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1. Introduction to Linear Transformations
Images And Preimages of Functions:

* Function 7T'that maps a vector space Vinto a vector space V.

T: V. Mappmg» W, V, W: vector spaces V. Do

» [foisin Vand wis in W such that: T(v) = w,
Then wis called the image of vunder T.

Range

» The range of T: The set of all images of vectors in V.
* The preimage of w: The set of all vin V such that T(v) = w.

= Example 1: (A function from R* into R?) I:V—W  W:Codomain
T:R* > R, v=(v,v,)e R T(v,v) = —uv,v +20,)
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(a) Find the image of v= (-1, 2) (b) Find the preimage of w= (-1, 11)
()v=(-1,2)=TMw)=T(-1,2)=(-1-2,-1+212)) = (-3, 3)

) T(v)y=w=(-1,11) = T'(v,, v,) = (v, — vy, v, +20,) = (-1, 11)

N {vl —v, = -1 o =30 =4 Thus {(3, 4)} is the preimage

v, + 20, =11 of w= (-1, 11)

= Definition: If T: V— W is a mapping from a vector space V to a vector space
W, then T is called a linear transformation (LT) from V to W if the following
two properties hold for all vectors uw and v in V and for all scalars c:
(1) T(u+ v)=T(u) + T(v) [Additivity property]
(2) T(cu) = cT(u) [Homogeneity property]
When V = W, the linear transformation 7'is called a linear operator on V.
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= Example 2: (Verifying a linear transformation 7 from R? into R?)
T:R* > R, v=(v,v,) e R T(v,v)=(v,—v, v, +20,)
v = (u,u,), v=_(v,v,) vectorsin R c¢: any real
T'(u+wv)=T(u +v,u, +v,)
= ((u, +v,) = (uy, +v,),(u, +v,) +2(u, +v,))
= ((u, —uy) + (v, —v,),(u, +2u,) + (v, +2v,))
= (u;, — Uy, u, +2u,) + (v, —v,,v, +20,) =T(u) + 1T'(v)
T(cu) =T(cu,,cu,) = (cu, — cu,,cu, +2cu,) = c(u, — Uy,u, +2u,) =cl'(u)
Therefore, T'is a linear transformation.
= Example 3: (A Linear Transformation from P, to P
T: P, — P _,: T(p)=T(p(z)) =p' () derivative

n>1)

n—171
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» Example 4: (A Linear Transformation from P to P, .,)
p=p(x)=cy+cx+..+ca" e P,

T- P — P ... T(p)=T(p(x) = zp(x) = cyr + ¢;2* + ...+ ¢, 2"
= Example 5: (Functions that are not linear transformations)
(a) f(z) =sinz  sin(z, + z,) # sin(z,) + sin(z,)
b) fl@)=2" (2, +23) =2 +3
(c) f(e)=z+1
fx, +z,) =2 +x,+1
f@) + f(@,) = (2, + 1) + (2, + 1) = 3, + 3, +2
Sz, +x,) # f(x) + f(x,)
(d) T(v) = |v]| [lu+ov|<|ul|+]|jv] = T(u+v) = T(w)+ T(v)
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= Zero transformation: TV - W TG) =0, VveV
= |dentity transformation: T:V -V T(v)=v, VveV
= Theorem 1: (Properties of linear transformations)
TV —->W, wu,velV
(1) T(0)=0 Q) T(-v)=-T(v) () T(u-v)=T(u)-T(v)
4 Ifv=cv +cv,+--+c v then
T(v)=T(cv, +cv, +-+cv )=cT(v)+c,T(v,)++cT(v,)

= Example 6: (Functions that are not linear transformations)
Let T R® — R° be a linear transformation such that

