

CECC507: Signals and Systems Lecture Notes 8 & 9: Laplace Transform for Continuous-Time Signals and Systems

Ramez Koudsieh, Ph.D.

Faculty of Engineering Department of Mechatronics

Manara University

Laplace Transform for Continuous-Time Signals and Systems

Chapter 7

Laplace Transform for Continuous-Time Signals and Systems

1. Laplace Transform

- 2. Laplace Transform with CTLTI Systems
- 3. Simulation Structures for CTLTI Systems
 - 4. Unilateral Laplace Transform

Introduction

- The Laplace transform (LT) can be viewed as a generalization of the (classical) Fourier transform.
- Certain characteristics of continuous-time (CT) systems can only be studied via the Laplace transform. Such is the case of stability, transient and steadystate responses.
- 1. Laplace Transform
- The Laplace transform of a continuous-time signal x(t) is defined as:

$$L\{x(t)\} = X(s) = \int x(t)e^{-st}dt$$

where $s = \sigma + j\omega$, the independent variable of the transform. σ : damping factor, ω : frequency variable.

There are two important variants:

Unilateral (or one-sided): $X(s) = \mathcal{L}_u \{x(t)\} = \int_{0^-}^{\infty} x(t)e^{-st}dt;$ Bilateral (or two sided): $X(s) = \mathcal{L}\{x(t)\} = \int_{0^-}^{\infty} x(t)e^{-st}dt;$

Relationship Between LT and Continuous-Time FT $X(\sigma + j\omega) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma + j\omega)t}dt = \int_{-\infty}^{\infty} [x(t)e^{-\sigma t}]e^{-j\omega t}dt = \mathcal{F}\{e^{-\sigma t}x(t)\}$ $X(j\omega) = \left[\int_{-\infty}^{\infty} x(t)e^{-st}dt\right]\Big|_{s=j\omega} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \mathcal{F}\{x(t)\}$

• Example 1: Laplace transform of the unit impulse

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} \delta(t)e^{-st}dt = 1$$

Example 2: Laplace transform of the unit-step signal

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} u(t)e^{-st}dt = \int_{0}^{\infty} e^{-st}dt = \frac{1}{s}, \quad \text{Re}\{s\} > 0$$

Regions of Convergence

- All points in the *s*-plane for which the Laplace transform converges is called the region of convergence (ROC). For the LT *X*(*s*) of *x*(*t*) to exist we need that: $\left|\int_{-\infty}^{\infty} x(t)e^{-\sigma t}dt\right| = \left|\int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-jwt}dt\right| \leq \int_{-\infty}^{\infty} \left|x(t)e^{-\sigma t}\right|dt < \infty$
- Note: The frequency does not affect the ROC.
 Poles and Zeros and the Region of Convergence
- Typically, X(s) is rational, X(s) = N(s)/D(s).

- For the Laplace The roots of N(s) are called zeros, and the roots of D(s) are called poles. The ROC is related to the poles of the transform.
- If $\{\sigma_i\}$ are the real parts of the poles of X(s), the ROC corresponding to different types of signals is determined from its poles as follows:
- For a causal signal x(t), the region of convergence of its Laplace transform X(s) is a plane to the right of the poles, $R_c = \{(\sigma, \omega): \sigma > \max\{\sigma_i\}, -\infty < \omega < \infty\}$
- For a anticausal signal x(t), the ROC of its Laplace transform X(s) is a plane to the left of the poles, $R_{ac} = \{(\sigma, \omega): \sigma < \min\{\sigma_i\}, -\infty < \omega < \infty\}$
- For a noncausal signal x(t), the region of convergence of its Laplace transform X(s) is the intersection of the ROC corresponding to the causal component, R_c , and R_{ac} corresponding to the anticausal component, $R_c \cap R_{ac}$

