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Image Enhancement in the Frequency Domain
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Fundamentals faols

» Fourier: a periodic function can be represented by the sum

of sines/cosines of different frequencies multiplied by a
different coefficient (Fourier series)

» Non-periodic functions can also be represented as the
integral of sines/cosines multiplied by weighing function
(Fourier transform)
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Introduction to %
the Fourier Transforlgjnﬁ

» f(x): continuous function of a real variable x

» Fourier transform of f(x):

S0} =F@) = [ f(x)expl-j2muxldx Eq. 1

where /= J-1

https://manara.edu.sy/

Introduction to %
the Fourier Transf01”1gjn&5|

» (u) is the frequency variable.

» The integral of Eq. 1 shows that F(u) is composed of an
infinite sum of sine and cosine terms

» Each value of u determines the frequency of its corresponding
sine-cosine pair.
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Introduction to %
the Fourier Transforlgjnﬁ

» Given F(u), f(x) can be obtained by the inverse Fourier
transform:

SUF@) = /()

= J‘F (u) expl j2mux]du

» The above two equations are the Fourier transform
pair.

https://manara.edu.sy/

Introduction to thegfu_%;()urier Transform

» Fourier transform pair for a function f(x,y) of two variables:

S )y = Fuv) = [ [ £, y) expl—j2m uwx+vy)lddy

and
ISHFu,v)} = f(x,y)= I TF(u,v) expl j27z (ux +vy)ldudv

where u,v are the frequency variables.
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Discrete Fourier TI;g%glsform
ol

» A continuous function f(x) is discretized into a sequence:

U (o), J (X0 + A%), f (X +2A%),..., (%, +[N ~1]Ax);

by taking N or M samples Bx units apart.

%o+ 38%) flag + (N~ 1as]

https://manara.edu.sy/
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Discrete Fourier T Izg@ﬁlsform

» Where x assumes the discrete values (0,1,2, 3, ..., M-1) then

J (%)= f (%, +xAx)

» The sequence {f(0),f(1),f(2),...f(M-1)} denotes any M
uniformly spaced samples from a corresponding
continuous function.
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Discrete Fourier TI;g%glsform

» The discrete Fourier transform pair that applies to
sampled functions is given by:

M-1

1
Flu)=—- > f(x)exp[-j2mux/M]  For u=0,1,2,...,M-1

x=0

and

f(x)= 2f(u)exp[j27zux/M] For x=0,1,2,...,M-1

u=0

https://manara.edu.sy/
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Discrete Fourier T Izgsﬁlsform

» To compute F(u) we substitute u=0 in the exponential term and sum for all
values of x

» We repeat for all M values of u
» It takes M*M summations and multiplications

M-1
F(u)= i > f(x)exp[—j2mx/M]  For u=0,1,2,...,M-1
x=0

» The Fourier transform and its inverse always exist!

https://manara.edu.sy/




Discrete Fourier TI;g%glsform

» The valuesu =0, I, 2, ..., M-I correspond to samples of the
continuous transform at values 0, 2u, 22U, ..., (M-1)2u.

» i.e. F(u) represents F(ulzui), where:

e A
MAx

https://manara.edu.sy/
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Details ool
=g
e’’ =cos@=jsinf
cos(—60) =cos(0)
F(u)= i 2f(x)[cosZ7zux/M—jsin2ﬂux/M]
» Each term of the FT (F(u) for every u) is composed of the sum
of all values of f(x)

https://manara.edu.sy/




Introduction to %
the Fourier Transforlgjnﬁ

» The Fourier transform of a real function is generally
complex and we use polar coordinates:

F(u)=R(u)+ jl(u)
Fu)= |F(u)|ej¢(“)

|\F ()| =[R*(u)+I* ()]
I(u)}

o(u) = tan‘{R(u)

https://manara.edu.sy/

Introduction to %
the Fourier Transf01”1gjn&5|

» |F(u)| (magnitude function) is the Fourier spectrum of f(x)
and Z{u) its phase angle.
» The square of the spectrum
P(u)=|F@)|" = R*(u)+I*(u)

is referred to as the power spectrum of f(x)
(spectral density).

