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Chapter 5

Fourier Analysis for Discrete Time Signals and Systems

1. Analysis of Non-Periodic Discrete-Time Signals

2. Energy and Power in the Frequency Domain

3. Transfer Function Concept

4. DTLTI Systems with Non Periodic Input Signals

5. Discrete Fourier Transform
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Introduction

▪ DTLTI system can be represented by means of a constant coefficient linear 

difference equation, or alternatively by means of an impulse response.

▪ The output signal of a DTLTI system can be determined by solving the 

corresponding difference equation or by using the convolution operation.

1. Analysis of Non-Periodic Discrete-Time Signals

Discrete-time Fourier transform (DTFT)

1. Synthesis equation: (Inverse transform)

2. Analysis equation: (Forward transform)
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Existence of the DTFT

▪ A sufficient condition for the convergence of DTFT is that the signal x[n] be 

absolute summable,
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▪ Alternatively, it is also sufficient for x[n] to be square-summable: [ ]
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DTFT of some signals

▪ Example 2: DTFT of right-sided exponential signal

▪ Example 1: DTFT of unit-impulse signal
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▪ Example 3: DTFT for discrete-time pulse
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Properties of the DTFT

Periodicity X( + 2r) = X() for all integer r

)[ ] an( (d [ ])1 1 1 2x Xn nX x⎯→ ⎯→ F FLinearity
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Time shifting ( ) ([ ] )[ ] j mF Fx n x n m eX X −⎯→  − ⎯→

Time reversal and Conjugation ( ) ( )
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Differentiation in the frequency domain
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▪ Example 4: Use of differentiation in frequency property

x[n] = nnu[n]. ||  1[ ]
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Convolution property [ ] ( ) and [ ] ( )
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▪ Example 5: Convolution using the DTFT

h[n] = (2/3)nu[n], x[n] = (3/4)nu[n]. Determine y[n] = h[n] ∗ x[n] using the DTFT
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y[n] = −8(2/3)nu[n] + 9(3/4)nu[n] 

Multiplication of two signals [ ] ( ) and [ ] ( )
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2. Energy and Power in the Frequency Domain

Parseval’s theorem
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▪ For a non-periodic energy signal x[n] with DTFT, X():

Let the function Gx(Ω) be defined as: 

( )xG X= 
2 energy spectral density (ESD) of the signal x[n]
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▪ Example 6: Energy spectral density of a discrete-time pulse
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Determine the ESD of the rectangular pulse

The energy of the signal in the frequency interval −/10  Ω  /10:
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Energy or power in a frequency range

▪ The power/energy of x[n] in the frequency range −Ω0  Ω  Ω0 is the same as 

the power/energy of the output signal of a system with transfer function:
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Autocorrelation

▪ For an energy signal x[n] the autocorrelation function is defined as:
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n
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▪ For an energy signal, the energy spectral density is the DTFT of the 

autocorrelation function, that is, { [ ]} ( )xx xr m G= F

Properties of the autocorrelation function

▪ rxx [0] = Ex ≥ |rxx [m]| for all m.

▪ rxx [−m] = rxx [m] for all m, the autocorrelation function has even symmetry.

▪ If the signal x[n] is periodic with period N, then its autocorrelation function 

rxx[m] is also periodic with the same period.
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3. Transfer Function Concept

▪ In time-domain analysis of systems two distinct descriptions for DTLTI systems:

1. A linear constant-coefficient difference equation that describes the 

relationship between the input and the output signals.

2. An impulse response which can be used with the convolution operation for 

determining the response of the system to an arbitrary input signal.

▪ The concept of Transfer function will be introduced as the third method for 

describing the characteristics of a system.
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▪ The transfer function concept is valid for LTI systems only.

▪ In general, H() is a complex function of ,                               .( )( ) ( ) jH H e  = 
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Obtaining the transfer function from the difference equation
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▪ Example 7: Finding the transfer function from the difference equation

y[n] − 0.9y[n − 1] + 0.36y[n − 2] = x[n] − 0.2x[n − 1]

Y()[1 − 0.9e−j + 0.36e−j2] = X()[1 − 0.2e−j]

Y() − 0.9Y()e−j + 0.36Y()e−j2 = X() − 0.2X()e−j
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▪ Example 8: Transfer function for length-N moving average filter
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4. DTLTI Systems with Non Periodic Input Signals

For a non-periodic signal x[n] as input to a DTLTI system. The output of the 

system y[n] is given by:

▪ Let us assume that The system is stable ensuring that H(Ω) converges, and 

the DTFT of the input signal also converges.

[ ] [ ] [ ]y n h n x n= 
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5. Discrete Fourier Transform

▪ Sometimes it is desirable to have a transform that is also discrete. This can be 

accomplished through the use of the discrete Fourier transform (DFT) 

provided that the signal under consideration is finite-length.

