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1. Eigenvalues and Eigenvectors

▪ By knowing the eigenvalues and eigenvectors of a matrix we can easily find 

its determinant, decide whether the matrix has an inverse and determine the 

powers of the matrix. 

▪ For an example of linear algebra at work: Google’s search engine, which relies 

upon eigenvalues and eigenvectors to rank pages with respect to relevance.

▪ Example 1:

A
−       

= = = =              

4 2 2 6 2
3 3

1 1 1 3 1
u u

A
− 

=   

4 2
1 1

 
=   

2
1

uLet                     and
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Eigenvalue

Eigenvector

Au = u

▪ Matrix A transforms the vector u by scalar multiplying it ⇒ the transformation 

only changes the length of the vector u unless  = ±1 (length unchanged). 

▪ Note: the relation Au = u says that the matrix A applied to u gives a vector 

in the same or opposite (negative ) direction of u.

▪ Definition: For a non-zero vector u in Rn the scalar  is called an eigenvalue of 

the nn matrix A and the vector u is called an eigenvector corresponding to , 

which satisfies Au = u.

▪ Example 2: (Verifying eigenvalues and eigenvectors)

, ,A      
= = =     −     

1 1 1 1
2 4 1 2

u vLet
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A        
= = = =       −       

1 1 1 2 1
2 2

2 4 1 2 1
u u

Eigenvalue

Eigenvector

A        
= = = =       −       

1 1 1 3 1
3 3

2 4 2 6 2
v v

Eigenvalue

Eigenvector

▪ Example 3: (Verifying eigenvalues and eigenvectors)

,A
   
   = − − =
   −   

5 0 0 0
9 4 1 1
6 2 1 2

u

A
       
       = − − = = =
       −       

5 0 0 0 0 0
9 4 1 1 2 2 1 2
6 2 1 2 4 2

u u

Eigenvalue

Eigenvector

Let
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(1) An eigenvalue of A is a scalar   such that that det(I − A) = 0.

(2) The eigenvectors of A corresponding to  are the nonzero solutions of 

the homogeneous system (I − A)u = 0.

▪ Theorem 1: (Finding eigenvalues and eigenvectors of a matrix A  Mnn)

▪ Note: Au = u ⇒ (I − A)u = 0  has nonzero solutions iff det(I − A) = 0.

▪ The equation det(I − A) = 0 is called the characteristic equation of A.

▪ The polynomial p() = det(I − A) = n + cn−1
n−1 + … + c1 + c0 is called the 

characteristic polynomial of A.

A  
=   

2 0
1 3

▪ Example 4: (Finding eigenvalues and eigenvectors)

Let
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Characteristic equation: det( ) ( )( )I A


  


−
− = = − − =

− −

2 0
2 3 0

1 3
Eigenvalues:  = 2,  = 3

(1)  = 2: ( )  ,  
x x

I A x y t t
y y


         

− = =  = −  =          − − −         
1

0 0 0 1
0

1 1 0 1
u

(2)  = 3: ( )  ,  
x x

I A x t t
y y


         

− = =  =  =          −         
1

1 0 0 0
0 0

1 0 0 1
u
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▪ Example 5: (Finding eigenvalues and eigenvectors)

A
 
 =
  

1 1 3
1 5 1
3 1 1

Let

( )( )( )I A


    


− − −

− = − − − = − − + =

− − −

1 1 3
1 5 1 3 6 2 0
3 1 1 Eigenvalues:  = 3,  = 6 and  = −2

( )
x

I A y
z


− −     

− = − − − =     
− −          

2 1 3 0
1 2 1 0
3 1 2 0

u = 3:

,  ~
x
y t t
z

− − −       
− − −  = −        
− −              

2 1 3 1 0 1 1
1 2 1 0 1 1 1 0
3 1 2 0 0 0 1
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( )
x

I A y
z


− −     

− = − − =     
− −          

5 1 3 0
1 1 1 0
3 1 5 0

u = 6:

