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Chapter 7

Laplace Transform for Continuous-Time Signals and Systems

1. Laplace Transform

2. Laplace Transform with CTLTI Systems

3. Simulation Structures for CTLTI Systems

4. Unilateral Laplace Transform
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▪ The Laplace transform (LT) can be viewed as a generalization of  the 

(classical) Fourier transform.

▪ Certain characteristics of continuous-time (CT) systems can only be studied 

via the Laplace transform. Such is the case of stability, transient and steady-

state responses.

Introduction

1. Laplace Transform

{ ( )} ( ) ( ) stL x t X s x t e dt−= = 

▪ The Laplace transform of a continuous-time signal x(t) is defined as:

where s =  + j, the independent variable of the transform.  : damping 

factor, : frequency variable.
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▪ There are two important variants:

Unilateral (or one-sided): ( ) { ( )} ( ) ;
0

st
uX s x t x t e dt

−

 −= = L

Bilateral (or two sided): ( ) { ( )} ( ) ;stX s x t x t e dt−

−



= = L

Relationship Between LT and Continuous-Time FT

( )( ) ( ) [ ( ) ] { ( )}j t t j t tX j x t e dt x t e e dt e x t     
 − + − − −

− −
+ = = =  F

( ) ( ) ( ) { ( )}st j t

s j

X j x t e dt x t e dt x t




 − −

− −
=

 = = =
    F

▪ Example 1: Laplace transform of the unit impulse

( ) ( ) ( )st stX s x t e dt t e dt
 − −

− −
= = =  1
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▪ Example 2: Laplace transform of the unit-step signal

( ) ( ) ( ) , Re{ }
0

0
1st st stX s x t e dt u t e dt e dt
s

s
  − − −

− −
= = = =  

( ) ( ) ( )t t jwt tx t e dt x t e e dt x t e dt    − − − −

− − −
=     

Regions of Convergence

▪ All points in the s-plane for which the Laplace transform converges is called 

the region of convergence (ROC). For the LT X(s) of x(t) to exist we need that:

▪ Note: The frequency does not affect the ROC.

Poles and Zeros and the Region of Convergence

▪ Typically, X(s) is rational, X(s) = N(s)/D(s).
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▪ For the Laplace The roots of N(s) are called zeros, and the roots of D(s) are 

called poles. The ROC is related to the poles of the transform.

▪ If {σi} are the real parts of the poles of X(s), the ROC corresponding to 

different types of signals is determined from its poles as follows:

▪ For a causal signal x(t), the region of convergence of its Laplace transform 

X(s) is a plane to the right of the poles, {( , ): max{ }, }c iR     =  −    

▪ For a anticausal signal x(t), the ROC of its Laplace transform X(s) is a plane to 

the left of the poles, {( , ): min{ }, }ac iR     =  −    

▪ For a noncausal signal x(t), the region of convergence of its Laplace transform 

X(s) is the intersection of the ROC corresponding to the causal component, 

Rc, and Rac corresponding to the anticausal component, c acR R
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▪ Example 3: Find the Laplace transform of x1(t)

if 0
( )

otherwise

te t
x t

− 
= 


1 0 t

1

x1(t)

( )

(

R

( ) ( ) ,
)

}e{

1

1 1 0
0

1

1

1 1

s t
st t st e

X s x t e dt e e dt
s s

s


− +

 − − −

−
= = = =

− + +

 −

 

−

ROC

s-plane



▪ Example 4: Find the Laplace transform of x2(t)

if 0
( )

otherwise

t te e t
x t

− − − 
= 



2

2 0 t

x2(t)
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R

( ) ( )

, { }
( )( )

e

 − − −

 − − − −

= −

= − −
+ +

=



 

t t st

t st t st

X s e e e dt

e e dt e e dt
s s

s

2
2 0

2

0 0

1

1 2
1

−

ROC

s-plane

−
 

if 0
( )

otherwise

te t
x t

−− 
= 


3 0

▪ Example 5: LT of an anti-causal exponential signal

t

x3(t)

−1
( )

( ) ( ) ,
(

}Re

)

{

010

3 3

1

1

1

1

s t
st t st e

X s x t e dt e e dt
s s

s

− +
 − − −

− −
−

−
= = − = =

+ +

−

−



 

−

R
O

C s-plane

▪ It is possible for two different signals to have the same 

transform expression for X(s).
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⇒ the ROC must be specified 

along with the transform

{ ( )} , ROC: Re{ }

{ ( )} , ROC: Re{ }

t

t

L e u t s
s

L e u t s
s

−

−

=  −
+

− − =  −
+

1
1

1
1

1
1

▪ Example 6: Find the Laplace transform of x4(t)

