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Chapter 4

Image Enhancement in the Frequency Domain

Fundamentals

 Fourier:  a periodic function can be represented by the sum 
of sines/cosines of different frequencies multiplied by a 
different coefficient (Fourier series)

 Non-periodic functions can also be represented as the 
integral of sines/cosines multiplied by weighing function 
(Fourier transform)
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Introduction to 
the Fourier Transform

 f(x): continuous function of a real variable x

 Fourier transform of f(x): 

  




 dxuxjxfuFxf ]2exp[)()()( 

where 1j

Eq. 1

Introduction to 
the Fourier Transform

 (u) is the frequency variable.

 The integral of Eq. 1 shows that F(u) is composed of an 
infinite sum of sine and cosine terms and…

 Each value of u determines the frequency of its corresponding 
sine-cosine pair.
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Introduction to 
the Fourier Transform

 Given F(u), f(x) can be obtained by the inverse Fourier 
transform:

)()}({1 xfuF 






 duuxjuF ]2exp[)( 

• The above two equations are the Fourier transform 
pair.

Introduction to the Fourier Transform

 Fourier transform pair for a function f(x,y) of two variables:

dxdyvyuxjyxfvuFyxf ])(2exp[),(),()},({  




 

dudvvyuxjvuFyxfvuF ])(2exp[),(),()},({1  




  

and

where u,v are the frequency variables.
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Discrete Fourier Transform

 A continuous function f(x) is discretized into a sequence:

)}]1[(),...,2(),(),({ 0000 xNxfxxfxxfxf 

by taking N or M samples x units apart.

Discrete Fourier Transform

 Where x assumes the discrete values (0,1,2, 3, …, M-1) then

)()( 0 xxxfxf 

• The sequence {f(0),f(1),f(2),…f(M-1)} denotes any M 
uniformly spaced samples from a corresponding 
continuous function.
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Discrete Fourier Transform

 The discrete Fourier transform pair that applies to 
sampled functions is given by:

F(u) 
1

M
f (x)exp[ j2ux /M]

x 0

M 1

 For u=0,1,2,…,M-1

f (x)  f (u)exp[ j2ux /M]
u 0

M 1

 For x=0,1,2,…,M-1

and

Discrete Fourier Transform

 To compute F(u) we substitute u=0 in the exponential term and sum for all 
values of x

 We repeat for all M values of u
 It takes M*M summations and multiplications

 The Fourier transform and its inverse always exist!

F(u) 
1

M
f (x)exp[ j2ux /M]

x 0

M 1

 For u=0,1,2,…,M-1
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Discrete Fourier Transform

 The values u = 0, 1, 2, …, M-1 correspond to samples of the 
continuous transform at values 0, u, 2u, …, (M-1)u.

 i.e. F(u) represents F(uu), where:

u 
1

Mx

Details

 Each term of the FT (F(u) for every u) is composed of the sum 
of all values of f(x)

e j  cos  j sin
cos()  cos()

F(u) 
1

M
f (x)[cos2ux /M  j sin2

x 0

M 1

 ux /M]
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Introduction to 
the Fourier Transform

 The  Fourier transform of a real function is generally 
complex and we use polar coordinates:
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
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Introduction to 
the Fourier Transform

 |F(u)| (magnitude function) is the Fourier spectrum of f(x) 
and (u) its phase angle.

 The square of the spectrum

)()()()( 222
uIuRuFuP 

is referred to as the power spectrum of f(x) 
(spectral density).
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Introduction to 
the Fourier Transform

 Fourier spectrum:   2/122 ),(),(),( vuIvuRvuF 

• Phase: 







 
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),(
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vuR
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• Power spectrum: ),(),(),(),( 222
vuIvuRvuFvuP 

Discrete Fourier Transform
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Discrete Fourier Transform

 In a 2-variable case, the discrete FT pair is:
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


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0
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For u=0,1,2,…,M-1 and v=0,1,2,…,N-1

For x=0,1,2,…,M-1 and y=0,1,2,…,N-1

AND:

Discrete Fourier Transform

 Sampling of a continuous function is now in a 2-D grid (x, y 
divisions).

 The discrete function f(x,y) represents samples of the function 
f(x0+xx,y0+yy)   for x=0,1,2,…,M-1 and y=0,1,2,…,N-1.

yN
v

xM
u





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1
      ,

1
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Discrete Fourier Transform

 When images are sampled in a square array, M=N and 
the FT pair becomes:
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For u,v=0,1,2,…,N-1

For x,y=0,1,2,…,N-1

AND:

Basic Properties
 Common practice:

 F(0,0) is at u=M/2 and v=N/2

 Shifts the origin of F(u,v) to (M/2, N/2), i.e. the center of M x N of the 2-D DFT 
(frequency rectangle)

 Frequency rectangle: 
from u=0 to u=M-1, and v=0 to v=N-1 (u,v integers, M,N even numbers) 

 In computers: 
summations are from u=1 to M and v=1 to N 
center of transform: u=(M/2) +1 and v=(N/2) +1

 f (x,y)(1)xy  F(um /2,v  N /2)
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Basic Properties
 Value of transform at (u,v)=(0,0):

which means that the value of FT at the origin = the average gray 
level of the image

 FT is also conjugate summetric:

F(u,v)=F*(-u,-v)

so |F(u,v)|=|F(-u,-v)|

which means that the FT spectrum is symmetric.

F(0,0) 
1

MN
f (x,y)

y 0

N1


x 0

M 1


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Filtering in the Frequency Domain

 Compute Fourier transform of image

 Multiply the result by a filter transfer function (or simply filter).

 Take the inverse transform to produce the enhanced image.

