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1. Introduction

▪ A weighted summation of Sines and Cosines of different frequencies can be 

used to represent periodic (Fourier Series), or non-periodic (Fourier 

Transform) functions.

▪ Fourier analysis leads to the frequency spectrum of a continuous-time signal. 

▪ The frequency spectrum displays the various sinusoidal components that 

make up the signal.

▪ In the frequency domain linear systems are described by linear algebraic 

equations that can be easily solved, in contrast to the time-domain 

representation, where they are described by linear differential equations.
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2. Analysis of Periodic Continuous-Time Signals

▪ We will study methods of expressing periodic continuous-time signals in two 

different but equivalent formats, namely the trigonometric Fourier series (TFS) 

and the exponential Fourier series (EFS).

Approximating a periodic signal with trigonometric functions

෤x (1)(t) = b1sin(0t) ෤x (3)(t) = b1sin(0t) + b2sin(20t) + b3sin(30t) 
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Trigonometric Fourier series (TFS)

෤x (t) = a0 + a1cos(0t) + a2cos(20t) +  + akcos(k0t) + 

+ b1sin(0t) + b2sin(20t) +  + bksin(k0t) + 

( ) cos( ) sin( ) 
 

= =
= + + k kk k

x t a a k t b k t0 0 01 1

where 0 = 2f0 is the fundamental frequency in rad/s.

▪ In a compact notation (trigonometric Fourier Series TFS of the periodic signal 

෤x(t)):

▪ We call the frequencies that are integer multiples of the fundamental 

frequency the harmonics.

▪ The frequencies 20, 30, ..., k0 are the second, the third, and the k-th 

harmonics of the fundamental frequency respectively.
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Trigonometric Fourier series (TFS)

1. Synthesis equation:

( ) cos( ) sin( )0 0 0
1 1
k k

k k

x t a a k t b k t 
 

= =

= + + 

2. Analysis equation:
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▪ Example 1: Trigonometric Fourier series of a periodic pulse train

2 sin(2 / )
( ) cos( ) , for , 2, ,

2 1 cos(2 / )
( ) sin( ) , for , 2, ,

 


 



= = = 

−
= = = 




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1 1
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k k

k kt k kt
x t
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  
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 
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( )= =a dt
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0 0

1 1
1
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▪ Example 2: Periodic pulse train

2sin( / ) 2
( ) cos( )
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1 3
3 3

k

k kt
x t

k
 





=

= + 
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Exponential Fourier series (EFS)

( ) 0jk t
k

k

x t c e 


=−

= 
Single-tone signals:

( ) ( )

( / ) ( / )

( / ) ( / )
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= = =  for all other 0 k

▪ The EFS representations of the two signals are shown graphically, in the form 

of a line spectrum.
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෤x (t) = Acos(0t + ) ෤x (t) = Asin (0t + )

The general case: ( ) cos( ) sin( )
  

  

=− = =
= = + +  

jk t
k k kk k k

x t c e a a k t b k t0
0 0 01 1
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k k k k k k
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( )
0 0
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1 t T jk t
k t
c x t e dt
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+ −

= 

Exponential Fourier series (EFS):

1. Synthesis equation: ( )


=−
= 

jk t
kk

x t c e 0

2. Analysis equation:

▪ In general, the coefficients of the EFS representation of a periodic signal ෤x (t) 
are complex valued. They can be graphed in the form of a line spectrum if 

each coefficient is expressed in polar complex form: kj
k kc c e 

=

▪ Example 3: EFS for periodic pulse train

/ sin( / )
( )

0 5 2 3

0 5

1 3
1

3
.

.

j kt
k

k
c e dt

k
 


−

−
= =
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Properties of Fourier series

Linearity ( ) ( ) [ ] 0
1 2 1 2

jk t
k k

k

x t y t c d e    


=−

+ = +

( ): real, Im{ ( )} 0 , ( ): imag, Re{ ( )} 0k k k kx t x t c c x t x t c c 
− −=  = =  = −

Symmetry of Fourier series

▪ A line graph of the set of 

coefficients ck is useful for 

illustrating the make-up of the 

signal ෤x  (t) in terms of its 

harmonics.
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Fourier transform for continuous-time signals:

1. Synthesis equation: (Inverse transform)

2. Analysis equation: (Forward transform)

( ) { ( )} ( )1 1
2

j tx t X X e d  


−

−
= = F

( ) { ( )} ( ) j tX x t x t e dt
 −

−
= = F

( ) { ( )} ( )1 2j ftx t X f X f e df−

−
= = F

( ) { ( )} ( ) j ftX f x t x t e dt − 

−
= = F

(using f)

(using f)

3. Analysis of Non-Periodic Continuous-Time Signals

▪ Consider the non-periodic signal x(t).