• Example 5: LT of an anti-causal exponential signal

$$\begin{aligned} x_{3}(t) &= \begin{cases} -e^{-t} & \text{if } t \leq 0\\ 0 & \text{otherwise} \end{cases} \\ X_{3}(s) &= \int_{-\infty}^{\infty} x_{3}(t)e^{-st}dt = \int_{-\infty}^{0} -e^{-t}e^{-st}dt = \frac{-e^{-(s+1)t}}{-(s+1)} \bigg|_{-\infty}^{0} = \frac{1}{s+1}, \\ \text{Re}\{s\} < -1 \end{cases}$$

 It is possible for two different signals to have the same transform expression for X(s). $x_3(t)$

Laplace Transform for Continuous-Time Signals and Systems

https://manara.edu.sy/

2024-2025

• Example 8: Laplace transform of complex exponential signal $x(t) = e^{j\omega_0 t} u(t)$ $x(t) = e^{j\omega_0 t} u(t)$ $x(s) = \int_{-\infty}^{\infty} e^{j\omega_0 t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{(j\omega_0 - s)t} dt = \frac{e^{(j\omega_0 t - st)}}{j\omega_0 - s} \Big|_{0}^{\infty} = \frac{1}{s - j\omega_0}, \operatorname{Re}\{s\} > 0$ ROC

Laplace Transform for Continuous-Time Signals and Systems

Properties of Laplace Transform

Property	x(t)	X(s)	ROC
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$\supset (R_1 \cap R_2)$
Delay by T	x(t - T)	$X(s)e^{-sT}$	R
Multiply by t	tx(t)	-dX(s)/ds	R
Multiply by $e^{-\alpha t}$	$x(t)e^{-\alpha t}$	$X(s + \alpha)$	Shift R by $-\alpha$
Scaling in t	x(at)	$\frac{1}{ a }X(\frac{s}{a})$	aR
Differentiate in t	dx(t)/dt	sX(s)	$\supset R$
Integrate in t	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{X(s)}{s}$	$\supset (R \cap (\operatorname{Re}(s) > 0))$
Convolve in t	$\overline{x_1 \ast x_2(t)}$	$X_1(s) X_2(s)$	$\supset (R_1 \cap R_2)$

Laplace Transform for Continuous-Time Signals and Systems

Laplace Transform Pairs

1	$\delta(t)$	1	All s
2	u(t)	1/s	$Re\{s\} > 0$
3	-u(-t)	1/s	$\operatorname{Re}\{s\} < 0$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$Re\{s\} > 0$
5	$-t^n u(-t)$	$\frac{n!}{s^{n+1}}$	Re { <i>s</i> } < 0
6	$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}\{s\} > -a$
7	$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re\{s\} < -a$

Laplace Transform for Continuous-Time Signals and Systems

$$8 \qquad t^{n}e^{-at}u(t) \qquad \frac{n!}{(s+a)^{n+1}} \qquad \operatorname{Re}\{s\} > -a$$

$$9 \qquad -t^{n}e^{-at}u(-t) \qquad \frac{n!}{(s+a)^{n+1}} \qquad \operatorname{Re}\{s\} < -a$$

$$10 \qquad [\cos \omega_{0}t]u(t) \qquad \frac{s}{s^{2}+\omega_{0}^{2}} \qquad \operatorname{Re}\{s\} > 0$$

$$11 \qquad [\sin \omega_{0}t]u(t) \qquad \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \qquad \operatorname{Re}\{s\} > 0$$

$$12 \qquad [e^{-at}\cos \omega_{0}t]u(t) \qquad \frac{s+a}{(s+a)^{2}+\omega_{0}^{2}} \qquad \operatorname{Re}\{s\} > -a$$

$$13 \qquad [e^{-at}\sin \omega_{0}t]u(t) \qquad \frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}} \qquad \operatorname{Re}\{s\} > -a$$