,  ~
x
y t t
z

− − −       
− − −  =        
− −              

5 1 3 1 0 1 1
1 1 1 0 1 2 2 0
3 1 5 0 0 0 1

( )
x

I A y
z


− − −     

− = − − − =     
− − −          

3 1 3 0
1 7 1 0
3 1 3 0

u = −2:

,  ~
x
y t t
z

− − − −       
− − −  =        
− − −              

3 1 3 1 0 1 1
1 7 1 0 1 0 0 0
3 1 3 0 0 0 1
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A
 

=  
  

2 1 3
0 2 0
0 0 2

( )I A


  


− − −

− = − = − =

−

3
2 1 3
0 2 0 2 0
0 0 2

Eigenvalue: 1,2,3 = 2

▪ Example 6: (Finding eigenvalues and eigenvectors)

Let

▪ Definition: Let A be an nn matrix and have the eigenvalues 1, 2, ..., n. If  

occurs only once then we say  is a simple eigenvalue. If  occurs m times 

where m  1 then we say  is an eigenvalue with multiplicity of m.

▪ In the equation ( − 1)3
 ( − 2) = 0 we have 1,2,3 = 1 is an eigenvalue of 

multiplicity 3 and 1 = 2 is a simple eigenvalue.
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,  ,  ~
x s
y t s t s t
z t

− −           
 = = − = + −            

                      

0 1 3 0 1 3 1 0
0 0 0 0 0 0 3 0 3 0
0 0 0 0 0 0 0 1

u

1,2,3 = 2: ( )
x

I A y
z


− −     

− = =     
          

0 1 3 0
0 0 0 0
0 0 0 0

u

Eigenspace

▪ If  is an eigenvalue of a square matrix A with an eigenvector u then every 

non-zero scalar multiplication of u, is also an eigenvector corresponding to .

▪ If A is an nn matrix with an eigenvalue of , then the set S of all eigenvectors 

of A corresponding to  together with the zero vector, 0, is a subspace of Rn:

S = {0} ∪ {u|u is an eigenvector corresponding to }
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▪ This subspace S is called an eigenspace of  and is denoted by E, that is 

E = S. 

▪ For example, the eigenspace associated with Example 4 for the eigenvalue 

1 = 2 is the eigenvector                   and for 2 = 3 the eigenvector               .t  
=  − 

1
1

u t  
=   

0
1

v
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▪ The eigenspace associated with Example 6 for the eigenvalue 1,2,3 = 2 is:

E s t
     

= + −    
        

2

1 0
0 3
0 1

▪ Note: A set of basis vectors B of 

the eigenspace E2 are given by:

, B
     

= −    
        

1 0
0 3
0 1

If A is an nn diagonal or triangular matrix, then its eigenvalues are the entries 

on its main diagonal. 

▪ Theorem 2: (Eigenvalues of triangular matrices)
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A
 

= − 
−  

2 0 0
1 1 0
5 3 3

( )( )( )I A


    


−
− = − = − − + =

− − +

2 0 0
1 1 0 2 1 3 0
5 3 3  = 2,  = 1 and  = −3

▪ Example 7: (Finding eigenvalues)

Let                         ,

If A is an nxn matrix with eigenvector u corresponding to eigenvalue .

(1) If m is a positive integer, then m is an eigenvalue of the matrix Am with the 

same eigenvector u.

 

▪ Theorem 3: (Eigenvalues of triangular matrices)

(2) If the matrix A is invertible, then the eigenvalue of the inverse matrix A−1 is 

1/ with the same eigenvector u.

 ▪ Example 8: (Finding eigenvalues)

Find the eigenvalues of A3 and A−1 of Example 5
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If A is an nxn matrix with eigenvalues 1, 2, ..., n.

(1) The determinant of the matrix A is given by det(A) = 1 2 ... n.

(2) The trace of the matrix A is given by tr(A) = 1 + 2 + ... + n.