https://manara.edu.sy/




Introduction to %\7
the Fourier Transforlgjigj

» Fourier spectrum: |F(u,v)| =[R2, v)+ P (w,v)]

° . _4 -1 I(u,v)
Phase: ¢(u,v) = tan [—R(u,v)}

 Power spectrum:  P(u,v) =|F(u,v)’ = R*(u,v) + I*(u,v)

https://manara.edu.sy/
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Discrete Fourier T Izgaﬁlsform
J-;\“ul.

fix) fix) = fixg + xAx)
fixg + 2Ax) fixp + 3Ax)
4t 4
Jixg + Ax)
&3 3
¢ 2y
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Discrete Fourier TI;g%glsform

» In a 2-variable case, the discrete FT pair is:

M-1N-1

F(u,v)= ﬁ D> f(x, y)exp[—j27(ux/ M +vy/ N)]

x=0 y=0

For u=0,1,2,...,M-1 and v=0,1,2,...,N-1

M-1N-1

f,y)= ZZF(u,v)exp[j2ﬂ(ux/M+vy/N)]

u=0 v=0

For x=0,1,2,...,M-1 and y=0,1,2,...,N-1

https://manara.edu.sy/
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Discrete Fourier T Izgsﬁlsform

» Sampling of a continuous function is now in a 2-D grid (2k, 2y
divisions).

» The discrete function f(x,y) represents samples of the function
f(xo*x2ky,tyy) for x=0,1,2,...,M-1 and y=0,1,2,...,N-1.

https://manara.edu.sy/




Discrete Fourier ngad;glsform

» When images are sampled in a square array, M=N and
the FT pair becomes:

N-1N-1
F(u,v)=i f(x,y)exp[—j2z(ux+vy)/ N]
N x=0 y=0
For u,v=0,1,2,...,N-1
N-1N-
S y)=— ZZ (u,v)exp[j27z(ux+vy)/ N]
=0 v=0

For x,y=0,1,2,...,N-1

https://manara.edu.sy/
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Basic Properties  awu
s

» Common practice:
[N = Fu—m/2,v=N12)
» F(0,0) is at u=M/2 and v=N/2

»  Shifts the origin of F(u,v) to (M/2, N/2), i.e. the center of M x N of the 2-D DFT
(frequency rectangle)

» Frequency rectangle:
from u=0 to u=M-1, and v=0 to v=N-1 (u,v integers, M,N even numbers)

» In computers:
summations are from u=1| to M and v=1I to N
center of transform: u=(M/2) +1 and v=(N/2) +|

https://manara.edu.sy/
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Basic Propertiess

=
» Value of transform at (u,v)=(0,0):

FO0) =~ 33 f()

which means that the value of FT at the origin = the average gray
level of the image

» FT is also conjugate summetric:
F(u,v)=F*(-u,-v)
so |F(u,v)|=|F(-u,-v)|
which means that the FT spectrum is symmetric.

https://manara.edu.sy/
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(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
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Frequency domain filtering operation

: Filter [nverse
Fourier . . ;
g function Fourier
transform
H (i, v) transform

Pre-
processing

Flu,v)

Hu, v)F(u,v)

Post-
processing

f(x.y) g(x. y)
Input Enhanced
image image

Basic steps for filtering in the frequency domain.

https://manara.edu.sy/

Filtering in the Freﬁgency Domain

» Compute Fourier transform of image

» Multiply the result by a filter transfer function (or simply filter).

» Take the inverse transform to produce the enhanced image.

» Summary:
G(u,v) = H(u,v) F(u,v)
Filtered Image =

3! [G(u,v)]

https://manara.edu.sy/
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Basic Filters daols
QJU._oJI

» To force the average value of an image to 0:
F(0,0) gives the average value of an image
then, since F(0,0)=0, take the inverse

» Notch filter 0 if(u,v)=M/2,N/2
H(u,v) =

1 otherwise

https://manara.edu.sy/
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Result of filtering
the image in

Fig. 4.4(a) with a
notch filter that
set to 0 the
F(0,0) term in
the Fourier
transform.

https://manara.edu.sy/
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Enhancement in t}%ngrequency Domain

» Types of enhancement that can be done:

:reduce the high-frequency content -- blurring
or smoothing

:increase the magnitude of high-frequency
components relative to low-frequency components --

sharpening.
https://manara.edu.sy/
~
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. {(b) Result of lowpass filtering the image in Fig. 4.4(a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).