Laplace Transform for Continuous-Time Signals and Systems

https://manara.edu.sy/

13/46

Example 9: Laplace transform of a truncated sine function x(t)

$$x(t) = \begin{cases} \sin(\pi t), & 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$$

$$X(s) = \int_{0}^{1} \sin(\pi t) e^{-st} dt = \frac{1}{2j} \int_{0}^{1} (e^{j\pi t} - e^{-j\pi t}) e^{-st} dt = \frac{\pi(1 + e^{-s})}{s^{2} + \pi^{2}}$$
Another method
$$x(t) = \sin(\pi t) u(t) + \sin(\pi [t - 1]) u(t - 1)$$

$$X(s) = \frac{\pi}{s^{2} + \pi^{2}} + \frac{\pi}{s^{2} + \pi^{2}} e^{-s} = \frac{\pi(1 + e^{-s})}{s^{2} + \pi^{2}}$$
ROC: entire *s*-plane except points where
$$\operatorname{Re}\{s\} \to -\infty$$

Laplace Transform for Continuous-Time Signals and Systems

https://manara.edu.sy/

2024-2025

1

• Example 10: Using the convolution property of the Laplace transform $x_1(t) = e^{-t}u(t), x_2(t) = \delta(t) - e^{-2t}u(t)$

Determine $x(t) = x_1(t) * x_2(t)$ using Laplace transform techniques.

Initial Value Theorem

For a function x with Laplace transform X, if x is causal and contains no impulses or higher order singularities at the origin, then:

 $x(0^+) = \lim_{s \to \infty} sX(s)$

- When X is known but x is not, the initial value theorem eliminates the need to explicitly find x in order to evaluate $x(0^+)$.
- Example 11: Calculate the initial value of the function x(t), whose LT is:

$$x(0^{+}) = \lim_{t \to 0^{+}} x(t) = \lim_{s \to \infty} sX(s) = \lim_{s \to \infty} \frac{2s(s+1)}{(s+1)^{2} + 5^{2}} = 2$$

Verification: $x(t) = 2e^{-t}\cos(5t)u(t)$

 $X(s) = \frac{2(s+1)}{(s+1)^2 + 5^2}$

Final Value Theorem

For a function x with Laplace transform X, if x is causal and x(t) has a finite limit as $t \to \infty$, then:

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

- When X is known but x is not, the final value theorem eliminates the need to explicitly find x in order to evaluate limit $t \to \infty x(t)$.
- Example 12: Calculate the final value of the function x(t), whose Laplace transform is: $X(s) = \frac{s+3}{s(s+1)}$

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) = \lim_{s \to 0} \frac{s(s+3)}{s(s+1)} = \lim_{s \to 0} \frac{s+3}{s+1} = 3$$

Verification: $x(t) = (3 - 2e^{-t})u(t)$

Inverse Laplace Transform

The inverse LT x of X is given by $L^{-1}{X(s)} = x(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s) e^{st} ds$, where Re(s) = σ is in the ROC of X.

- For rational functions, the inverse Laplace transform can be more easily computed using partial fraction expansions (PFE).
- Example 13: Calculate the inverse LT of the function H(s) = 1/(s + a)

 $h(t) = e^{-at}u(t)$ with ROC: Re{s} > -a $h(t) = -e^{-at}u(-t)$ with ROC: Re{s} < -a

• Example 14: The Laplace transform of a signal x(t) is $X(s) = \frac{s+1}{s(s^2+9)}$ with the ROC specified as Re $\{s\} > 0$. Determine x(t).

$$X(s) = \frac{k_1}{s} + \frac{k_2}{s+j3} + \frac{k_3}{s-j3}$$

Based on the specified ROC
$$k_1 = \frac{1}{9}, \quad k_2 = -\frac{1}{18} + j\frac{1}{6}, \quad k_3 = \frac{1}{18} - j\frac{1}{6}$$

$$x(t) = \frac{1}{9}u(t) - \frac{1}{918}[e^{-j3t} + e^{j3t}]u(t) + j\frac{1}{6}[e^{-j3t} - e^{j3t}]u(t)$$

$$x(t) = \frac{1}{9}u(t) - \frac{1}{9}\cos(3t)u(t) + \frac{1}{3}\sin(3t)u(t)$$

Example 15: Multiple-order poles

A causal signal x(t) has the Laplace transform $X(s) = \frac{s(s+1)}{(s+1)^3(s+2)}$

$$X(s) = \frac{s(s+1)}{(s+1)^3(s+2)} = \frac{-3}{s+1} + \frac{3}{(s+1)^2} - \frac{2}{(s+1)^3} + \frac{3}{s+2}$$