What frequencies are contained 

in this signal?
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Fourier transforms of some signals

( )
t

x t A


 =   
 

Example 4: Fourier transform of a rectangular pulse

▪ Effects of changing the pulse width on the frequency spectrum:

( )
( )
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( ) ( ) sin
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/
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j
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 


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


 

 
  





−
−

−
−

 = = =  
−  

 = =  
 

= 


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Example 6: FT of a right-sided exponential signal ( ) ( ), 0atx t e u t a−= 

( ) ( )
0

1at j t at j tX e u t e dt e e dt
a j

 


 − − − −

−
= = =

+ 

( )( ) ( ) tan /1

2 2

1 1
X a

a j a
   

 

−= =  = −
+ +

Example 5: Transform of the unit-impulse function

{ ( )} ( ) ( ) 1j tt t e dt t dt  
 −

− −
= = = F
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▪ Example 7: Fourier transform of a two-sided exponential signal

( ) , 0
a tx t e a−

= 

( )
0

2 20

2a t j t at j t at j t a
X e e dt e e dt e e dt

a
 



 − −  − − −

− −
= = + =

+  

▪ Example 8: Fourier transform of the signum function

 ,
( ) sgn( )

,

t
x t t

t
− 

= =


1 0
1 0

( ) ( ) ( )
0

0
1 1j t j tX e dt e dt

−  − 

−
= − + 
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The two integrals cannot be evaluated. Instead, we will define an 

intermediate signal p(t) as:

,
( ) , where 0

,

at

at

e t
p t a

e t−

− 
= 



0

0

( ) ( ) ( )
0

2 20

2at j t at j t j
P e e dt e e dt

a
  




− − −

−

−
= − + =

+ 

( ) {sgn( )} lim 2 20

2 2
a

j
X t

ja




→

−
= = =

+
F

( )

,
( )

,
2

2

2

0
0

X









 



=


= 

− 
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/ ,

( ) / ,

,

0
0

0

A At t
t

x t A A At t
t

 

 




+ −  
 =  = −    

   

▪ Example 9: Fourier transform of a triangular pulse

( ) ( / ) ( / ) [1 cos( )]
0

20

2j t j t A
X A At e dt A At e dt

 


   

 

− −

−
= + + − = − 

( ) sinc2
2

X A


 


 =  
 

( )( ) sinc2X f A f =

sin( / )
sinc sin

/

2 2
2 2 2
  

  
   = =   
   
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▪ Example 10: Fourier transform of the sinc function

Properties of Fourier transform

Linearity of the Fourier transform: { ( ) ( )} { ( )} { ( )}1 2 1 2x t y t x t y t   + = +F F F

Duality property: ( ) ( ) ( ) ( )2x t X X t x ⎯→  ⎯→ −F F

Duality property (using f): ( ) ( ) ( ) ( )x t X f X t x f⎯→  ⎯→ −F F

  sinc( )

{sinc( )}

1
2 2

2 2

t

t


 

 

 

  =  
 

−   =  =    
   

F

F

( ){sinc( )}t f= F
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▪ Example 12: Fourier transform of the unit-step function

( ) ( )
0

j t j tX x t e dt e dt 
 − −

−
= =  could not be evaluated

u(t) = ½ + ½ sgn(t)

{ ( )} ( )
1

u t j


 = +F

F {u(t)} = F {½ + ½ sgn(t)}

= ½F{1} + ½F { sgn(t)}

{ ( )} ( )
1 1
2 2u t f

fj 
= +F

▪ Example 11: Transform of a constant-amplitude signal

F{(t)} = 1 , all  ⇒ F{1} = 2(−) = 2(),  F{1} = (f) (duality)
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Symmetry of the Fourier transform

( ): real, Im{ ( )} 0 ( ) ( )

( ): imag, Re{ ( )} 0 ( ) ( )

x t x t X X

x t x t X X

 

 





=  = −

=  = − −

Transforms of even and odd signals

( ) ( ), for all  Im{ ( )} , for all 0x t x t t X  − =  =

▪ If the real-valued signal x(t) is an even function of time, the resulting Fourier 

transform X() is real-valued for all .