VU

Hiun,v)
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FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with

Fip. 4.4(a).
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Spatial and Frequeney Domain

» Convolution Theorem

» Discrete convolution of two functions (MxN)

M-1N-1

> Fmnyh(x —m,y —n)

m=0n=0

f(x,y)*h(x,y)=ﬁ

gx,y)= 2, 2 w(s,) f(x+s,y+1)

s=—at=—b

> f(xy)*hixy) =F(uv)H(uy)

> flxy)h(xy) SF(uy)*H(uy)

https://manara.edu.sy/
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Spatial & Frequen%Domain
flxy) * hixy) < Fuy) H(wy)

Axy) * h(xy) < J[Axy)] H(u,v)
h(x,y) < H(u,v)

Filters in the spatial and frequency domain form a FT pair, i.e. given a
filter in the frequency domain we can get the corresponding one in
the spatial domain by taking its inverse FT

https://manara.edu.sy/
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cd

FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks
shown are used in
Chapter 3 for
lowpass and
highpass filtering.
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Enhancement in %@
the Frequency Domsin

» Types of enhancement that can be done:

:reduce the high-frequency content -- blurring
or smoothing

:increase the magnitude of high-frequency
components relative to low-frequency components --
sharpening.

https://manara.edu.sy/
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig, 4.4(a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).




Lowpass Filterin%\

. ‘VI .
in the Frequency«domain

0)liod

» Edges, noise contribute significantly to the high-frequency
content of the FT of an image.

» Blurring/smoothing is achieved by reducing a specified range of
high-frequency components:

Gu,v)=Hu,v)F(u,v)

https://manara.edu.sy/

Smoothing %E
in the Frequency Qﬁpain

G(u,v) = H(u,v) F(u,v)

» Ideal
» Butterworth (parameter: filter order)
» Gaussian

https://manara.edu.sy/
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Ideal Filter (Lowpage)

e
» A 2-D ideal low-pass filter:
1 if D(u,v)< D,

Huv)= {0 if D(u,v)> D,

where D, is a specified nonnegative quantity and
D(u,v) is the distance from point (u,v) to the center of
the frequency rectangle.

» Center of frequency rectangle: (u,v)=(M/2,N/2)
« Distance from any point to the center (origin) of the FT:

D(u,v)= (u2 + vz)”2

https://manara.edu.sy/
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H (. v) Hiw, v)

Diu.v)

abc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.
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Ideal Filter (Lowpabsﬁj

4

all frequencies inside a circle of radius D, are passed with no
attenuation

all frequencies outside this circle are completely attenuated.

https://manara.edu.sy/
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Ideal Filter (Lowpa%&}l

» Cutoff-frequency: the point of transition between H(u,v)=1 and
H(u,v)=0 (Do)

» To establish cutoff frequency loci, we typically compute circles
that enclose specified amounts of total image power Pr.

https://manara.edu.sy/
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Ideal Filter (cont.) e
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» Pris obtain by summing the components of power spectrum P(u,v)
at each point for u up to M-1 and v up to N-1.

» A circle with radius r, origin at the center of the frequency rectangle
encloses a percentage of the power which is given by the expression

1000>.>_ P(u,v)/ P,

u

» The summation is taken within the circle r

https://manara.edu.sy/
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FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose Y2.0,
94.6,96.4,98.0, and 99.5% of the image power, respectively.
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a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
cd frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
e f  power removed by these filters was 8.5.4, 3.6, 2, and 0.5% of the total. respectively.
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cd

FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b} Corresponding spatial
filter (note the ringing). (¢) Five impulses in the spatial domain, simulating the values

of five pixels. (d) Convolution of (by and (c) in the spatial domain.
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Butterworth Filter (Lowpass)

» This filter does not have a sharp discontinuity establishing a
clear cutoff between passed and filtered frequencies.