▪ Theorem 4: (Determinant and Trace of a matrices)

The eigenvalues of A are:  = 3,  = 6 and  = −2

The eigenvalues of A3 are:  = 3 = 27,  = 6 = 216 and  = (−2) = −8

The eigenvalues of A−1 are:  = 3 =,  = 6 and  = −2

▪ Example 9:

Find the determinant and trace of                      given that the eigenvalues of A 

are 1, 4 and −1.

det(A) = (1)(4)(−1) = −4,  tr(A) = 1 + 4 − 1 = 4 

A
 
 =
 
 

1 2 1
2 1 1
1 1 2
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▪ Theorem 5: (Eigenvalues and Invertibility)

A square matrix A is invertible iff λ = 0 is not an eigenvalue of A

▪ Theorem 6: (linearly independent eigenvectors)

Let A be an nxn matrix with eigenvalues 1, 2, ..., m. and corresponding 

eigenvectors p1, p2, ..., pm where 1 ≤ m ≤ n. Then these eigenvectors u1, u2, ... 

and um are linearly independent.

▪ Theorem 7: (The Cayley Hamilton Theorem)

Let A be a square matrix of size nxn, and let p() be its characteristic 

polynomial, i.e. p() = det(I − A), then:

p(A) = An + cn−1A
n−1 + … + c1A + c0I = O 

https://manara.edu.sy/
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( )

( )

n n n n
n n

n n
n

c

c

A c A c A c I O A A c A c I

A A c A c

− − −
− −

− − −
−

−

−

 + + + + =  + + + =
 

 = + + +

0

0

1 1 2
1 1 0 1 1

1 1 2
1 1

1

1

▪ Note: A consequence of the Cayley-Hamilton theorem is a new method for 

finding the inverse of a nonsingular matrix.

▪ Example 10: (Finding the inverse of a matrix using Cayley-Hamilton theorem) 

Find the inverse of A
− − 

= − − 
−  

1 3 1
3 5 1
3 3 1

( ) 5 8 4

( )

p

A A A I

   
−

= − + −

 = − +

3 2

1 21
4 5 8

A−

 − − − −       
        = − − − − − + =
        − − −         

2

1
1 3 1 1 3 1 1 0 0 18 6 21 1
3 5 1 5 3 5 1 8 0 1 0 6 20 2

4 43 3 1 3 3 1 0 0 1 6 6 4
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2. Diagonalization

▪ Definition: If A and B are square matrices, then we say that B is similar to A if 

there is an invertible matrix P such that B = P−1AP.

▪ Definition: A square matrix A is said to be diagonalizable if it is similar to some 

diagonal matrix; that is, if there exists an invertible matrix P such that P−1AP is 

diagonal. In this case the matrix P is said to diagonalize A.

▪ Theorem 8: (Similar matrices have the same eigenvalues)

An nxn matrix A is diagonalizable if and only if it has n linearly independent 

eigenvectors.

▪ Steps for diagonalizing an nn square matrix:

Step 1: Find n linearly independent eigenvectors p, p, … pn for A with 

corresponding eigenvalues , , … n

https://manara.edu.sy/
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A
 
 =
 

− 

1 3 0
3 1 0
0 0 2

( )( )I A


   



− −

− = − − = − + =

+

2
1 3 0
3 1 0 4 2 0
0 0 2 Eigenvalues:  = 4,  = −2

Step 3: Let , where ,  , , , i i i

n

P AP D A i n








−

 
 

= = = = 
 
 

1

1 2

0 0
0 0

1 2

0 0

p p

▪ Example 11: (A diagonalizable matrix) 

Show that the matrix A is diagonalizable                   . Then find a matrix P 

such that P−1AP is diagonal.

Step 2: Let nP =   1 2p p p

https://manara.edu.sy/
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 = −2, ,
   
   = − =
   
   

2 3

1 0
1 0
0 1

p p

  P P AP−

   
   = = −  = −  
   −   

1
1 2 3

1 1 0 4 0 0
1 1 0 0 2 0
0 0 1 0 0 2

p p p

     

     

P P AP

P P AP

−

−

−   
   = = −  =  
   −   

−   
   = = −  = −  
   
   

1
2 1 3

1
2 3 1

1 1 0 2 0 0
1 1 0 0 4 0
0 0 1 0 0 2

1 0 1 2 0 0
1 0 1 0 2 0
0 1 0 0 0 4

p p p

p p p

 = 4,  

 
 =
 
 

1

1
1
0

p
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A  
=   

1 2
0 1

( )I A


 


− −
− = = − =

−
21 2
1 0

0 1
Eigenvalue:  = 1

▪ Note: The order of the eigenvalues used to form P will determine the order in 

which the eigenvalues appear on the main diagonal of D.

