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Chapter 8

Z-Transform for Discrete-Time Signals and Systems

1. Z-Transform

2. Using the Z-Transform with DTLTI Systems

3. Unilateral Z-Transform
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Introduction

▪ The z-transform (ZT) can be viewed as a generalization of the discrete time 

Fourier transform.

▪ The ZT representation exists for some sequences that  do not have a discrete 

Fourier transform representation. So, we can handle some sequences with the 

ZT that cannot be handled with the DTFT (x[n] = nu[n]).

1. Z-Transform

{ [ ]} ( ) [ ] n

n

x n X z x n z

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=−

= = Z

▪ The z-transform of a discrete-time signal x[n] is defined as:

where z, the independent variable of the transform is a complex number.
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▪ The z-transform defined is sometimes referred to as the bilateral (two sided) z-

transform. A simplified variant of the transform termed the unilateral (one-

sided) z-transform is introduced as an alternative analysis tool.

Relationship Between ZT and Discrete-Time FT
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▪ Example 1: A simple z-transform example

[ ] {3.7 , . , 1.5, 3.4, 5.2}

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▪ Example 2: z-transform of a non-causal signal
[ ] {3.7, . , 1.5 , 3.4, 5.2}


=

= −

n

x n
0

1 3
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It converges at every point in the z-plane except, the origin and infinity.

▪ Example 3: z-Transform of the unit-impulse

( ) { [ ]} [ ] [ ]n
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It converges at every point in the z-plane

( ) [ ]
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− − − − −
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X z x n z z z z z1 2 3 43 7 1 3 1 5 3 4 5 2

The transform converges at all points in the complex z-plane except of z = 0.
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▪ Example 4: z-Transform of a time shifted the unit-impulse

( ) { [ ]}= [ ] n k

n

X z n k x n z z


− −

=−

= − =Z

1. If k  0 then the transform does not converge at the origin z = 0.

2. If k  0 then the transform does not converge at infinity.

Regions of Convergence

▪ For the z-transform X(z) of x[n] to exist we need that:

( ) [ ] [ ] [ ]
  

− − −  −

=− =− =−

=  =    
n n j n n

n n n

X z x n z x n r e x n r

Thus, the ROC depends only on r and not on Ω.
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ROC of Finite-Support Signals: The region of convergence (ROC) of the 

z-transform of a signal x[n] of finite support [N0, N1], where −∞  N0 ≤ n ≤ N1  ∞, 

is the whole z-plane, excluding the origin z = 0 and/or z = ±∞ depending on N0 

and N1. ( ) [ ] −

=
= 

N n
n N

X z x n z1

0

ROC of Infinite-Support Signals:

1. causal signal x[n] has a region of convergence |z|  r1 where r1 is the largest 

radius of the poles of X(z), i.e., the ROC is the outside of a circle of radius r1,

2. anticausal signal x[n] has as region of convergence the inside of the circle 

defined by the smallest radius r2 of the poles of X(z), or |z|  r2,

3. noncausal signal x[n] has as ROC r1  |z|  r2, where r1 and r2 corresponds to 

the max and min radii of the poles of Xc(z) and Xac(z).
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▪ Example 5: z-Transform of the unit-step signal
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Z

converge if: |z−1|  1 ⇒ |z|  1
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▪ Example 6: z-Transform of a causal exponential signal

( ) [ ] ( )
  
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z
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z aaz
1

1
0 0

1

1

converge if: |az−1|  1 ⇒ |z|  |a|

x[n] = an u[n]
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▪ Example 7: z-Transform of an anti-causal expo. signal: x[n] = −an u[−n − 1]

( ) [ ] ( )
 −  − − − −

=− =− = =

−

−

= − − − = − = − = −
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1
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1
1

1
converge if: |a−1z|  1 ⇒ |z|  |a|
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{ [ ]} , ROC: 
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▪ Note: It is possible for 2 ≠ signals to have the same transform expression for 

the z-transform X(z). ⇒ the ROC must be specified along with the transform.