▪ If the real-valued signal x(t) has odd-symmetry, the resulting Fourier 

transform X() is purely imaginary.

( ) ( ), for all  Re{ ( )} , for all 0x t x t t X  − = −  =
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▪ Example 13: Modulated pulse

cos(2 ),
( )

,
0

0
f t t

x t
t

 




=



Time shifting ( ) ( ) ( ) ( ) jx t X x t X e    −⎯→  − ⎯→F F

Frequency shifting ( ) ( ) ( ) ( )0
0

j tx t X x t e X  ⎯→  ⎯→ −F F

Modulation property

 
/ /

( ) ( )

( ) cos( ) ( ) ( )

( ) sin( ) ( ) ( )

1
0 0 02

1
0 0 02

j j

x t X

x t t X X

x t t X e X e 



    

    −  

⎯→ 

⎯→ − + +

 ⎯→ − + + 

F

F

F

Using p(t), the signal x(t) can be expressed as x(t) = p(t)cos (2f0t)
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where ( )
t

p t


 =   
 2

( )

 

( ) ( )

( ) sinc

( ) ( ) ( )

sinc ) sinc )

1
0 02

0 0

2P f f

X f P f f P f f

f f f f

 

   

= 

= − + +

=  ( + +  ( −
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Time and frequency scaling

The parameter a is any non-zero and real-valued constant.

Differentiation in the time domain

▪ Example 14: Triangular pulse revisited

( )( ) /x t A t = 

( ) ( ) ( ) ( )x t X x at X
a a





⎯→  ⎯→F F

( ) ( ) [ ( )] ( ) ( ), [ ( )] ( ) ( )2
n n

n n
n n

d d
x t X x t j X x t j f X f

dt dt
   ⎯→  ⎯→ ⎯→F F F

( ) / /
( )

2 2dx t A t t
w t

dt
 

  

+ −    = =  −         
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Differentiation in the frequency domain

Convolution property

Multiplication of two signals

( / ) ( / )( ) sinc( ) sinc( ) sinc( ) sin( )2 2 2 2 2j f j fW f A f e A f e jA f f       −= − =

sinc( ) sin( )( )
( ) ( ) ( ) ( ) sinc ( )22

2
2 2

jA f fW f
W f j f X f X f A f

j f j f
  

  
 

=  = = =

( ) ( ) ( ) ( ) [ ( )]
n

n
n

d
x t X jt x t X

d
 


⎯→  − ⎯→F F

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 2 1 2

x t X x t X

x t x t X X

 

 

⎯→ ⎯→

  ⎯→

F F

F

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )

1 1 2 2

1
1 2 1 2 1 2 1 22

x t X x t X

x t x t X X x t x t X f X f


 

 

⎯→ ⎯→

 ⎯→  ⎯→ 

F F

F F
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Integration

Applying Fourier transform to periodic signals

▪ Example 16: Fourier transform of sinusoidal signal

( )
( ) ( ) ( ) ( ) ( )

t X
x t X x d X

j


     
−

⎯→  ⎯→ + 
F F

( ) 0j tx t e 
=

{1} ( ) ( ) ( )0
02 2j te     =  = −F F

▪ Example 15: Fourier transform of complex exponential signal

( ) cos( )0x t t=

{1} ( ) {cos( )} ( ) ( )0 0 02 t        =  = − + +F F

▪ The idea can be generalized to apply to any periodic continuous-time signal 

that has an EFS representation:
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( ) ( ) ( )0 0jk t jk tj t j t
k k

k k

x t c e X x t e dt c e e dt  
  − −

− −
=− =−

 
=  = =  

 
  

EFS coefficients for a signal Fourier transform obtained

 

( )

( )

0

02

jk t j t
k

k

k
k

X c e e dt

c k

 

  

  −

−
=−


=−

 =
  

= −

 



▪ Example 17: Fourier transform of periodic pulse train

Determine the FT of the periodic pulse train with duty cycle d = /T0

ck = d sinc (kd) ( ) sinc( ) ( )02
k

X d kd k    


=−

= −

0 = 1/T0 is the fundamental radian frequency.
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4. Energy and Power in the Frequency Domain