Laplace Transform for Continuous-Time Signals and Systems

$$L\{e^{-t}u(t)\} = \frac{1}{s+1}, \quad L\{te^{-t}u(t)\} = -\frac{d}{ds}\left[\frac{1}{s+1}\right] = \frac{1}{(s+1)^2}$$
$$L\{t^2e^{-t}u(t)\} = -\frac{d}{ds}\left[\frac{1}{(s+1)^2}\right] = \frac{2}{(s+1)^3}$$
$$x(t) = -3e^{-t}u(t) + 3te^{-t}u(t) - t^2e^{-3t}u(t) + 3e^{-2t}u(t)$$

- 2. Laplace Transform with CTLTI Systems Transfer Function and LTI Systems
- Since y(t) = x(t) * h(t), the system is characterized in the Laplace domain by Y(s) = X(s)H(s).
- $\begin{array}{c|ccc} x(t) & h(t) & y(t) \\ \hline X(s) & H(s) & Y(s) \end{array}$
- H(s) is the transfer function (or system function) of the system.

• A LTI system is completely characterized by its transfer function *H*(*s*).

Relating the transfer function to the differential equation

- Many LTI systems of practical interest can be represented using an *N*th-order linear differential equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form:

$$\sum_{k=0}^N a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^M b_k \frac{d^k x(t)}{dt^k}$$

where the a_k and b_k are complex constants and

$$\mathcal{L}\left\{\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k}\right\} = \mathcal{L}\left\{\sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}\right\} \Longrightarrow \sum_{k=0}^{N} \mathcal{L}\left\{a_k \frac{d^k y(t)}{dt^k}\right\} = \sum_{k=0}^{M} \mathcal{L}\left\{b_k \frac{d^k x(t)}{dt^k}\right\}$$

Laplace Transform for Continuous-Time Signals and Systems

$$\sum_{k=0}^{N} a_k \mathcal{L}\left\{\frac{d^k y(t)}{dt^k}\right\} = \sum_{k=0}^{M} b_k \mathcal{L}\left\{\frac{d^k x(t)}{dt^k}\right\}$$
$$\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s) \Rightarrow H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

- The transfer function is always rational.
- The impulse response of the system $h(t) = \mathcal{L}^{-1}{H(s)}$.
- The convolution operation is only applicable to problems involving LTI systems.
- Therefore it follows that the transfer function concept is meaningful only for systems that are both linear and time invariant.
- In determining the transfer function from the differential equation, all initial conditions must be assumed to be zero.

Example 16: Finding the transfer function from the DE
 A CTLTI system is defined by means of the differential equation:

$$\frac{d^3 y(t)}{dt^3} + 5 \frac{d^2 y(t)}{dt^2} + 17 \frac{dy(t)}{dt} + 13y(t) = \frac{d^2 x(t)}{dt^2} + x(t)$$
$$s^3 Y(s) + 5s^2 Y(s) + 17s Y(s) + 13Y(s) = s^2 X(s) + X(s)$$
$$H(s) = \frac{Y(s)}{X(s)} = \frac{s^2 + 1}{s^3 + 5s^2 + 17s + 13}$$

Transfer function and causality

Theorem: For a LTI system with a rational transfer function *H*, causality of the system is equivalent to the ROC of *H* being the right sided to the right of the rightmost pole or, if *H* has no poles, the entire complex plane.