▪ Example 12: (A matrix that is not diagonalizable) 

Show that the matrix                   is not diagonalizable

A does not have two (n = 2) linearly independent eigenvectors, so A is not 

diagonalizable.

⇒ Eigenvector:  ~I A I A
−   

− = − =       

0 2 0 1
0 0 0 0

 
=   

1

1
0

p
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If an nxn matrix A has n distinct eigenvalues, then the corresponding 

eigenvectors are linearly independent and A is diagonalizable.

▪ Theorem 9: (Sufficient conditions for diagonalization)

▪ Example 13: (Determining whether a matrix is diagonalizable) 

A
− 

=  
−  

1 2 1
0 0 1
0 0 3

A is a triangular matrix, its eigenvalues are the main diagonal entries  = 1, 

 = 0 and  = −3. These three values are distinct, so A is diagonalizable.

Determine whether the matrix                           is diagonalizable

▪ Theorem 10: (Powers of matrices)

If an nxn matrix A is diagonalizable with P−1AP = D where D is a diagonal 

matrix then Ak = PDkP−1 where k is a positive integer, and
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k

k
k

k
n n

dd
d d

D D

d d

  
  
 =  = 
  
     

11

2 2

0 00 0
0 0 0 0

0 0 0 0

▪ Example 14: (Powers of matrices) 

Let                        . Find A6 given that                            and

0 0 2

1 2 1

1 0 3

A
− 

 =
 
 

1 0 2

1 1 1

1 0 1

P −

 
 =
 
− − 

1
1 0 2

0 1 1

1 0 1

P
− − 

 =
 
 

2 0 01 0 2 1 0 2 62 0 126

0 1 1 0 2 0 1 1 1 63 64 63

1 0 1 1 0 1 00 1

A = PD P −

 − − − −     
      = =
      

− −       

6

6 6 1 6

6 63 1270

 = 2 2      1
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3. Symmetric Matrices and Orthogonal Diagonalization

(symmetric) (symmetric) (nonsymmetric)

A B C
−   

    = = = −     −   

0 1 2 3 2 1
4 3

1 3 0 1 4 0
3 1

2 0 5 1 0 5

▪ A square matrix A is symmetric if it is equal to its transpose: A = AT.

▪ Example 15: (Symmetric matrices and nonsymetric matrices) 

▪ Theorem 11: (Eigenvalues of symmetric matrices)

If A is an nxn symmetric matrix, then the following properties are true:

(1) A is diagonalizable.

(2) All eigenvalues of A are real.
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(3) If  is an eigenvalue of A with multiplicity k, then  has k linearly 

independent eigenvectors. 

▪ A square matrix P is called orthogonal if it is invertible and P−1 = PT.

▪ Example 16: (Orthogonal matrices) 

  TP P P− −   
= = =   −   

10 1 0 1
1 0 1 0

(a) is orthogonal because

  TP P P−

   −
   = = =
   

−   

1

3 4 3 4
5 5 5 5

4 3 4 3
5 5 5 5

0 0
0 1 0 0 1 0
0 0

(b) is orthogonal because

▪ Theorem 12: (Properties of orthogonal matrices)

An nxn matrix P is orthogonal iff its column vectors form an orthonormal set.
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P

 
 

= − 
 
− −  

5 5

3 5 3 5 3 5

1 2 2
3 3 3
2 1

2 4 5

0

If P is a orthogonal matrix, then T TP P PP I− =  =1

▪ Example 17: (Orthogonal matrices) 

Show that the matrix                                      is orthogonal

TPP I

   − −  
     

= − − = =     
     − −        

5 3 5

5 5 5 3 5

3 5 3 5 3 5 3 5

1 2 21 2 2
33 3 3

2 1 2 1 4
3

2 4 5 2 5
3

1 0 0

0 0 1 0

0 0 10

,= = = = = =1 2 1 3 2 3 1 2 30 1p p p p p p p p p  

{ , , }1 2 3p p p
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Let A be an nxn symmetric matrix. If 1 and 2 are distinct eigenvalues of A, 

then their corresponding eigenvectors u and v  are orthogonal. 