T(1,0,0)=(2,—1,4), T(0,1,0)=(,5-2), T(0,0,1)=(0,3,1)
Find 7(2, 3, —2)
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(2, 3,-2) =2(1, 0, 0) + 3(0, 1, 0) — 2(0, 0, 1)
T(2, 3,-2) =2T(1, 0, 0) + 3T(0, 1, 0) — 2T(0, 0, 1)
=2(2,-1,4)+3(1, 5,— 2) - 2T(0, 3, 1) = (7, 7, 0)

= Example 7: (A linear transformation defined by a matrix)

3 0
The function T: R* —R’is defined as T(v) = Av=| 2 1 [vl}
(a) Find T(v), where v=(2, -1) -1 2]
(b) Show that Tis a linear transformation from R*into R’
R? vector lR3 vector

3 0] ; 6
(a) v=(2, -1) T(v)=Av=| 2 1 [_J: 3| = TQ2,~1)=(6,3,0)
1 -2 0
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(b) T(u + v)= A(u + v)= Au+ A‘J%}”;"T(u) + T(v)  (vector addition)
T(cu) = A(cu) = (Au) = cT(u) (scalar multiplication)

» Theorem 2: (The linear transformation given by a matrix)

Let A be an mxn matrix. The function T defined by T(v) = Av is a linear
transformation from R" into R™.

= Example 8: (Rotation in the plane)

Show that the LT T: R* — R* given by the matrix A = "
sinfd cos0

has the property that it rotates every vector in R’ counterclockwise about the
origin through the angle 6.

v=(x,y)=(rcosa, rsina) (polar coordinates)
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T(v) = Av = cos@ —smdl ||z | cos@ —sind][rcosa
V=2V =1 6ing cosd y| |sin@ cos@ || rsina
rcosfd cosa — rsinf sinax

rsinf cosa + rcosf sina

| rcos(0+ «)

B [rsin(@ + a)}

Thus, T(v) is the vector that results from rotating the
vector v counterclockwise through the angle 6.

= Example 9: (A projection in R°)
The LTT: R’ — R’ is given by the matrix A =
is called a projection in R°.

OO =
o = O
o OO

“Teea X Y)
L N
b (x, ¥)

«0

[ R

Rotation in R2

[

|

I

1
b4

T(x,y,.29)=(x,y,0)

X

Projection onto xvy-plane
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2. The Kernel and Range of a Linear Transformation

= Definition: Let T V— W be a Linear transformation. Then the set of all vectors
vin Vthat satisfy T(v) =0is called the kernel of Tand is denoted by ker( 7).
ker(1) ={v|1T(v)=0, Vve V}
= Example 10: (The kernel of the zero and identity transformations)
(@) T(v) =0 (the zero transformation) ker(T)=V
(b) T(v) = v (the identity transformation) ker(7) = {0}

= Example 11: (Finding the kernel of a LT)
T(v) = (z, y, 0) T R —R
ker(T)={(0, O, 2)| zis a real number}

Linear Transformations https://manara.edu.sy/ 2024-2025 11/39


https://manara.edu.sy/

>y

4ol
bt
= Example 12: (Finding the kernel of a linear transformation)
1 -1 2| %
T(x)=Ax = [_1 9 3} ? (T: R’ -> R?)
3_

ker(T) = {(2,,2,,2,)| T(2,,2,,1,) = (0,0), @ = (a,,7,,1,) € R’}

1 -1 2]} _To
I'(z),%,,z;) = (0,0) = [—1 2 3} 2|7 [0}

| L3 _
1 -1 -2 0| Gauss-J. Elimination |1 0 -1 0 _zl__ 158 I
{—1230} ’01103§§__§_t_}

= ker(1) = {1, -1, 1)|tis a real number} =span{(1, -1, 1)
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» Theorem 3: (The kernel is a subspace of V)

The kernel of a linear transformation 7 V' — Ws a subspace of the domain V.

» Definition: Let T: V— W be a Linear transformation. Then the set of all vectors
w in W that are images of vectors in V' is called the range of T and is denoted

by range( T) or R(1). fange( 1) ={T(v) | Vve V} Domain  Kernel

= Theorem 4: (The range is a subspace of W)
Therange of aLT T: V— Wis a subspace of the W.