( )
tx t e−

=4
t

x4(t)

( ) ( )

(1 ) (1 )

Re Re

( )

R, { }
( ) )

e
(

 − − − − +

− −


− +

−
 −

= = +

−
= + = + =

−
−

− + −
 

− +

  
t st s t s t

s t s t

X s e e dt e dt e dt

e e

s s s s s
s

0 1 1
4 0

0

2
0

1 1

1 1 2

1 1
1

1 1 1
1

−

ROC

s-plane



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▪ Example 7: Laplace transform of a pulse signal

/
( )

t
x t





− 
=   

 

2

( ) ( )
st s

st e e
X s e dt

s s





− −

− −
= = =

−0
0

1
1

( ) ( ) converge at 
s

s
s

e
X s X s s




−

=

=

= =  =
0

0

0
1

▪ Example 8: Laplace transform of complex exponential signal
j

ROC

s-plane
( ) ( )0j tx t e u t

=
( )

( )
Re( ) ( ) , { }


 

 


−

  −−

−
= = = =

−


− 
j t st

j t j s tst e
X s e u t e dt e dt

j s s j
s

0

0 0

0
0 00

1
0
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Properties of Laplace Transform

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩ R2)

Delay by T x(t −  T) X(s)e−sT R

Multiply by t tx(t) −dX(s)/ds R

Multiply by e−αt x(t)e−αt X(s + ) Shift R by −

Scaling in t x(at) aR

Differentiate in t dx(t)/dt sX(s) ⊃ R

Integrate in t ⊃ (R ∩ (Re(s)   0))

Convolve in t x1  x2(t) X1(s) X2(s) ⊃ (R1 ∩ R2)

( )
t
x d 

−
( )X s
s

( )
| |

s
X
a a
1
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Laplace Transform Pairs

( )

( ) /

( ) /

!
( )

!
( )

( )

( )

n
n

n
n

at

at

t

u t s

u t s

n
t u t

s
n

t u t
s

e u t
s a

e u t
s a



+

+

−

−

− −

− −

+

− −
+

1

1

1

1

1

1

1

1    All s

2    Re{s}  

3    Re{s}  

5    Re{s}  

4    Re{s}  

7    Re{s}  −a

6    Re{s}  −a
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8     Re{s}  −a

9     Re{s}  −a

10     Re{s}  

12     Re{s}  −a

11     Re{s}  

13     Re{s}  −a

!
( )

( )

!
( )

( )

[cos ] ( )

[sin ] ( )

[ cos ] ( )
( )

[ sin ] ( )
( )

1

1

0 2 2
0

0
0 2 2

0

0 2 2
0

0
0 2 2

0

n at
n

n at
n

at

at

n
t e u t

s a
n

t e u t
s a
s

t u t
s

t u t
s
s a

e t u t
s a

e t u t
s a

















−

+

−

+

−

−

+

− −
+

+

+

+

+ +

+ +
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▪ Example 9: Laplace transform of a truncated sine function

sin( ),
( )

, otherwise

0 1
0
t t

x t
  

= 


ROC: entire s-plane except points where

 Re{s} → −∞

(1 )
( ) sin( ) ( )

1 1

2 20 0

1

2

s
st j t j t st e

X s t e dt e e e dt
j s

  




−
− − − +

= = − =
+

 

Another method

x(t) = sin(t)u(t) + sin([t − 1])u(t − 1)

(1 )
( )

2 2 2 2 2 2

s
s e

X s e
s s s

  

  

−
− +

= + =
+ + +
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▪ Example 10: Using the convolution property of the Laplace transform

x1(t) = e−tu(t),  x2(t) = (t) − e−tu(t)

Determine x(t) = x1(t) ∗ x2(t) using Laplace transform techniques.

( ) , ROC: Re{ } 1X s s
s

=  −
+

1

1

1

−2

ROC

s-plane



Cancelled
pole

−1

( ) , ROC: Re{ } 2
s

X s s
s s

+
= − =  −

+ +
2

1 1
1

2 2

( ) ( ) ( ) , ROC: Re{ } 2X s X s X s s
s

= =  −
+

1 2

1

2

( ) { ( )} ( )tx t X s e u t
s

− − − 
= = = 

+ 

1 1 21

2
L L
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Initial Value Theorem

For a function x with Laplace transform X, if x is causal and contains no impulses 

or higher order singularities at the origin, then:

(0 ) lim ( )
s

x sX s+

→
=

▪ When X is known but x is not, the initial value theorem eliminates the need to 

explicitly find x in order to evaluate x(0+).