Parseval’s theorem

( )
t T

kt
k

x t dt c
T

+

=−

= 
0 0

0

2 2

0

1

Energy and power spectral density

( ) ( )x k
k

S f c f kf


=−

= −
2

0 power spectral density of the signal x(t)

▪ For a periodic power signal ෤x(t) with period T0 and EFS coefficients {ck}: 

( ) ( )
 

− −
= x t dt X f df2 2

▪ For a non-periodic energy signal x(t) with a Fourier transform X(f):
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( ) ( )xG f X f=
2

( ) ( ) ( )
2 1

2x xx t dt G f df G d 


  

− − −
= =  

energy spectral density of the signal x(t)

▪ Example 18: Power spectral density of a periodic pulse train

Determine the power spectral density for x(t). Also find the total power, the 

dc power, the power in the first three harmonics, and the power above 1 Hz.

Px in (−f0, f0) ( )
f

xf
S f df

−
= 

0

0

( ) ( )
21

2x x k
k

S f df S d c 


 

− −
=−

= =  

sinc( / )kc k= 1
3 3 ( ) sinc( / ) ( / )

21
3 3 3x

k

S f k f k


=−

= −
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The total power in the signal x(t): ( ) ( )
.

.

t T

t
x t dt dt

T
+

−
= = 

0 0

0

0 52 2

0 50

1 1 1
1

3 3

, ,
2 2 2 2

1 1 1 2 2 2 32 2

3 3
0 1520 0 0380 0

2 8
. .P c c P c c P

 
− −= + =  = + =  =

The third harmonic is at frequency f = 1 Hz. Thus, the power above 1 Hz:

1 2 3 0 3333 0 1111 0 1520 0 0380 0 0 0322. . . . .hf x dcP P P P P P= − − − − = − − − − =
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▪ Example 19: Energy spectral density of the sinc function

Determine the energy spectral density of x(t) = sinc(10t). Afterwards, compute 

the total energy, and the energy in the sinc pulse at frequencies up to 3 Hz.

( ) ( ), ( ) ( ) sinc ( )

( ) .

x

x x

f f
X f G f X f

E G f df df


− −

=  = =

= = = 

2 2

5

5

1 1
10 10 100 10

1
0 1

100

Ex in (−3, 3 Hz) = ( ) .xG f df df
− −

= = 
3 3

3 3

1
0 06

100

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis for Continuous Time Signals and Systems 33/412024-2025

Autocorrelation

▪ For an energy signal x(t) the autocorrelation function is defined as

( ) ( ) ( )xxr x t x t dt 


−
= +

▪ For a periodic power signal ෤x(t) with period T0, the corresponding definition of 

the autocorrelation function is:
/

/
( ) ( ) ( )

T

xx T
r x t x t dt

T
 

−
= +

0

0

2

20

1

{ ( )} ( )xx xF r G f =

▪ The energy spectral density is the FT of the autocorrelation function:

{ ( )} ( )xx xF r S f =

▪ The power spectral density is the FT of the autocorrelation function:
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▪ Example 20: Power spectral density of a sinusoidal signal revisited

෤x(t) = 5cos(200t)

( ) cos(200 ) cos(200[ ]) cos(200 )

( ) { ( )} ( ) ( )

0 005

0 005

1 25
25

0 01 2
25 25

100 100
4 4

.

..xx

x xx

r t t dt

S f F r f f

   

  

−
= + =

= = + + −



Properties of the autocorrelation function

▪ rxx (0) ≥ |rxx ()| for all 

▪ rxx (−) = rxx () for all , that is, the autocorrelation function has even symmetry.

▪ If the signal x(t) is periodic with period T, then its autocorrelation function ෤rxx () 

is also periodic with the same period.
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5. Transfer Function Concept

▪ In time-domain analysis of systems we have relied on two distinct 

description forms for CTLTI systems:

1. A linear constant-coefficient differential equation that describes the 

relationship between the input and the output signals.

2. An impulse response which can be used with the convolution operation 

for determining the response of the system to an arbitrary input signal.

▪ The concept of Transfer function will be introduced as the third method for 

describing the characteristics of a system.