» Rank of a linear transformation 7% V — W
rank( 7)) = the dimension of the range of T

= Nullity of a linear transformation 7% V— W:
nullity(7) = the dimension of the kernel of T°
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= Note: Let T: R" — R™be the LT given by T(x) = Az. Then
rank( 1) = rank(A), nullity( 7)) = nullity(A)

= Theorem 5: (Sum of rank and nullity)

Let T V — W be a LT from an n-dimensional vector space V into a vector

space . Then:
rank(7) + nullity(7) = n

dim(range of T) + dim(kernel of 7)) = dim(domain of T)

= Example 13: (Finding rank and nullity of a linear transformation)

Find the rank and nullity of the LT T R®* — R®defined by
rank( 1) =rank(A) =2
nullity(7) = dim(domain of 7)) —rank(7)=3 -2 =1

A=

OO =
O = O

(O

O =
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= Example 14: (Finding rank and nullvih"tyldf a linear transformation)
Let T R° — R’ be a linear transformation
(a) Find the dimension of the kernel of T'if the dimension of the range is 2
(b) Find the rank of T'if the nullity of T'is 4
(c) Find the rank of T'if ker(T) = {0}
(a) dim(domain of T) =5 = dim(ker of 7) = n — dim(range of T)=5-2=3

(b) rank(T)=n—nullity(T)=5-4=1 (c) rank(7T)=n—nullity(T)=5-0=95

3. Compositions and Inverse Transformations

= Definition: A function T V — W s one-to-one when the preimage of every w in
the range consists of a single vector.

T is one-to-one if and only if, for all wand vin V, T(w) = T(v) implies u = v.
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= Definition: A function T V — Wiis
onto when every element in W has
a preimage in V. (T is onto W

when Wis equal to the range of 7).

* Theorem 6: (One-to-one LT)
Let 7" V — Wbe alLT. Then T'is
one-to-one iff ker(7T) = {0}. One-to-one

Not one-to-one

= Example 15: (One-to-one and not one-to-one linear transformation)
(a) The linear transformation T: M, , — M, , given by T(A) = A" is one-to-one
because its kernel consists of only the mxn zero matrix.

(b) The zero transformation T B> — R’is not one-to-one because its kernel is
all of R°.
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= Example 16: (One-to-one and onto linear transformation)
The LT T: P, —» R*given by T(a + bz + c2* + d2’)=(q, b, ¢, d).

= Example 17: (One-to-one and not onto linear transformation)
T Pn — Pn+1: T(p) — T(p(ﬂj)) — CEp(CE)

= Theorem 7/: (Onto linear transformation)

Let 7© V — W be a linear transformation, where W is finite dimensional. Then
T is onto iff the rank of T'is equal to the dimension of W.

* Theorem 8: (One-to-one and onto linear transformation)
Let T© V — W be a linear transformation, with vector space V and W both of
dimension n. Then T'is one-to-one iff it is onto.

Linear Transformations https://manara.edu.sy/ 2024-2025 17/39
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= Example 18: (One-to-one and not one-to-one linear transformation)

Py
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Let T© R" — R™ be a LT given by T(x) = Azx. Find the nullity and rank of 7' to
determine whether T'is one-to-one, onto, or neither.

120

(12

(a) A=|01 1|,(b)A=|01

001 100

T: R"— R™ dim(domain of T)
(@) T R° - R’ 3
(b) T" R* - R’ 2
(c) T: R — R 3
d) T: R°— R’ 3

() A= {

rank( 7))

3

S = O

12 01w a- 01
00
nullity(7) one-to-one
0 Yes
0 Yes
1 No
1 No

onto
Yes

No

Yes
No
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Definition: If Ty: U — V and T,: V — W are linear transformations, then the

composition of T, with T,, denoted by 7,0 T, is the function defined by the
formula (750 T;)(u) = T%(T;(w)), where w is a vector in U.