1
1+[D(u,v)/ D,]*"

H(u,v)=

https://manara.edu.sy/
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Butterworth Filter (Lowpass)

» To define a cutoff frequency locus: at points for which H(u,v) is
down to a certain fraction of its maximum value.

» When D(u,v) = Dy, H(u,v) = 0.5

i.e.down 50% from its maximum value of |I.
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FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.
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4 b FIGURE 415 (a) Original image. (b)-(f) Results of fltering with BLPEs of order 2,
cd with culoff frequencies al radii of 5, 15. 30, 80, and 230, as shown in Fig. 4.11(h)
e [ Compare with Tig 4.12
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abed
HGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1,2.5, and 20, and corresponding gray-level

profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.
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Gaussian Lowpass Filter

H(M,V) = e—Dz(u,v)/ZO'2

» D(u,v): distance from the origin of FT
» Parameter: o=Do (cutoff frequency)
» The inverse FT of the Gaussian filter is also a Gaussian
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H{u, v) H(u.v)

0.667

D(u,v)

dublie

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (¢) Filter
radial cross seclions for various values of Dy,.
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FIGURE 4.18 (x) Original image. (b)~1) Resulls of fillering with Gaussian lowpass

ab
filters wilh cutofl {requencies sel al radii values of 3, 15, 30, 80, and 230, as shown in ¢ d
Fig 4.11(h). Compare with Figs. 4.12 and 4.15 bt




Image Enha%%ment in the
Frequerif§ Domain

abp

FF:G:JRE 4.19 Historically, certain computer Historically, certain computer
(a) Sample text of programs were written using programs were written using
F{:‘S&,Tﬁigfi}&‘m only two digits rather than only two digits rather than
characters in four to define the applicable four to define the applicable
‘(Ttlj‘;ﬂ]gi[i;ﬂ :’;"19“"" year. Accordingly, the year. Accordingly, the

filtering with a company’'s software may company's software may

£~ T (broleen recognize a date using "00* recognize a date using "00"
:P;;;]:H: were as 1900 rather than the yEar as 1900 rather than the ygEar
joined). 2000, /- 2000. }l

| €d
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Image Enha%ment in the
Frequerify Domain

ablc

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).




Image Enha%}ément in the
Frequerii Domain
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FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. (¢) Result
of using a GLPF with D, = 10. {(Original image courtesy of NOAA_)
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Sharpening (Highpass) Filtering

» Image sharpening can be achieved by a highpass filtering process,
which attenuates the low-frequency components without disturbing
high-frequency information.

> : radially symmetric and completely specified
by a cross section.

H, (u,v)=1-H, (u,v)
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FIGURE 4.22 Top row: Perspective plot. image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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Ideal Filter (Highpass)

Huv) 0 if D(u,v)<D,
u,v)=< .
1 if D(u,v)> D,

» This filter is the opposite of the ideal lowpass filter.
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Butterworth Filter (Highpass)

1
C1+[D, / D(u,v)*"

H(u,v)

> :Adding a constant to a highpass filter
to preserve the low-frequency components.

https://manara.edu.sy/
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Gaussian Highpass Filter
H(U,V) — 1 _ e—Dz(u,v)/20'2

» D(u,v): distance from the origin of FT

» Parameter: o=Do (cutoff frequency)
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Laplacian (recap) b

gip Of O

= @62 @2

;C :f(x+1’y)+f(x—1,y)_2f(x9y)
X

cf

5,7~y D+ f(xy-D-2/(x.y)
y

VIf=[f(x+1y)+ f(x=Ly)+ fOy+ D)+ f(x,y =D]=4f(x,)

https://manara.edu.sy/
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Laplacian in the Flasu

o
» It can be shown that:

~ 2 2 2
[V f(rp)]= @ +v))F ()
» The Laplacian can be implemented in the FD by using the filter

» FT pair:

H(u,v) = —(u? +v?)

Vif(x,y) < (u—M/2)* +(v—-N/2)*1F(u,v)
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Laplacian in t%Frequency Domain
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FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b) Image representation of (a)

(c) Laplacian in the spatial domain obtained from the inverse DFT of (b). (d) Zoomed section of the origin
of (c). {e) Gray-level profile through the center of (d). (f) Laplacian mask used in Section 3.7.