▪ Example 11: Calculate the initial value of the function x(t), whose LT is:

( )
( )

( )

s
X s

s

+
=

+ +2 2

2 1

1 5( )
(0 ) lim ( ) lim ( ) lim

( )s st

s s
x x t sX s

s+

+

→ →→

+
= = = =

+ +2 20

2 1
2

1 5
Verification: ( ) cos ( ) ( )tx t e t u t−= 2 5
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For a function x with Laplace transform X, if x is causal and x(t) has a finite limit 

as t → ∞, then:
lim ( ) lim ( )
t s
x t sX s

→ →
=

0

▪ When X is known but x is not, the final value theorem eliminates the need to 

explicitly find x in order to evaluate limit t → ∞ x(t).

▪ Example 12: Calculate the final value of the function x(t), whose Laplace 

transform is:
( )

( )

+
=

+

s
X s

s s

3

1( )
lim ( ) lim ( ) lim lim

( )→ → → →

+ +
= = = =

+ +t s s s

s s s
x t sX s

s s s0 0 0

3 3
3

1 1

Verification: ( ) ( ) ( )−= − tx t e u t3 2

Final Value Theorem

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Laplace Transform for Continuous-Time Signals and Systems 18/462024-2025

Inverse Laplace Transform

{ ( )} ( ) ( ) ,1 1

2

j st

j
L X s x t X s e ds

j





+ −

− 
= = The inverse LT x of X is given by

where Re(s) =  is in the ROC of X.

▪ For rational functions, the inverse Laplace transform can be more easily 

computed using partial fraction expansions (PFE).

▪ Example 13: Calculate the inverse LT of the function H(s) = 1/(s + a)

with ROC: Re{s}  −a

with ROC: Re{s}  −a

h(t) = e−atu(t) 

h(t) = −e−atu(− t) 

▪ Example 14: The Laplace transform of a signal x(t) is ( )
( )

s
X s

s s

+
=

+2
1

9
with the ROC specified as Re {s}  0. Determine x(t).
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( )
k k k

X s
s s j s j

= + +
+ −

1 2 3

3 3

( ) ( ) [ ] ( ) [ ] ( )− −= − + + −j t j t j t j tx t u t e e u t j e e u t3 3 3 31 1 1
9 918 6

, ,= = − + = −k k j k j1 2 3
1 1 1 1 1
9 18 6 18 6

( ) ( ) cos( ) ( ) sin( ) ( )= − +x t u t t u t t u t1 1 1
9 9 33 3

Based on the specified ROC, 

the signal x(t) is causal

▪ Example 15: Multiple-order poles

A causal signal x(t) has the Laplace transform
( )

( )
( ) ( )

s s
X s

s s

+
=

+ +3

1

1 2

( )
( )

( ) ( ) ( ) ( )

s s
X s

s ss s s s

+ −
= = + − +

+ ++ + + +3 2 3

1 3 3 2 3

1 21 2 1 1
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{ ( )} , { ( )}
( )

{ ( )}
( ) ( )

t t

t

d
L e u t L te u t

s ds s s

d
L t e u t

ds s s

− −

−

 
= = − = + + + 

 
= − = 

+ + 

2

2
2 3

1 1 1

1 1 1

1 2

1 1

( ) ( ) ( ) ( ) ( )t t t tx t e u t te u t t e u t e u t− − − −= − + − +2 3 23 3 3

2. Laplace Transform with CTLTI Systems

Transfer Function and LTI Systems

h(t)
H(s)

x(t)

X(s)

y(t)

Y(s)

▪ Since y(t) = x(t)  h(t), the system is characterized 

in the Laplace domain by Y(s) = X(s)H(s).

▪ H(s) is the transfer function (or system function) of the system.
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▪ A LTI system is completely characterized by its transfer function H(s).

Relating the transfer function to the differential equation

▪ Many LTI systems of practical interest can be represented using an Nth-order 

linear differential equation with constant coefficients.