T T
T
/. T
u T,(u) Ty(Ty(u))
U V 14

» Theorem 9: (Composition of linear transformations)

If T,: U— V and T,: V— W are linear transformations, then (7,0 T,): U— W
Is also a linear transformations.

= Example 19: (Composition of linear transformations)
Let T, and T, be linear transformations from R? into R® such that:
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T(z,9,2) = Qe +y, 0,z +2), Tp(2,9,2) = (£ Y, 2, )
Find the compositions T'= T,o T, and 7"= To T,
(Too TNz, y, 2) = To(Ty(z, y, 2)) = T2+ 4,0, x+ 2) = (2x+ y, x+ 2, 0)
(T1 © TZ)(:E’ Y, Z) — T~|(T2(£IZ, Y, Z)) — T1(£E_ Y, =, y) — (23;_ 2y + Z, O, ZE)

= Note: Tho Ty # Tyo T,

= Composition with the Identity Operator
If T V — Vis any linear operator, and if I: V — V' is the identity, then for all
vectors vin V, we have
(T I)(v) = 11 (v)) = 1(v)

(Te T)(v) = 1(T(v)) = T(v) Tol=Tand e T=T

Linear Transformations https://manara.edu.sy/ 2024-2025 20/39
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= Note: Let T,: R — R™ and T,: R — R’ be LT where T,(u) = A,u and
T,(v) = A,v, then
(1) The composition T R" — R?, defined by T(v) = T,(T,(v)), is a LT.
(2) The matrix A for T'is given the matrix product A = A, A,, where T(u) = Au

= Example 20: (Composition of linear transformations)
Let T, and T, be linear transformations from R3 into R° such that:
T(z,y,2) =2z +y,0,z+2), T,(x,y,2)=(x—Y,2,Y)
Find the composition T'= T,0 T,

21 0] (1 -1 0] 1 -10]/210] [210
A=[000[,4=[0 0 1|=A=4A=[0 0 1/{0 0 0|=|1 01
101 0 10 0 10f[1 01| |000O0

Linear Transformations https://manara.edu.sy/ 2024-2025 21/39
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T(z,y,z2)=Aly|=|1 0 1||ly|=Qzx+y,z+2z0)
z|] |00 0]~

Definition: If T V' — W is a linear transformations, then T'is invertible if there is a
transformation 7' such that: 7o T= [, and To T-'= [,. We call T-' the inverse

of T. T"(T(u)) =u, Vue U T(T-(w)) =w, Vwe R(T)
T
——— o—
v <_—_// w=T(v)
Vv T R(T)
= Notes:

(1) The inverse transformation T-': R(T) — V exists iff T'is one-to-one.
(2) If T: V— W is alinear transformations, then T-': R(7T) — Vis alsoa LT.
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= Example 21: (An Inverse Transformation)
T-P,— P . T(p)= T(p(2)) = zp(z) = ¢y + c;2* + ...+ ¢, 2"

iIs a one-to-one LT = T (cyx+ ¢, + ...+ ¢, 2" )= ¢y + c;x+ ...+ ¢, 1"
= Note: Consider T: R" — R"where T(u) = Au
(1) T'is one-to-one if and only if A is invertible.

(2) T 'exists if and only if A is invertible.
The inverse transformation is the matrix transformation given by A-1.