- For a CTLTI system to be causal, its impulse response h(t) needs to be equal to zero for t < 0. $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt = \int_{0}^{\infty} h(t)e^{-st}dt$
- Consider a transfer function in the form:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s + b_0}{a_N s^N + a_{N-1} s^{N-1} + \dots + a_1 s + a_0}$$

For the system described by H(s) to be causal we need:

$$\lim_{s \to \infty} H(s) = \lim_{s \to \infty} \frac{b_M}{a_N} s^{M-N} < \infty \Leftrightarrow M - N \le 0 \Longrightarrow M \le N$$

Causality condition:

In the transfer function of a causal CTLTI system the order of the numerator must not be greater than the order of the denominator.

Transfer function and stability:

For a CTLTI system to be stable its impulse response must be absolute integrable.

$$\int_{-\infty}^{\infty} \left| h(t) \right| dt < \infty$$

Stability condition:

- For a CTLTI system to be stable, the ROC of its s-domain transfer function must include the imaginary axis.
- For a causal system to be stable, the transfer function must not have any poles on the imaginary axis or in the right half *s*-plane.
- For a anticausal system to be stable, the transfer function must not have any poles on the imaginary axis or in the right half *s*-plane.

• For a noncausal system the ROC for the TF, if it exists, is the region in the form $\sigma_1 < \text{Re} \{s\} < \sigma_2$. For stability we need $\sigma_1 < 0$ and $\sigma_2 > 0$. The poles of the TF may be either:

a. On or to the left of the vertical line $\sigma = \sigma_1$ b. On or to the right of the vertical line $\sigma = \sigma_2$

• Example 17: Impulse response of a stable system $H(s) = \frac{15s(s+1)}{(s+3)(s-1)(s-2)}$

Determine the ROC of the TF. Afterwards find the impulse response.

The 3 poles are at s = -3, 1, 2. Since the system is known to be stable, its ROC must include the $j-\omega$ axis. The only possible choice is $-3 < \text{Re } \{s\} < 1$.

$$H(s) = \frac{4.5}{s+3} - \frac{7.5}{s-1} + \frac{18}{s-2} \qquad \Rightarrow h(t) = 4.5 e^{-3t} u(t) + 7.5 e^{t} u(-t) - 18 e^{2t} u(-t)$$

Interconnection of LTI Systems

• The series interconnection of the LTI systems with TFs H_1 and H_2 .

Laplace Transform for Continuous-Time Signals and Systems

• The parallel interconnection of the LTI systems with TFs H_1 and H_2 .

Application: Circuit Analysis: Electronic Circuits

• A resistor $v_{R}(t) = Ri_{R}(t) \quad \text{or} \quad i_{R}(t) = \frac{1}{R}v_{R}(t)$ $V_{R}(s) = RI_{R}(s) \quad \text{or} \quad I_{R}(s) = \frac{1}{R}V_{R}(s)$ $+ v_{R}(t) - V_{R}(t) = L \frac{d}{dt}i_{L}(t) \quad \text{or} \quad i_{L}(t) = \frac{1}{L}\int_{-\infty}^{t}v_{L}(\tau)d\tau$ $V_{L}(s) = sLI_{L}(s) \quad \text{or} \quad I_{L}(s) = \frac{1}{sL}V_{L}(s)$ $+ v_{L}(t) - V_{L}(t)$

Laplace Transform for Continuous-Time Signals and Systems

- A capacitor
$$v_C(t) = \frac{1}{C} \int_{-\infty}^t i_C(\tau) d\tau$$
 or $i_C(t) = C \frac{d}{dt} v_C(t)$
 $V_C(s) = \frac{1}{sC} I_C(s)$ or $I_C(s) = sCV_C(s)$ + $v_C(t)$

Application: Design and Analysis of Control Systems

Control Systems

- The desired values of the quantities being controlled are collectively viewed as the input of the control system.
- The actual values of the quantities being controlled are collectively viewed as the output of the control system.
- A control system whose behavior is not influenced by the actual values of the quantities being controlled is called an open loop (or non-feedback) system.

- A control system whose behavior is influenced by the actual values of the quantities being controlled is called a closed loop (or feedback) system.
- An example of a simple control system would be a thermostat system, which controls the temperature in a room or building.