▪ In the general case, a rational transform X(z) is expressed in the form:

( )( ) ( )( )
( )

( ) ( )( ) ( )

− − −
= =

− − −
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Max(M, N) is the order of 

the transform X(z)
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▪ Example 8: z-Transform of a discrete-time pulse signal
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( )
( )−

−
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X z

z z1
1

1
It seems as though X(z) might have a pole at z = 1

Zeros: / , , , = = −j k N
kz e k N2 1 1 Poles: z = 1 and , , , = = −kp k N0 1 1

The factors (z − 1) in numerator and denominator polynomials cancel each 

other, therefore there is neither a zero nor a pole at z = 1.
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Properties of z-Transform

Property x[n] X(z) ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊃ (R1 ∩ R2)

Time shifting x[n −  k] X(z)z−k R ± {0 or ∞}

Time reversal x[−n] X(z−1) R−1

Multiply by exp. x[n]an X(z/a) |a|R

Differentiate in z nx[n] −z dX(z)/dz R

Convolution x1[n] x2[n] X1(z) X2(z) ⊃ (R1 ∩ R2)

Summation ⊃ (R ∩ (z    1))[ ]
=−


n

k

x k ( )
−

z
X z

z 1
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▪ Example 9: z-Transform of complex exponential signal

[ ] cos( ) [ ]= x n n u n0

cos( ) [ ] [ ] [ ]
 − 

 = +
j n j nn u n e u n e u n0 0

0
1 1
2 2

▪ Example 10: z-Transform of a cosine and sine signals

[ ] sin( ) [ ]= x n n u n0

sin( ) [ ] [ ] [ ]
 − 

 = −
j n j n

j jn u n e u n e u n0 0
0

1 1
2 2
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ROC is |z|  1
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[ ] cos( ) [ ]= nx n a n u n0▪ Example 11: Multiplication by an exponential signal:

[ cos( )]
[ ] [ ], ( )

cos( )

− 
= =

−  +

n z
x n a x n X z

z z
0

1 1 2
0

1

2 1

[ cos( )]
( ) ( / )

cos( )

− 
= =

−  +

z z a
X z X z a

z a z a
0

1 1 2 2
02

The transform X(z) has two poles at:

ROC: 
 

=  
jz ae z a0

▪ Example 12: Using the differentiation property: x[n] = nan u[n]

{ [ ]} , ROC: n z
a u n z a

z a
= 

−
Z
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( ) ( ) , ROC: 
( )

= − = 
− −

d z az
X z z z a

dz z a z a 2

z-Transform of a unit-ramp signal x[n] = nu[n]

Setting a = 1 ⇒ ( ) , ROC: 
( ) ( )

=

= = 
− −

a

az z
X z z

z a z2 2
1

1
1

▪ Example 13: Using the convolution property [ ] { , , , }, [ ] { , , }
 

= =x n x n1 24 3 2 1 3 7 4

Determine x[n] = x1[n]  x2[n] using z-transform techniques.

( ) 2 , ( ) 4− − − − −= + + + = + +X z z z z X z z z1 2 3 1 2
1 24 3 3 7

( ) ( ) ( ) 43 4− − − − −= = + + + + +X z X z X z z z z z z1 2 3 4 5
1 2 12 37 29 15

[ ] { , , , , , }


=x n 12 37 43 29 15 4
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▪ Example 14: Finding the output signal of a DTLTI system using inverse 

z-transform: h[n] = (0.9)n u[n], x[n] = u[n] − u[n − 7]

( ) { [ ]} , ROC: .
.
z

H z h n z
z

= = 
−

0 9
0 9

Z

( ) , ROC: 
( )

− − − − − − −

=

−
= = + + + + + + = 

-
n

n

z
X z z z z z z z z z

z z

76
1 2 3 4 5 6

6
0

1
1 0

1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

Y z X z H z

H z z H z z H z z H z z H z z H z z H z− − − − − −

=

= + + + + + +1 2 3 4 5 6

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= + − + − + − + − + − + −y n h n h n h n h n h n h n h n1 2 3 4 5 6

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ] ( ) [ ]

. . . .

. . .

n n n n

n n n

y n u n u n u n u n

u n u n h n
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− − −
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+ − + − + −

1 2 3

4 5 6

0 9 0 9 1 0 9 2 0 9 3

0 9 4 0 9 5 0 9 6
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Initial and final value Theorems

Initial and final value properties of the z-transform applies to causal signals only.