= Example 22: (Finding the inverse of a linear transformation)
The linear transformations T R?* — R® defined by:

T(x,,r,,2;) = 2z, + 32, + x5, 3z, + 32, + 73, 27, + 42, + T;)

Show that T'is invertible, and find its inverse.
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4. Geometry of Matrix Operators
= Example 23: (Transformation of the Unit Square)
Sketch the image of the unit square under multiplication by
the invertible matrix: 0 1 W
A:[
2 1 (0,0)
0 1][0] [o] [o 1][1] [o |
2 1|{0] |0]” |2 1)0 2 e
0 11][0] _'1} 0 1] '1}_H m.z,}/z
2 1111 (1] 2 111 |3
L dL n L JdL 1 (1,1)
The image of the unit square is a parallelogram with / x
vertices (0, 0), (0, 2), (1, 1), and (1, 3). ©.0) -
https://manara.edu.sy/ 2024-2025 24/39
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Reflections, Rotations, and Projections
Reflection about 1 0 AY AY
the x-axis |0 _ll 3 (L1
ety ::::i:
T(.CE, y) — (xa _y) . 2 X i %
T > >
4 2
—_—
3 (1.-1)
Reflection about -1 0 AY AY
the y-axis | 0 J 3 (1,1 z (-1,1) 1
T(:I’.a y) — (—.'L', y) ) P X . X ;‘E
1 : 1
Reflection about 0 1 AY L y=x y L y=x
the liney = x |1 D] 3 7 : £
d = 51, 1) l i 51, 1)
T(.CL’, y) - (ya il?) = X f’ﬂ/‘ X

jl 4

Linear Transformations
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Orthogonal 1 0 AY 4y
projection 0 0 (1,1)
onto the x-axis )
I(z, y) = (z, 0) X (L0
- —f— >
Orthogonal 0 0 ALY y
projection [0 1] {1,1) (0,1)
onto the y-axis
I(z, y) = (0, y) x
- = X
[
Rotation about the cos@ —sinf (cos 8- sin 8, sin 8+ cos 6)
origin through a sin@ cos® AY AY \\(
positive angle 8 (L 1) :
L s :

T(x, y) = (xcos@ — ysinb, zsinf + ycosb)
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Expansions and Compressions
Expansion in the k 0 AY AY
x-direction with [D 1] (1.1 (k, 1)
factor k 4] :> —I
(k>1) T, y) = (kz, y) S -
Expansion in the 1 0 AY AY
y-direction with [[} k] 65 1, k)
factor k ' :>
(k>0 T(z, ) = (a, ky) |

Compression in the L 0 % A Y
x-direction with [ 0 1‘ (1,1) (k,1)
factor k >

(0<k<1) ‘ X . *
Compression in the 1 0 AY AY

A : (1,1)
y-direction with 0 k
factor k > (1, k)
X I X
(0<k<1) > -

Linear Transformations
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Shears
Shear in the 1 k AY y
positive x-direction [0 1] (L 1) (k,1) (1+k,1)
by a factor k ‘ >
X X
(k>0) T(z,y) =(x+ky, y) > | -
Shear in the 1 k AY |V
negative x-direction [0 1] (1, 1) (k,1)| (k+1,1)
by a factor k >
X X
(k < U) - .
Shear in the 1 0 AY A
positive y-direction [ k 1] (1,1) 3+
by a factor k 4] :>
(1, k)
(k>0 Tz, y) = (x kx+y) = 2
Shear in the 1 0 AY AY
negative y-direction [ K 1] @1
by a factor k ’ :> (1,1+k)
X
(k <0) ‘ —
= (1. k)
Linear Transformations https://manara.edu.sy/ 2024-2025 28/39
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= Example 24: (Transformation of the Unit Square)
(a) Find the standard matrix for the operator on R? that first shears by a factor
of 2 in the a-direction and then reflects the result about the line y = x.

Sketch the image of the unit square under this operator.

(b) Find the standard matrix for the operator on R? that first reflects about
y = x and then shears by a factor of 2 in the a-direction. Sketch the image
of the unit square under this operator. Conclude.