▪ Consider a system with input x and output y that is characterized by an 

equation of the form:
( ) ( )k kN M

k kk k
k k

d y t d x t
a b
dt dt= =

= 
0 0

where the ak and bk are complex constants and

( ) ( ) ( ) ( )

0 0 0 0

k k k kN M N M

k k k kk k k k
k k k k

d y t d x t d y t d x t
a b a b
dt dt dt dt= = = =

       
=  =       

       
   L L L L
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( ) ( )

0 0

k kN M

k kk k
k k

d y t d x t
a b

dt dt= =

   
=   

   
 L L

( )
( ) ( ) ( )

( )

0

0 0
0

M kN M
kk k k

k k N k
k k kk

b sY s
a s Y s b s X s H s

X s a s

=

= =
=

=  = =


 


▪ The transfer function is always rational.

▪ The impulse response of the system h(t) = L−1{H(s)}.

▪ The convolution operation is only applicable to problems involving LTI systems. 

▪ Therefore it follows that the transfer function concept is meaningful only for 

systems that are both linear and time invariant.

▪ In determining the transfer function from the differential equation, all initial 

conditions must be assumed to be zero.
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▪ Example 16: Finding the transfer function from the DE

A CTLTI system is defined by means of the differential equation:

( ) ( ) ( ) ( )
( ) ( )

d y t d y t dy t d x t
y t x t

dtdt dt dt
+ + + = +

3 2 2

3 2 2
5 17 13

( ) ( ) ( ) ( ) ( ) ( )s Y s s Y s sY s Y s s X s X s+ + + = +3 2 25 17 13

( )
( )

( )

Y s s
H s

X s s s s

+
= =

+ + +

2

3 2

1

5 17 13

Transfer function and causality

▪ Theorem: For a LTI system with a rational transfer function H, causality of the 

system is equivalent to the ROC of H being the right sided to the right of the 

rightmost pole or, if H has no poles, the entire complex plane.
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▪ For a CTLTI system to be causal, its impulse response h(t) needs to be equal 

to zero for t  0.
( ) ( ) ( )st stH s h t e dt h t e dt

 − −

−
= = 0

▪ Consider a transfer function in the form:

( )
( )

( )

M M
M M
N N

N N

b s b s b s bY s
H s

X s a s a s a s a

−
−

−
−

+ + + +
= =

+ + + +

1
1 1 0

1
1 1 0

For the system described by H(s) to be causal we need:

lim ( ) lim M NM

s s
N

b
H s s M N M N

a
−

→ →
=    −   0

Causality condition:

▪ In the transfer function of a causal CTLTI system the order of the numerator 

must not be greater than the order of the denominator.
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Transfer function and stability:

▪ For a CTLTI system to be stable its impulse response must be absolute 

integrable.
( )h t dt



−
 

Stability condition:

▪ For a CTLTI system to be stable, the ROC of its s-domain transfer function 

must include the imaginary axis.

▪ For a causal system to be stable, the transfer function must not have any 

poles on the imaginary axis or in the right half s-plane.

▪ For a anticausal system to be stable, the transfer function must not have any 

poles on the imaginary axis or in the right half s-plane.
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▪ For a noncausal system the ROC for the TF, if it exists, is the region in the 

form 1  Re {s}  2. For stability we need 1  0 and 2  0. The poles of the 

TF may be either:

a. On or to the left of the vertical line  = 

b. On or to the right of the vertical line  = 

▪ Example 17: Impulse response of a stable system

Determine the ROC of the TF. Afterwards find the impulse response.

( )
( )

( )( )( )

s s
H s

s s s

+
=

+ − −

15 1

3 1 2

The 3 poles are at s = −3, 1, 2. Since the system is known to be stable, its 

ROC must include the j− axis. The only possible choice is −3  Re {s}  1.

( )
. .

H s
s s s

= − +
+ − −

4 5 7 5 18

3 1 2
⇒ h(t) = 4.5e−3tu(t) + 7.5etu(−t) − 18e2tu(−t)
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Interconnection of LTI Systems

▪ The series interconnection of the LTI systems with TFs H1 and H2. 

H1

X Y
H2 H1H2

X Y
≡
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▪ The parallel interconnection of the LTI systems with TFs H1 and H2.

H1 + H2

X Y
≡H1

X Y

H2

+

Application: Circuit Analysis: Electronic Circuits

▪ A resistor ( ) ( ) or ( ) ( )= =R R R RRv t Ri t i t v t1

( ) ( ) or ( ) ( )= =R R R RRV s RI s I s V s1

▪ An inductor ( ) ( ) or ( ) ( ) 
−

= = 
t

L L L LL
d

v t L i t i t v d
dt

1

( ) ( ) or ( ) ( )= =L L L LsLV s sLI s I s V s1
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▪ A capacitor

( ) ( ) or ( ) ( )= =C C C CsCV s I s I s sCV s1

( ) ( ) or ( ) ( ) 
−

= =
t

C C C CC
d

v t i d i t C v t
dt

1

Application: Design and Analysis of Control Systems

▪ The desired values of the quantities being controlled are collectively viewed 

as the input of the control system.