[0] lim ( )
→

=
z

x X z

▪ Example 15: Using the initial value property

Determine the initial value x[0] of the signal.

( )
+ +

=
− + −

z z
X z

z z z

3

3 2

3 2 5

2 7 4

[0] lim
→

+ +
= =

− + −z

z z
x

z z z

3

3 2

3 2 5 3

22 7 4

Initial value:

lim [ ] lim ( ) ( )
n z
x n z X z

→ →
= −

1
1Final value:
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Inverse Z-Transform

▪ Recall that the inverse z-transform x of X is given by:

 where  is a counterclockwise closed circular contour centered at the origin 

and with radius r such that  is in the ROC of X.

▪ Unfortunately, the above contour integration can often be quite tedious to 

compute. Consequently, we do not usually compute the inverse z-transform 

directly using the above equation.

▪ For rational functions, the inverse z-transform can be more easily computed 

using partial fraction expansions.

[ ] ( ) 11

2
nx n X z z dz

j

−= 
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▪ Example 16: Finding the inverse z-transform using partial fractions

( )( )
( )

( / )( )

z z
X z

z z

− +
=

− −

1 2

1 2 2

( ) ( )( )

( / )( ) ( ) ( )

X z z z

z z z z z z z

− + −
= = + +

− − − −

5 4
3 3
1
2

1 2 2

1 2 2 2

X1(z), is a constant, and its ROC is the entire z-plane. [ ] { } [ ]x n n−= − = −1
1 2 2Z

The ROC of X(z) will be determined based on the individual ROCs of the 

terms X2(z) and X3(z). Three possibilities:

( ) ( ) ( ) ( )
( ) ( )

z z
X z X z X z X z

z z
= − + + = + +

− −

5 4
3 3

1 2 31
2

2
2
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Possibility 1: ROC: |z|  ½

X2(z) and X3(z) must correspond 

to anti-causal signals. We need:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]= − − −
n

x n u n5 1
2 3 2 1

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ]  = − − + − −
  

n n
x n n u n5 1 4

3 2 32 2 1

[ ] { , , , , , , 2 }

=

= − − − − − −. . .
n

x n
0

53 375 26 75 13 5 7 4
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Possibility 2: ROC: |z|  2

X2(z) and X3(z) must correspond 

to causal signals. We need:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]=
n

x n u n4
3 3 2

( ) ( )[ ] [ ] [ ]  = − + +
  

n n
x n n u n5 1 4

3 2 32 2

[ ] { , , , , , }

=

= . . . .
n

x n
0

1 3 5 5 75 8 208 13 385

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Z-Transform for Discrete-Time Signals and Systems 25/382024-2025

Possibility 3: ROC: ½  |z|  2

X2(z) and X3(z) must correspond 

to noncausal signals. We need:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ] [ ]= − + − − −
n n

x n n u n u n5 1 4
3 2 32 2 1

[ ] { , , , , , , }

=

= − − −. . . . .
n

x n
0

0 333 0 667 0 333 0 833 0 417
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Transfer Function and LTI Systems

h[n]

H(z)

x[n]

X(z)

y[n]

Y(z)

▪ Since y[n] = x[n]  h[n], the system is characterized in the Laplace domain by 

Y(z) = X(z)H(z).

▪ H(z) is the transfer function (or system function) of the system (i.e., the 

transfer function is the LT of the impulse response).

▪ A LTI system is completely characterized by its transfer function H.

Block Diagram Representation

3. Using the z-Transform with DTLTI Systems

[ ] [ ] [ ] [ ] [ ]

( ) ( ) ( )

k

y n x n h n x k h n k

Y z X z H z



=−

=  −

=


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Relating the transfer function to the difference equation

▪ Many DTLTI systems of practical interest can be represented using an Nth-

order linear difference equation with constant coefficients.

▪ Consider a system with input x and output y that is characterized by an 

equation of the form:
[ ] [ ]

N M

k k
k k

a y n k b x n k
= =

− = − 
0 0

where the ak and bk are complex constants and

   [ ] [ ] [ ] [ ]
N M N M

k k k k
k k k k

a y n k b x n k a y n k b x n k
= = = =

   
− = −  − = −   

   
   
0 0 0 0

Z Z Z Z

   [ ] [ ]
0 0

N M

k k
k k

a y n k b x n k
= =

− = − Z Z
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▪ The impulse response of the system h[n] = Z−1{H(z)}.