 Summary: 
G(u,v) = H(u,v) F(u,v)
Filtered Image = 

1 G(u,v) 
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Basic Filters
 To force the average value of an image to 0:

 F(0,0) gives the average value of an image
 then, since F(0,0)=0, take the inverse

 Notch filter
H(u,v) 

0

1





if (u,v) = M/2, N/2

otherwise
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Enhancement in the Frequency Domain

 Types of enhancement that can be done:

 Lowpass filtering: reduce the high-frequency content -- blurring  
or smoothing

 Highpass filtering: increase the magnitude of high-frequency 
components relative to low-frequency components --
sharpening.
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Spatial and Frequency Domain
 Convolution Theorem

 Discrete convolution of two functions (MxN)

 f(x,y)*h(x,y)F(u,v)H(u,v)

 f(x,y)h(x,y)F(u,v)*H(u,v)

f (x,y) * h(x,y) 
1

MN
f (m,n)h(x m,y  n)

n 0

N1


m 0

M 1



g(x,y)  w(s, t) f (x  s,y  t)
tb

b


sa

a


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Spatial & Frequency Domain
f(x,y) * h(x,y)  F(u,v) H(u,v)

(x,y) * h(x,y)  [(x,y)] H(u,v)
h(x,y)  H(u,v)

Filters in the spatial and frequency domain form a FT pair, i.e. given a 
filter in the frequency domain we can get the corresponding one in 
the spatial domain by taking its inverse FT 
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Enhancement in 
the Frequency Domain

 Types of enhancement that can be done:

 Lowpass filtering: reduce the high-frequency content -- blurring  
or smoothing

 Highpass filtering: increase the magnitude of high-frequency 
components relative to low-frequency components --
sharpening.



1/12/2025

18

Lowpass Filtering 
in the Frequency Domain

 Edges, noise contribute significantly to the high-frequency 
content of the FT of an image.

 Blurring/smoothing is achieved by reducing a specified range of 
high-frequency components:

),(),(),( vuFvuHvuG 

Smoothing 
in the Frequency Domain

G(u,v) = H(u,v) F(u,v)

 Ideal

 Butterworth (parameter: filter order)

 Gaussian
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Ideal Filter (Lowpass)

 A 2-D ideal low-pass filter:










0

0

),(  if  0

),(  if  1
),(

DvuD

DvuD
vuH

where D0 is a specified nonnegative quantity and 
D(u,v) is the distance from point (u,v) to the center of
the frequency rectangle.

• Center of frequency rectangle: (u,v)=(M/2,N/2)
• Distance from any point to the center (origin) of the FT:

2/122 )(),( vuvuD 
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Ideal Filter (Lowpass)
 Ideal: 

 all frequencies inside a circle of radius D0 are passed with no 
attenuation

 all frequencies outside this circle are completely attenuated.

Ideal Filter (Lowpass)

 Cutoff-frequency: the point of transition between H(u,v)=1 and 
H(u,v)=0  (D0)

 To establish cutoff frequency loci, we typically compute circles 
that enclose specified amounts of total image power PT.
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Ideal Filter (cont.)
 PT is obtain by summing the components of power spectrum P(u,v) 

at each point for u up to M-1 and v up to N-1.
 A circle with radius r, origin at the center of the frequency rectangle 

encloses a percentage of the power which is given by the expression

 The summation is taken within the circle r

100[ P(u,v) /PT
v


u


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Butterworth Filter (Lowpass)

 This filter does not have a sharp discontinuity establishing a 
clear cutoff between passed and filtered frequencies.

nDvuD
vuH

2
0 ]/),([1

1
),(




Butterworth Filter (Lowpass)

 To define a cutoff frequency locus: at points for which H(u,v) is 
down to a certain fraction of its maximum value.

 When D(u,v) = D0, H(u,v) = 0.5

 i.e. down 50% from its maximum value of 1.
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Gaussian Lowpass Filter

 D(u,v): distance from the origin of FT

 Parameter: =D0 (cutoff frequency)
 The inverse FT of the Gaussian filter is also a Gaussian

H(u,v)  eD
2 (u,v )/ 2 2
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Image Enhancement in the
Frequency Domain

Image Enhancement in the
Frequency Domain
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Image Enhancement in the
Frequency Domain

Sharpening (Highpass) Filtering

 Image sharpening can be achieved by a highpass filtering process, 
which attenuates the low-frequency components without disturbing 
high-frequency information.

 Zero-phase-shift filters: radially symmetric and completely specified 
by a cross section.

Hhp (u,v) 1H lp (u,v)



1/12/2025

29

Ideal Filter (Highpass)

 This filter is the opposite of the ideal lowpass filter.










0

0

),(  if   1

),(  if  0
),(

DvuD

DvuD
vuH
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Butterworth Filter (Highpass)

 High-frequency emphasis: Adding a constant to a highpass filter 
to preserve the low-frequency components.

nvuDD
vuH

2
0 )],(/[1

1
),(




Gaussian Highpass Filter

 D(u,v): distance from the origin of FT

 Parameter: =D0 (cutoff frequency)

H(u,v) 1 eD
2 (u,v ) / 2 2
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Laplacian (recap)

2 f 
2 f

x 2 
2 f

y 2

2 f

2x 2
 f (x 1,y)  f (x 1,y)  2 f (x,y)

2 f

2y 2
 f (x,y 1)  f (x,y 1)  2 f (x,y)

2 f  [ f (x 1,y)  f (x 1,y)  f (x,y 1) f (x,y 1)] 4 f (x,y)

Laplacian in the FD
 It can be shown that:

 The Laplacian can be implemented in the FD by using the filter

 FT pair:

 2 f (x,y)  (u2  v 2)F(u,v)

H(u,v)  (u2  v 2)

2 f (x,y) [(uM /2)2  (v N /2)2]F(u,v)
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Laplacian in the Frequency Domain