Feedback Control Systems

- input: desired value of the quantity to be controlled.
- output: actual value of the quantity to be controlled.

- error: difference between the desired and actual values.
- plant: system to be controlled.
- controller: device that monitors the error and changes the input of the plant.
 with the goal of forcing the error to zero.
- sensor: device used to measure the actual output.
- A control system includes two very important components:
- Transducer: Since it is possible that the output signal y(t) and the reference signal x(t) might not be of the same type, a transducer is used to change y(t) so it is compatible with the reference input x(t).
- Actuator: A device that makes possible the execution of the control action on the plant, so that the output of the plant follows the reference input.

Stability Analysis of Feedback Systems

 Often, we want to ensure that a system is BIBO stable. BIBO stability property is more easily characterized in the Laplace domain than in the time domain.

Example 18: Stabilization Example: Unstable Plant

- Causal LTI plant
- System is not BIBO stable

 $-P(s) = \frac{10}{s-1}$

Example 19: Stabilization Example: Using Pole-Zero Cancellation

System formed by series interconnection of plant and causal LTI compensator:

$$X = \frac{s-1}{10(s+1)} \qquad P(s) = \frac{10}{s-1} \qquad Y$$

https://manara.edu.sy/

s-plane

ROC

3. Simulation Structures for CTLTI Systems Direct-form implementation

• Consider a third-order CTLTI system described by a TF H(s):

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0}$$

Let us use an intermediate function W(s)

$$H(s) = \frac{Y(s)}{W(s)} \frac{W(s)}{X(s)} = \frac{b_2 s^{-1} + b_1 s^{-2} + b_0 s^{-3}}{1 + a_2 s^{-1} + a_1 s^{-2} + a_0 s^{-3}}$$

$$X(s) \longrightarrow H(s) \longrightarrow Y(s) \qquad X(s) \longrightarrow H_1(s) \longrightarrow H_2(s) \longrightarrow Y(s)$$

$$H_1(s) = \frac{W(s)}{X(s)} = \frac{1}{1 + a_2 s^{-1} + a_1 s^{-2} + a_0 s^{-3}}, \quad H_2(s) = \frac{Y(s)}{W(s)} = b_2 s^{-1} + b_1 s^{-2} + b_0 s^{-3}$$

Laplace Transform for Continuous-Time Signals and Systems

Laplace Transform for Continuous-Time Signals and Systems

 Example 21: Obtaining a block diagram (BD) from transfer function A CTLTI system is described through the transfer function:

Laplace Transform for Continuous-Time Signals and Systems

https://manara.edu.sy/

2024-2025

36/46

Cascade and parallel forms

Cascade form

$$H(s) = H_1(s)H_2(s)\cdots H_M(s) = \frac{W_1(s)}{X(s)}\frac{W_2(s)}{W_1(s)}\cdots \frac{Y(s)}{W_{M-1}(s)}$$
$$X(s) \longrightarrow H_1(s) \longrightarrow H_2(s) \longrightarrow W_2(s) \longrightarrow H_M(s) \longrightarrow Y(s)$$

Example 22: Obtaining a block diagram from transfer function
 Develop a cascade form block diagram for simulating the system used in example 21.

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2(s+4)(s-3)(s-1)}{(s+1-j2)(s+1+j2)(s+3)(s+2)}$$

Laplace Transform for Continuous-Time Signals and Systems

Example 23: Obtaining a block diagram from TF
 Develop a parallel form BD for simulating the system used in example 21.

Laplace Transform for Continuous-Time Signals and Systems

https://manara.edu.sy/

2024-2025

40/46

4. Unilateral Laplace Transform

The unilateral Laplace transform of the function x is defined as:

$$\mathcal{L}_u\{x(t)\} = X(s) = \int_{0^-}^{\infty} x(t) e^{-st} dt$$

The unilateral LT is related to the bilateral Laplace transform as follows:

$$\mathcal{L}_{u}\{x(t)\} = \int_{0^{-}}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} x(t)u(t)e^{-st}dt = \mathcal{L}\{x(t)u(t)\}$$

- With the unilateral LT, the same inverse transform equation is used as in the bilateral case.
- The unilateral LT is only invertible for causal functions.
- For a noncausal function x, we can only recover x(t) for $t \ge 0$.