▪ The actual values of the quantities being controlled are collectively viewed as 

the output of the control system.

▪ A control system whose behavior is not influenced by the actual values of the 

quantities being controlled is called an open loop (or non-feedback) system.

Control Systems
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▪ A control system whose behavior is influenced by the actual values of the 

quantities being controlled is called a closed loop (or feedback) system.

▪ An example of a simple control system would be a thermostat system, which 

controls the temperature in a room or building.

Feedback Control Systems

Controller Plant+

Sensor

Reference Input OutputError

−

Feedback Signal

▪ input: desired value of the quantity to be controlled.

▪ output: actual value of the quantity to be controlled.
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▪ error: difference between the desired and actual values.

▪ plant: system to be controlled.

▪ controller: device that monitors the error and changes the input of the plant. 

with the goal of forcing the error to zero.

▪ sensor: device used to measure the actual output.

A control system includes two very important components:

▪ Transducer: Since it is possible that the output signal y(t) and the reference 

signal x(t) might not be of the same type, a transducer is used to change y(t) 
so it is compatible with the reference input x(t). 

▪ Actuator: A device that makes possible the execution of the control action on 

the plant, so that the output of the plant follows the reference input.
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Stability Analysis of Feedback Systems

▪ Often, we want to ensure that a system is BIBO stable. BIBO stability property 

is more easily characterized in the Laplace domain than in the time domain.

Example 18: Stabilization Example: Unstable Plant

▪ Causal LTI plant X Y
( )P s

s
=

−

10

1 

ROC

s-plane



▪ System is not BIBO stable

Example 19: Stabilization Example: Using Pole-Zero Cancellation

▪ System formed by series interconnection of plant and causal LTI compensator:

( )
( )

s
W s

s

−
=

+

1

10 1
( )P s

s
=

−

10

1
X Y
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( ) ( ) ( )
( ) ( )

s
H s W s P s

s s s

−
= = =

+ − +

1 10 1

10 1 1 1

▪ Transfer function H of overall system (BIBO stable):

−

ROC

s-plane

 

Cancelled
pole

1

Example 20: Stabilization Example: Using Feedback

▪ Feedback system (with causal LTI compensator and sensor):

( )C s = ( )P s
s

=
−

10

1
+

( )Q s = 1

X YR

−

−

ROC

s-plane


BIBO stable iff 

1−10  0

( ) ( )
( )

( ) ( ) ( ) ( )

C s P s
H s

C s P s Q s s




= =

+ − −

10

1 1 10
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3. Simulation Structures for CTLTI Systems

Direct-form implementation

▪ Consider a third-order CTLTI system described by a TF H(s):

( )
( )

( )

b s b s bY s
H s

X s s a s a s a

+ +
= =

+ + +

2
2 1 0

3 2
2 1 0

Let us use an intermediate function W(s)

( ) ( )
( )

( ) ( )

b s b s b sY s W s
H s

W s X s a s a s a s

− − −

− − −

+ +
= =

+ + +

1 2 3
2 1 0

1 2 3
2 1 01

( ) ( )
( ) , ( )

( ) ( )

W s Y s
H s H s b s b s b s

X s W sa s a s a s
− − −

− − −
= = = = + +

+ + +

1 2 3
1 2 2 1 01 2 3

2 1 0

1

1
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( ) ( ) ( ) ( ) ( )W s X s a s W s a s W s a s W s− − −= − − −1 2 3
2 1 0

( ) ( ) ( ) ( )Y s b s W s b s W s b s W s− − −= + +1 2 3
2 1 0

Completed block diagram for 
simulating the TF H(s)

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Laplace Transform for Continuous-Time Signals and Systems 36/462024-2025

▪ Example 21: Obtaining a block diagram (BD) from transfer function

A CTLTI system is described through the transfer function:

( )
( )

( )

Y s s s
H s

X s s s s s

− +
= =

+ + + +

3

4 3 2

2 26 24

7 21 37 30
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Cascade and parallel forms

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
M

M

W s W s Y s
H s H s H s H s

X s W s W s−

= = 1 2
1 2

1 1

Cascade form

▪ Example 22: Obtaining a block diagram from transfer function

( ) ( )( )( )
( )