( )
( ) ( ) ( )

( )

M
k

kN M
k k k

k k N
kk k

k
k

b z
Y z

a z Y z b z X z H z
X z

a z

−

− − =

−= =

=

=  = =


 



0

0 0

0

▪ The convolution operation is only applicable to problems involving LTI 

systems. 

▪ Therefore it follows that the transfer function concept is meaningful only for 

systems that are both linear and time invariant.

▪ In determining the transfer function from the difference equation, all initial 

conditions must be assumed to be zero.
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▪ Example 17: Finding the transfer function from the DE

A DTLTI system is defined by means of the difference equation:

[ ] [ ] [ ] [ ] [ ]. .y n y n y n x n x n− − + − = − −0 4 1 0 89 2 1

( ) ( ) ( ) ( ) ( ). .Y z z Y z z Y z X z s X s− − −− + = −1 2 10 4 0 89

( ) ( )
( )

( ) . . . .
Y z z z z

H z
X z z z z z

−

− −

− −
= = =

− + − +

1

1 2 2

1 1

1 0 4 0 89 0 4 0 89

Transfer function and causality

▪ For a DTLTI system to be causal, its impulse response h[n] needs to be equal 

to zero for n  0.

( ) [ ] [ ]n n

k k

H z h n z h n z
 

− −

=− =

= = 
0
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▪ The ROC for the transfer function of a causal system is the outside of a circle 

in the z-plane. Consequently, the transfer function must also converge at 

|z| → ∞. Consider a transfer function in the form:

( )
( )

( )

−
−

−
−

+ + + +
= =

+ + + +

M M
M M
N N

N N

b z b z b z bY z
H z

X z a z a z a z a

1
1 1 0

1
1 1 0

For the system described by H(z) to be causal we need:

lim ( ) lim M NM

z z
N

b
H z z M N M N

a
−

→ →
=    −   0

▪ Note: this condition is necessary for a system to be causal, but it is not 

sufficient. It is also possible for a non-causal system to have a system 

function with M ≤ N.
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[ ] n

k

h n z


−

=−

 

▪ Fourier transform of a signal exists if the signal is absolute integrable.

( ) ( ) jz e
H H z =

 =
Stability condition:

▪ For a DTLTI system to be stable, the ROC of its z-domain transfer function 

must include the unit circle.

▪ For a causal system to be stable, the transfer function must not have any 

poles on or outside the unit circle of the z-plane.

Transfer function and stability:

▪ For a DTLTI system to be stable its impulse response must be absolute 

integrable.
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▪ For a anticausal system to be stable, the transfer function must not have any 

poles on or inside the unit circle of the z-plane.

▪ For a noncausal system the ROC for the TF, if it exists, is the region between 

two circles with radii r1 and r2, r1  |z|  r2. The poles of the TF may be either:

a. On or inside the circle with radius r1

b. On or outside the circle with radius r2

and the ROC must include the unit circle.

▪ Example 18: Impulse response of a stable system

Determine the impulse response of a stable system characterized by:

( )
( )

( )( )( ). .
z z

H z
z z z

+
=

− + −

1

0 8 1 2 2
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The poles of the system are at p = −1.2, 0.8, 2. Since the system is known 

to be stable, its ROC must include the unit circle. The only possible choice 

is 0.8  |z|  1.2.
( )

( )
( )( )( )

. . .
. . . .
z z z z z

H z
z z z z z z

+
= = − − +

− + − − + −

1 0 75 0 0312 0 7813

0 8 1 2 2 0 8 1 2 2

[ ] ( ) [ ] ( ) [ ] ( ) [ ]. . . . .n n nh n u n u n u n= − + − − − − − −0 75 0 8 0 0312 1 2 1 0 7813 2 1
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3. Unilateral z-Transform

The unilateral z-transform of the signal x is defined as:

{ [ ]} { [ ] [ ]} [ ] [ ] n
u

n

x n x n u n x n u n z


−

=−

= = Z Z

▪ The unilateral ZT is related to the bilateral z-transform as follows:

( ) { [ ]} [ ]
0

n
u u

n

X z x n x n z


−

=

= = Z

▪ If x[n] is a causal signal, then the unilateral transform Xu(z) becomes identical 

to the bilateral transform X(z).