Show that any two eigenvectors of matrix               corresponding to distinct 

eigenvalues are orthogonal.

8 ( )( )I A


    


− −
− = = − + = − − =

− −
23 1
6 2 4 0

1 3
⇒ Eigenvalues:  = 2,  = 4

A  
=   

3 1
1 3

▪ Theorem 13: (Properties of symmetric matrices)

▪ Example 18: (Eigenvectors of a symmetric matrix) 

(1) ,   ~I A s s 
− − −     

=  − =  =      − −     
1 1

1 1 1 1 1
2 0

1 1 0 0 1
u
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(2) ,   ~I A t t 
− −     

=  − =  =      −     
2 2

1 1 1 1 1
4 0

1 1 0 0 1
u

   
s t

st st
s t

−   
=  = − =    

   
. 0u v u vand are orthogonal

Let A be an nxn matrix. Then A is orthogonally diagonalizable and has real 

eigenvalues if and only if A is symmetric. 

Orthogonal Diagonalization

▪ matrix A is orthogonally diagonalizable when there exists an orthogonal matrix 

P such that P−1AP = D is diagonal.

▪ Theorem 14: (Fundamental theorem of symmetric matrices)
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▪ Orthogonal diagonalization of a symmetric matrix:

Let A be an nn symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each.

(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector. (Find any 

eigenvector and then normalize it).

(3) For each eigenvalue of multiplicity k  2, find a set of k linearly independent 

eigenvectors. If this set is not orthonormal, apply Gram-Schmidt 

orthonormalization process.

(4) Steps 2 and 3 produces an orthonormal set of n eigenvectors. Use these 

eigenvectors to form the columns of P. The matrix P−1AP = PTAP = D will 

be diagonal.
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Find a matrix P that orthogonally diagonalizes A
− 

 = −
 − − 

2 2 2
2 1 4
2 4 1

(1) ( ) ( )I A  − = − + =23 6 0

Eigenvalues:  = −6,  = 3 (has a multiplicity of 2)

(2) ,  
   
   = − = −  = = −
   
   

1
1 1

1

1

1 11
6 2 2

32 2

v
v u

v

( ) ,  ,  
−   

   = = =
   
   

2 32

2 2
3 3 1 0

0 1
v v

linearly Independent

▪ Example 19: (Orthogonal diagonalization) 
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Gram-Schmidt Process: 

,  

−   
   = = = − =
   

  

3 2
2 2 3 3 2

2 2

.

.

5

3

2

4
2
1

10

v w
w v w v w

w w

,   

 − 
  = = = =   
     

32
2 3

2 3

5 3 5

5 3 5

3 5

2 2

1 4

50

ww
u u

w w

 (4)   TP P AP P AP−

 − − 
   = = −  = =   
    

5 3 5
1

1 2 3 5 3 5

3 5

1 2 2
3
2 1 4
3
2 5
3

6 0 0
0 3 0
0 0 30

p p p
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4. Singular Value Decomposition

▪ The singular value decomposition (SVD) is one of the most important 

factorizations of a matrix. SVD factorization can be applied to any matrix; it 

does not need to be a square or symmetric matrix.

If A is an mxn matrix, then:

   (a) ATA is orthogonally diagonalizable.

   (b) The eigenvalues of ATA are nonnegative.

▪ Theorem 15:

▪ Definition: If A is an m×n matrix, and if λ1, λ2, ..., λn are the eigenvalues of ATA, 

then the numbers                                                   are called the singular values 

of A.