Unilateral Versus Bilateral Laplace Transform

In the unilateral case:

- The time-domain convolution property has the additional requirement that the functions being convolved must be causal.
- The time/Laplace-domain scaling property has the additional constraint that the scaling factor must be positive.
- The time-domain differentiation property has an extra term in the expression of $\mathcal{L}_u(dx(t)/dt)$, namely $-x(0^-)$.
- The time-domain integration property has a different lower limit in the timedomain integral (0⁻ instead of -∞);
- The time-domain shifting property does not hold (except in special cases).

Properties of the Unilateral Laplace Transform

Property	x(t)	X(s)	ROC
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$\supset (R_1 \cap R_2)$
Multiply by t	t x(t)	-dX(s)/ds	R
Multiply by $e^{-\alpha t}$	$x(t)e^{-\alpha t}$	$X(s + \alpha)$	Shift R by $-\alpha$
Scaling in t	x(at), a > 0	$\frac{1}{a}X(\frac{s}{a})$	aR
Differentiate in t	dx(t)/dt	$sX(s) - x(0^{-})$	$\supset R$
Integrate in t	$\int_{0^-}^t x(\tau) d\tau$	$\frac{X(s)}{s}$	$\supset (R \cap (\operatorname{Re}(s) > 0))$
Convolve in t	$x_1 * x_2(t)$	$X_1(s) X_2(s)$	$\supset (R_1 \cap R_2)$

Laplace Transform for Continuous-Time Signals and Systems

Unilateral Laplace Transform Pairs

Pair	$x(t); t \ge 0$	X(s)	Pair	$x(t); t \ge 0$	X(s)
1	$\delta(t)$	1	6	$\cos \omega_0 t$	$\frac{S}{2}$
2	1	1			$s^2 + \omega_0^2$
2	л <i>п</i>	$\frac{s}{n!}$	7	$\sin \omega_0 t$	$\frac{\omega_0}{s^2 + \omega_0^2}$
3	L	$\overline{s^{n+1}}$	8	$e^{-at}\cos\omega_{0}t$	s+a
4	e^{-at}	$\frac{1}{s+a}$	U		$(s+a)^2 + \omega_0^2$
5	$t^n e^{-at}$ —	<u>n!</u>	9	$e^{-at}{ m sin}\omega_0 t$	$\frac{\omega_0}{\left(s+a\right)^2+\omega_0^2}$
-	(8	$(a + a)^{n+1}$			

https://manara.edu.sy/

44/46

Example 24: Response of a second-order system (RLC circuit)

A voltage $x(t) = 10e^{-3t}u(t)$ is applied at the input of the RLC circuit. Find the output voltage $v_C(t) = y(t)$ for $t \ge 0$ if the initial inductor current is $i_L(0^-) = 0$, and the initial capacitor voltage $v_C(0^-) = 5$ V. Use $R = 3 \Omega$, L = 1 H and C = 1/2 F.

$$\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = 2x(t) \qquad y(0^-) = 5, \quad \frac{dy}{dt}(0^-) = \frac{i(0^-)}{C} = 0$$

$$s^2 Y(s) - 5s - 0 + 3(sY(s) - 5) + 2Y(s) = 2X(s) = \frac{20}{s+3}$$

$$(s^2 + 3s + 2)Y(s) = 5s + 15 + \frac{20}{s+3}$$

$$Y(s) = \frac{5s^2 + 30s + 65}{(s+3)(s^2 + 3s + 2)}$$

Laplace Transform for Continuous-Time Signals and Systems

Laplace Transform for Continuous-Time Signals and Systems