( ) { ( )} ( ) j tH F h t h t e dt
 − 

−
 = = 
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▪ The transfer function concept is valid for LTI systems only.

▪ In general, H() is a complex function of ,                               .

▪ Example 21: Transfer function for the simple RC circuit

( )( ) ( ) jH H e   =

/

/

( ) ( )

( ) ,
( / )0

1

1

1 1 1
1 1

t RC

t RC j t

c

c RC

h t e u t
RC

H e e dt
RC j RC j


  



−

 − −

=

= = =
+ +

=



( ) , ( ) tan ( / )
( / )

1

2

1

1
c

c

H    
 

−=  = −
+

( ) , ( )
1 1
1 2

c cH H
j

 = =
+
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▪ c represents the frequency at which the magnitude 

of the transfer function is 3 decibels below its peak 

value at  = 0, ( )
log log dB

( )10 10
1

20 20 3
0 2
cH

H


=  −

▪ The frequency c is often referred to as the 3-dB 

cutoff frequency of the system.

Obtaining the TF from the differential equation

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ), ( ) ( ), , , 0 1

k k
k k

k k

Y
y t h t x t Y H X H

X
d y t d x t

j Y j X k
dt dt


   



   

=  ⎯→ =  =

⎯→ ⎯→ =

F

F F
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▪ Example 22: Transfer function from the differential equation

( ) ( )
( ) ( )

d y t dy t
y t x t

dtdt
+ + =

2

2 2 26

( ) ( ) ( ) ( ) ( ) ( )

[(26 ) ] ( ) ( ) ( )
(26 )

2

2
2

2 26

1
2

2

j Y j Y Y X

j Y X H
j

     

    
 

+ + =

− + =  =
− +

6. CTLTI Systems with Periodic Input Signals

Response of a CTLTI system to complex exponential signal

( ) 0j tx t e 
=

( ) cos( ) sin( ) 0
0 0 0

1 1

jk t
k k k

k k k

x t a a k t b k t c e  
  

= = =−

= + + =  

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis for Continuous Time Signals and Systems 39/412024-2025

( )

[ ( )]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 0 0 0 0
0 0

j t

j t j j t j t

y t h t x t h x t d h e d

e h e d e H H e

 

     

    

   

  −

− −

 − +

−

=  = − =

= = =

 



▪ That is,      is an eigenfunction of a LTI system and H() is the corresponding 

eigenvalue. We refer to H as the frequency response of the system.

j te 

Response of a CTLTI system to sinusoidal signal

( ) cos( )0x t t=

( ) ( )

( ) cos( )

( ) ( ) ( )

( ) ( )

0 0

0 0

0 0 0 0

1 1
0 2 2

1 1
0 02 2

1 1
0 02 2

j t j t

j t j t

j t j j t j

x t t e e

y t e H e H

e H e e H e

 

 

   



 

 

−

−

 − − 

= = +

= + −

= + −

If the impulse response h(t) is real-valued: 
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Response of a CTLTI system to periodic input signal

[ ( )] [ ( )]

( ) ( ) , ( ) ( )

( ) ( ) ( ) ( ) cos( ( ))0 0 0 0

0 0 0 0

0 0 0 0 0
1 1
2 2

j t j t

H H

y t H e H e H t   

   

    + − +

− =  − = −

= + = + 

( ) 0jk t
k

k

x t c e 


=−

= 

   { ( )} ( )0 0 0 0
0

jk t jk t jk t jk t
k k k k

k k k k

T x t T c e T c e c T e c H k e   
   

=− =− =− =−

 
= = = = 

 
   

7. CTLTI Systems with Non-Periodic Input Signals

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ) ( )

y t h t x t Y H X

Y H X Y X

  

     

=   =

= = + 
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Consider again the RC circuit. Let fc = 

1/RC = 80 Hz. Determine the FT of the 

response of the system to the unit-

pulse input signal x(t) = Π(t).

( ) , ( ) sinc( ),
( / )

( ) sinc( ),
( / )

( ) sinc( ) ,
( /80)

( ) tan ( / ) [sinc( )]

2

1

1
1
1

1 80
1

1
80

c

H f X f f
j f f

Y f f
j f

Y f f
f

Y f f f−

= =
+

=
+

=
+

= − +

▪ Example 23: Pulse response of RC circuit
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