▪ One property of the unilateral z-transform that differs from its counterpart for 

the bilateral z-transform is the time-shifting property.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Z-Transform for Discrete-Time Signals and Systems 35/382024-2025

{ [ ]} { [ ]} ( )1 11x n z x n z X z− −− = =Z Z

{ [ ]} [ ] [ ] [ ] [ ] [ ]1

0 1 0

1 1 1 1 1n n n
u

n n n

x n x n z x x n z x z x n z
  

− − − −

= = =

− = − = − + − = − +  Z

{ [ ]} [ ] ( )11 1u ux n x z X z−− = − +Z

{ [ ]} [ ] ( ),
1

0n k k
u u

n k

x n k x n z z X z k
−

− − −

=−

− = + Z

{ [ ]} ( ) [ ] ,
1

0

0
k

k k n
u u

n

x n k z X z x n z k
−

− −

=

+ = − Z

▪ The unilateral z-transform is useful in the use of z-transform techniques for 

solving difference equations with specified initial conditions.
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▪ Example 19: Finding the natural response of a system through z-transform

Using z-transform techniques, determine the natural response of the system 

for the initial conditions: y[−1] = 19, y[−2] = 53.

[ ] [ ] [ ]y n y n y n− − + − =5 1
6 61 2 0

{ [ ]} [ ] ( ) ( )1 11 1 19u u uy n y z Y z z Y z− −− = − + = +Z

{ [ ]} [ ] [ ] ( ) ( )1 2 1 22 1 2 53 19u u uy n y y z z Y z z z Y z− − − −− = − + − + = + +Z

( ) [ ( )] [ ( )]u u uY z z Y z z z Y z− − −− + + + + =1 1 25 1
6 619 53 19 0

( ) ( )
( )

( )( )

19 19
6 6

2 1 1 1 15 1
2 3 2 36 6

7 7 2 5
u

z z z z z z
Y z

z z z zz z

− −
= = = +

− − − −− +

[ ] ( ) [ ] ( ) [ ]n n
hy n u n u n= +1 1

2 32 5
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▪ Example 20: Finding the forced response of a system through z-transform

Consider a system defined by means of the difference equation:

y[n] = 0.9y[n − 1] + 0.1x[n]

Determine the response of this system for the input signal x[n] = 20 cos(0.2n)

if the initial value of the output is y[−1] = 2.5.

[ cos( )]
{cos( ) [ ]}

cos( )

[ cos( )]
{ cos( )}

cos( )






− 
 =

−  +

−
=

− +

.
.

.u

z z
n u n

z z

z z
n

z z

0
0 2

0

2

2 1

20 0 2
20 0 2

2 0 2 1

Z

Z

{ [ ]} [ ] ( ) ( )1 11 1 2 5.u u uy n y z Y z z Y z− −− = − + = +Z

{ [ ]} { [ ]} { [ ]}0 9 1 0 1. .u u uy n y n x n= − +Z Z Z
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[ cos( )]
( ) ( )

cos( )

1
2

2 0 2
0 9 2 25

2 0 2 1

.
. .

.u u

z z
Y z z Y z

z z





− −
= + +

− +

[ cos( )] ( )( )
( )

( )( )( )

2 0 2 0 2

0 2 0 2

2 0 2 2 25

0 9

. .

. .

. .
.

j j

u j j

z z z e z e
Y z

z z e z e

 

 

 −

−

− + − −
=

− − −

( )
0 2 0 2

2 7129 0 7685 1 4953 0 7685 1 4953

0 9 . .

. . . . .
.u j j

j j
Y z

z z e z e −

− +
= + +

− − −

The forced response of the system is:

y[n] = 2.7129 (0.9)n u[n] + 1.5371cos(0.2n)u[n] + 2.9907sin(0.2n)u[n]

[ cos( )]
( ) [ ( )]

cos( )

1
2

20 0 2
0 9 2 5 0 1

2 0 2 1

.
. . .

.u u

z z
Y z z Y z

z z





− −
= + +

− +
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