

1
20 1 0 1 2 0 1

2 1 1 0 0 1 0 1
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Reading from right to left we can now see that the geometric effect of 

multiplying by A is equivalent to successively:

1. shearing by a factor of ½ in the x-direction;

2. expanding by a factor of 2 in the x-direction;

3. reflecting about the line y = x.
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▪ Rotation In R3

cos sin cos sin

sin cos sin cos

x x x y
y y x y
z z z

   

   

 − −       
        = = +
       

       

0
0

0 0 1
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Rotation about the z-axis

/ /cos sin

sin cos / /A

 − −
  

= =   
     

1 2 3 2 060 60 0

60 60 0 3 2 1 2 0
0 0 1 0 0 1
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Rotation about the z-axis

cos sin
sin cos

 
 

− 
 
  

0
0

0 0 1

Rotation about the x-axis

cos sin
sin cos

 
 

 
 −
  

1 0 0
0
0

cos sin

sin cos

 

 

 
 
 − 

0
0 1 0

0

Rotation about the y-axis
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Rotation of 90° about the x-axis

 
 = −
 
 

A
1 0 0
0 0 1
0 1 0

 
 =
 
− 

A
0 0 1
0 1 0
1 0 0

Rotation of 90° about the y-axis
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