(a) The matrix for the shear is A, = B ﬂ and for the reflection is 4, = [2 (ﬂ

wa=loflo i1

Linear Transformations https://manara.edu.sy/ 2024-2025 29/39
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LY LY oy =x AY
//
s
d (3,1)
(1,1) (1,1)
4
i X // X X
- A > >
e
(b) A A 1 2110 1 2 1
210 1111 0] |10
LY Y y= AY y=x
/ /
/ s
rd
s
v
f/"
e (3,1) A1A2 * A2A1
(1,1) /
s
s
‘ X / X X
> > >
rd
https://manara.edu.sy/ 2024-2025 30/39
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Dilations and Contractions
Contraction with |
factor k in R? @1 (0, kJ_,JL.__ v
(0<k<1) ‘ -
7 (1.0) 7 *.0) [k 0‘
. ; 0 k
Dilation with | (0, k) A
factor k in R* a5 f ! T(x, y) = (kx, ky)
(k>1) -
o Y ko

=i el o v

= Note: The multiplication by A causes a compression or expansion of the unit
square by a factor of k£, in the u-direction followed by an expansion or
compression of the unit square by a factor of %, in the y-direction.
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= Reflection About the Origin: "
Multiplication by the matrix A = {_é _ﬂ has the geometric effect ‘ x
of reflecting the unit square about the origin. l
(-1,-1)

=0 alo o

The same result can be obtained by first reflecting the unit square about the

r-axis and then reflecting that result about the y-axis. A
N (1,1)
= Reflection About the Line y=—=z . 4]
X X
0 -1 >
-1 75) Q™.
(-1,-1) A

Linear Transformations https://manara.edu.sy/ 2024-2025 32/39
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» Theorem 10: (Elementary matrix transformations)
If E'is an elementary matrix, then T,: R? — R? is one of the following:
(@) A shear along a coordinate axis. (b) A reflection about y = x.
(c) A compression along a coordinate axis.
(d) An expansion along a coordinate axis.
(e) A reflection about a coordinate axis.

(f) A compression or expansion along a coordinate axis followed by a
reflection about a coordinate axis.

» Theorem 11: (Invertible matrix transformations)
If T,; R?> — R?is multiplication by an invertible matrix A, then the geometric
effect of 7, is the same as an appropriate succession of shears,
compressions, expansions, and reflections.
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= Example 25: (Decomposing a Matrix Operator)

In Example 23 we illustrated the effect on the unit square of multiplication by:
01
Express this matrix as a product of elementary matrices, and then describe

the effect of multiplication by the matrix A in terms of shears, compressions,
expansions, and reflections.

A:{O 1}&{? 1}&& (_){1 0}:1
2 1 01

—_ |

0 1

Jor] . [01][20]1 1
A_{Z 1}‘E1E2E3 B 10{0 1}{01
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Reading from right to left we can now see that the geometric effect of
multiplying by A is equivalent to successively:

1. shearing by a factor of 72 in the z-direction;
2. expanding by a factor of 2 in the a-direction;
3. reflecting about the line y = .

LY AY AY - y _
J u y =x V{l,aj y=x
d s
/{/ //
e (0,2) 7
3 & 4
(1,1) (5-1) (1,1)
X X X
j T "~ (0,0)

Y
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= Rotation In R3

cos® —sing 0]
sind cos@ 0

0 0 1

1 cosf — ysind |
x siné + y cosé

Z
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Rotation about the z-axis

c0s60° —sin60° 0 - 1/2 —J3/2 0_
A=|sin60° cos60° 0|=[~3/2 12 0
0 0 1 0 0 1

-
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Rotation about the z-axis

1 0 0
0 cos@ —siné
0 sind cosé?_

i
&

A

X
Rotation about x-axis

X

[Py

AL A, LR

cos® 0 sin@ |
O 1 O
—sin@ 0 cosH_

g
A

PN

Rotation about y-axis

[ cos® —sin6 0

sin cos@d 0
0 0 1

Vi
£

&2

TN

Rotation about z-axis

-

X

Rotation about the z-axis
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BB A, L L

Rotation of 90° about the z-axis Rotation of 90° about the y-axis
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