( ) ( )( )( )( )

Y s s s s
H s

X s s j s j s s

+ − −
= =

+ − + + + +

2 4 3 1

1 2 1 2 3 2

Develop a cascade form block diagram for simulating the system used in 

example 21.
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( ) ( ) ( ) ( )H s H s H s H s= 1 2 3

( )
( ) , ( ) , ( )

( )( )

s s s s
H s H s H s

s j s j s ss s

+ + − −
= = = =

+ − + + + ++ +
1 2 32

2 4 2 8 3 1

1 2 1 2 3 22 5

Further simplified cascade form block diagram
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Parallel form
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

M
M

W s W s W s
H s H s H s H s

X s X s X s
= + + + = + + +1 2

1 2

▪ Example 23: Obtaining a block diagram from TF

Develop a parallel form BD for simulating the system used in example 21.
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( )
s

H s
s ss s

+ −
= + +

+ ++ +2

2 8 12 6

2 32 5
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4. Unilateral Laplace Transform

The unilateral Laplace transform of the function x is defined as:

{ ( )} ( ) ( ) st
u x t X s x t e dt

−

 −= = 0L

▪ The unilateral LT is related to the bilateral Laplace transform as follows:

{ ( )} ( ) ( ) ( ) { ( ) ( )}st st
u x t x t e dt x t u t e dt x t u t

−

 − −

−
= = = 0

L L

▪ With the unilateral LT, the same inverse transform equation is used as in the 

bilateral case.

▪ The unilateral LT is only invertible for causal functions.

▪ For a noncausal function x, we can only recover x(t) for t ≥ 0.
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Unilateral Versus Bilateral Laplace Transform

▪ The time-domain convolution property has the additional requirement that the 

functions being convolved must be causal.

▪ The time/Laplace-domain scaling property has the additional constraint that 

the scaling factor must be positive.

▪ The time-domain differentiation property has an extra term in the expression 

of Lu(dx(t)/dt), namely −x(0−).

▪ The time-domain integration property has a different lower limit in the time-

domain integral (0− instead of −∞);

▪ The time-domain shifting property does not hold (except in special cases).

In the unilateral case:
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Properties of the Unilateral Laplace Transform

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩ R2)

Multiply by t t x(t) −dX(s)/ds R

Multiply by e−αt x(t)e−αt X(s + ) Shift R by −

Scaling in t x(at), a    0 aR

Differentiate in t dx(t)/dt sX(s) – x(0−) ⊃ R

Integrate in t ⊃ (R ∩ (Re(s)   0))

Convolve in t x1  x2(t) X1(s) X2(s) ⊃ (R1 ∩ R2)

( )
t
x d 

−0
( )X s
s

( )
s

X
a a
1
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Unilateral Laplace Transform Pairs

1

2

3

4

5

( )

!

!

( )

n
n

at

n at
n

t

s
n

t
s

e
s a
n

t e
s a



+

−

−

+

+

+

1

1

1

1
1

1

cos

sin

cos
( )

sin
( )

0 2 2
0

0
0 2 2

0

0 2 2
0

0
0 2 2

0

at

at

s
t

s

t
s

s a
e t

s a

e t
s a

















−

−

+

+

+

+ +

+ +

6

7

8

9

Pair   x(t); t  0    X(s) Pair x(t); t  0 X(s)
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A voltage x(t) = 10e−3tu(t) is applied at the input of the RLC circuit. Find the 

output voltage vC(t) = y(t) for t  0 if the initial inductor current is iL(0−) = 0, and 

the initial capacitor voltage vC(0−) = 5 V. Use R = 3 Ω, L = 1 H and C = 1/2 F.

( ) ( )
( ) ( )

d y t dy t
y t x t

dtdt
+ + =

2

2 3 2 2

▪ Example 24: Response of a second-order system (RLC circuit)

( )
( ) , ( )

−
− −= = =

dy i
y

dt C
0

0 5 0 0

( ) ( )

( )
( )( )

+ + = + +
+

+ +
=

+ + +

s s Y s s
s

s s
Y s

s s s

2

2

2

20
3 2 5 15

3
5 30 65

3 3 2

( ) ( ( ) ) ( ) ( )− − + − + = =
+

s Y s s sY s Y s X s
s

2 20
5 0 3 5 2 2

3
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( )

( ) , 02 320 25 10t t t

y tt

y t e e e t− − −= − + 

( ) ( )

( )   , 0t t t

y t y tn

y t e e e t



− − −= − + 2 320 25 10
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