/[ ] [ ] , 0, ..., 1
1

2

0

1 N j nk N

k

x n X k e n N
N


−

=

= = −

Discrete Fourier Transform (DFT):

1. Analysis equation (Forward transform):

2. Synthesis equation (Inverse transform):
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▪ The DTFT of a DT signal x[n] is a transform X() which, if it exists, is a 2-

periodic function of the continuous variable  ⇒ Storing the DTFT of a signal 

on a digital computer is impractical because of the continuous nature of .
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▪ Example 9: DFT of simple signal
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▪ Example 10: DFT of discrete-time pulse

x[n] = u[n] − u[n − 10] [ ] { 1 , , 1, 1, 1, 1, 1, 1, 1, 1}
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Relationship of the DFT to the DTFT

▪ The DFT of a length-N signal is equal to its DTFT evaluated at a set of N 

angular frequencies equally spaced in the interval [0, 2). Let an indexed set 

of angular frequencies be defined as: k = 2k/N, k = 0, 1, …, N − 1.

The DFT of the signal is written as

▪ Example 11: DFT of discrete-time pulse revisited

x[n] = u[n] − u[n − 10]
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Properties of the DFT

▪ The properties of the DFT are similar to those of DTFT with one significant 

difference: Any shifts in the time domain or the transform domain are circular 

shifts rather than linear shifts.

▪ Also, any time reversals used in conjunction with the DFT are circular time 

reversals rather than linear ones.
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1. Obtain periodic extension x[n] from x[n]: [ ] [ ]
m

x n x n mN


=−

= −

2. Apply a time shift to x[n] to obtain x[n − m]. The amount of the time shift 

may be positive or negative.

3. Obtain an length-N signal g[n] by extracting the main period of x[n − m].

 [ ], , 1, ..., 
[ ]

, otherwise

x n m n N
g n

− = −
=

0 1
0

The resulting signal g[n] is a circularly shifted version of x[n], g[n] = x[n − m]mod N

▪ For the time reversal operation: 

x[n − m] → x[−n] and g[n] = x[n − m]mod N → g[n] = x[−n]mod N 
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Circular shift to the right by two samples Circular shift to the left by three samples

Circular shifting a length-N signal

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis for Discrete Time Signals and Systems 24/302024-2025

Circular time reversal of a length-8 signal

▪ A length-N signal x[n] is circularly conjugate symmetric if it satisfies x*[n] =

x[−n]mod N  or circularly conjugate antisymmetric if it satisfies x*[n] = −x[−n]mod N

▪ Every signal can be decomposed into two components such that one is 

circularly conjugate symmetric xE[n] and the other is circularly conjugate 

antisymmetric xO[n]: x[n] = xE[n] + xO[n].
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Frequency shifting (2 / )
mod [ ] [ ] [ ] [ ]j N mn
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▪ Example 12: Circular convolution of two signals
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▪ The circular convolution property of the discrete Fourier transform:

[ ] and[ [ ]

[ ] [

] [ ]

[ [ ]] ]

DFT DFT

DFT

X k Hx n h k

X k H

n
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▪ Example 13: Circular convolution through DFT

Verify the circular convolution property of example 12
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[ ] [ ] [ ]Y k X k H k=

Obtaining circular convolution

1. Compute the DFTs: X[k] = DFT{x[n]} , and H[k] = DFT{h[n]}.

[ ] [ ] [ ]y n x n h n= 

▪ The output signal of a DTLTI system is equal to the linear convolution of its 

impulse response with the input signal.

2. Multiply the two DFTs to obtain Y[k] : Y[k] = X[k] H[k].

3. Compute y[n] through inverse DFT: y[n] = DFT−1{Y[k]}.
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▪ Example 14: Linear vs. circular convolution

[ ] {1, , 2, 4, 6} [ ] {5 , , 3, , 1}3 4 2x n h n
 

= − =

[ ] [ ] [ ] {24 , , 33, , 27}31 5y n x n h n


=  =

[ ] [ ] [ ] {5, 19, 25, 1, 27, 19, 12, 8, 6}l
k

y n x k h n k


=−

= − = − linear convolution

How does yl [n] relate to y[n]?

▪ The most obvious difference between the two results yl [n] and y[n] is the 

length of each (9 vs. 5).

Relationship between linear and circular convolution
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1. Anticipating the length of the linear convolution result to be Ny = Nx + Nh − 1, 

extend the length of each signal to Ny through zero padding:

[ ], , , [ ], , , 
[ ] [ ]

, , , , , , 

0 1 0 1
0 1 0 1

x h
p p

x y h y

x n n N h n n N
x n h n

n N N n N N
= − = − 

= = = − = − 

2. Compute the DFTs of the zero-padded signals xp[n] and hp[n]:

Xp[k] = DFT{xp[n]} , and Hp[k] = DFT{hp[n]}

3. Multiply the two DFTs to obtain Yp[k]:Yp[k] = Xp[k] Hp[k].

4. Compute yp[n] through inverse DFT: yp[n] = DFT−1 {Yp[k]}:

yp[n] = yl [n] for n = 0, ..., Ny − 1

Computing linear convolution using the DFT:

Given two finite length signals with Nx and Nh samples respectively:

x[n], n = 0, ..., Nx − 1 and h[n], n = 0, ..., Nh − 1
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