, , , n n     = = =1 1 2 2
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▪ Example 20: (Singular Values) 

Find the singular values of the matrix A

 
 

=  
  

1 1
0 1
1 0

TA A

 
    

= =    
   

  

1 1
2 11 0 1 0 1
1 21 1 0 1 0

   − + = − −2 4 3 ( 3)( 1)The characteristic polynomial of ATA is

So the eigenvalues of ATA are: 1 = 3, 2 = 1, and the singular values of A 

are: , 1   = = = =1 1 2 23
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If A is an mxn matrix of rank k, then A can be expressed in the form A = U 

VT, where  has size m×n and can be expressed in partitioned form as:

( )

( ) ( ) ( )

k n k

m k k m k n k

D 0

0 0
 −

−  −  −

 
 =  

  

in which D is a diagonal k×k matrix whose successive entries are the first k 

singular values of A in nonincreasing order (1  2    k  0), U is an m×m 

orthogonal matrix, and V is an n×n orthogonal matrix.

▪ Theorem 16: (Singular Value Decomposition )

k

D







 
 

=  
 
  

1

2

0 0
0 0

0 0

( , , , )
ii iA i k= =1 1 2u v

{u1, u2, . . . , uk, uk+1, ..., um} is an extension of {u1, u2, ..., uk} 

to an orthonormal basis for Rm.

V = [v1 v2 ··· vn] orthogonally diagonalizes ATA
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▪ Example 21: (Singular Value Decomposition if A Is Not Square) 

Find a singular value decomposition of the matrix of Example 20

The eigenvalues of ATA are: 1 = 3, 2 = 1, and the singular values of A are: 

, 1   = = = =1 1 2 23

The unit eigenvectors corresponding to λ1 and λ2 are

, V
     

= =  =     
− −     

2 2 2 2
2 2 2 2

1 22 2 2 2
2 2 2 2

v v V orthogonally diagonalizes ATA

, A A 

               = = = = = = −          −            

1 2

6
32 2
6 22 2

1 1 2 26 22 2
6 22 2
6 2

1 1

01 1 1 1
3
0 1 0 1

3 1 0 1 0
u v u v

u1 and u2 are two of the three column vectors of U
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The vector u3 = [x y z]T needs to be orthogonal to both vectors u1 and u2

To extend the orthonormal set {u1, u2} to an orthonormal basis for R3

In matrix form,

x
y
z

−         =  =      −       

6 6 6
13 6 6

32 2 3
2 2

1
0

1
00 1

u

. .
x x
y y
z z

       
= − =       

              

6 2
6 2

2 0
1 0 1 0
1 1

and

0 3 0

0

0 0

 −   
     = −       −         

6 1
3 3 2 2
6 2 1 2 2
6 2 2 23

2 26 2 1
6 2 3

1 1
0 1 1
1 0

A = U  VT
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T T T T
k k kA U V   =  = + + +1 1 1 1 1 1 2 2 2u v u v u v

Reduced Singular Value Decomposition

▪ The zero rows and columns of the matrix  are superfluous and can be 

eliminated T

T

k

T
k k

A







  
  
 = =    
  
     

11

2 2
1 2

0 0
0 0

0 0

v
v

u u u

v

which is called a reduced singular value decomposition RSVD of A.

which is called a reduced singular value expansion of A.

▪ Example 22: (Reduced Singular Value Decomposition) 

Find a RSVD and a reduced singular value expansion of Example 21
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0
3

  
    

= −      −        

6
3 2 2
6 2 2 2
6 2 2 2
6 2 2 2
6 2

1 1
00 1

0 11 0

Since A has rank 2, with k = 2 the reduced SVD of A corresponding to is

the reduced singular value expansion

3 ( )T T 

    
       = + = + − −       
    

    

6
3

6 2 2 2 2 2
1 1 1 2 2 2 6 2 2 2 2 2

6 2
6 2

01 1
0 1 1
1 0

u v u v

3 ( )

   
   = + −   
  −   

3 3
3 3

3 3 1 1
6 6 2 2

1 13 3
2 26 6

0 0
1

https://manara.edu.sy/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

