

Logical Operations*									
	р	q	p AND q (also $p \cdot q$)	p OR q (also p + q)	NOT (p) (also \bar{p})				
	0	0	0	0	1				
	0	1	0	1	1				
	1	0	0	1	0				
	1	1	1	1	0				
	В		(A) AND (B)	[NOT (A)] AND (B)					
				*For bin	nary images only (Images from Rafael C. Gonzalez and Richard Wood, Digital Image Processing, 2 ^{ad} Edition.				

Ska	Skeletons								
	ĸ	$A \ominus kB$	$(A \ominus kB) \circ B$	$S_k(A)$	$\bigcup_{k=0}^{K} S_k(A)$	$S_k(A) \oplus kB$	$\bigcup_{k=0}^{K} S_k(A) \oplus kB$		
	0								
	1								
	2							B	(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2 ^{mé} Edition.

2 y of logical ons and operation	Equation	Comments (The Roman numerals refer to the structuring elements shown in Fig. 9.26).
Translation	$(A)_z = \{w w = a + z, \text{ for } a \in A\}$	Translates the origin of <i>A</i> to point <i>z</i> .
Reflection	$\hat{B} = \{w \mid w = -b, \text{ for } b \in B\}$	Reflects all elements of B about the origin of this set.
Complement	$A^c = \{w w \notin A\}$	Set of points not in A.
Difference	$egin{array}{llllllllllllllllllllllllllllllllllll$	Set of points that belong to <i>A</i> but not to <i>B</i> .
Dilation	$A \oplus B = \{ z (\hat{B})_z \cap A \neq \emptyset \}$	"Expands" the boundary of A. (I)
Erosion	$A \ominus B = \big\{ z (B)_z \subseteq A \big\}$	"Contracts" the boundary of A. (I)
Opening	$A \circ B = (A \ominus B) \oplus B$	Smoothes contours, breaks narrow isthmuses, and eliminates small islands and sharp peaks. (I)
Closing HE.	$A \bullet B = (A \oplus B) \ominus B$	Smoothes contours, fuses narrow breaks and long thin gulfs, and eliminates small holes. (I)

Summary of Binary Morphological Operations

Sum	mary of l	Binary Morphologica	al Operations (co	ont.,
	Hit-or-miss transform	$A \circledast B = (A \ominus B_1) \cap (\overset{\circ}{A^c} \ominus B_2) = (A \ominus B_1) - (A \oplus \hat{B}_2)$	The set of points (coordinates) at which, simultaneously, B_1 found a match ("hit") in A and B_2 found a match in A^{ϵ} .	
	Boundary extraction	$\beta(A) = A - (A \ominus B)$	Set of points on the boundary of set <i>A</i> . (I)	
	Region filling	$X_k = (X_{k-1} \oplus B) \cap A^c; X_0 = p$ and $k = 1, 2, 3, \dots$	Fills a region in A , given a point p in the region. (II)	
	Connected components	$X_k = (X_{k-1} \oplus B) \cap A; X_0 = p \text{ and } k = 1, 2, 3, \dots$	Finds a connected component Y in A, given a point p in Y. (I)	
	Convex hull	$\begin{aligned} X_{k}^{i} &= (X_{k-1}^{i} \odot B^{i}) \cup A; i = 1, 2, 3, 4; \\ k &= 1, 2, 3, \dots; X_{0}^{i} = A; \text{ and } \\ D^{i} &= X_{\text{conv}}^{i}. \end{aligned}$	Finds the convex hull $C(A)$ of set A , where "conv" indicates convergence in the sense that $X_k^i = X_{k-1}^i$. (III)	
(Tables from Ra Gonzalez and F Wood, Digital I	fael C. tichard E. mage	https://manara.edu.sy/		

Sı	ımmar	y of Binary Morph معق النارة	ological Operat	ions (cont.)
	Operation	Equation	Comments (The Roman numerals refer to the structuring elements shown in Fig. 9.26).	TABLE 9.2 Summary of morphological results and their properties.
	Thinning	$A \otimes B = A - (A \otimes B)$ = $A \cap (A \otimes B)^c$ $A \otimes \{B\} =$ $((\dots ((A \otimes B^1) \otimes B^2) \dots) \otimes B^n)$ $\{B\} = \{B^1, B^2, B^3, \dots, B^n\}$	Thins set <i>A</i> . The first two equations give the basic definition of thinning. The last two equations denote thinning by a sequence of structuring elements. This method is normally used in practice. (IV)	(continued)
	Thickening	$A \odot B = A \cup (A \circledast B)$ $A \odot \{B\} = ((\dots (A \odot B^1) \odot B^2 \dots) \odot B^n)$	Thickens set A. (See preceding comments on sequences of structuring elements.) Uses IV with 0's and 1's reversed.	
(Tables Gonzal Wood, I Process	from Rafael C. lez and Richard E. Digital Image ing, 2 nd Edition.	https://mai	nara.edu.sy/	

Summa	ary of E	Binary Morph	logical Operation	ns (cont.)
	Skeletons	$S(A) = \bigcup_{k=0} S_k(A)$ $S_k(A) = \bigcup_{k=0}^{K} \{(A \ominus kB) - [(A \ominus kB) \circ B]\}$ Reconstruction of A: $A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$	Finds the skeleton $S(A)$ of set A . The last equation indicates that A can be reconstructed from its skeleton subsets $S_k(A)$. In all three equations, K is the value of the iterative step after which the set A erodes to the empty set. The notation $(A \ominus kB)$ denotes the k th iteration of successive erosion of A by B . (1)	
	Pruning	$egin{aligned} X_1 &= A \otimes \{B\} \ X_2 &= igcup_{k=1}^8 ig(X_1 \otimes B^kig) \ X_3 &= ig(X_2 \oplus Hig) \cap A \ X_4 &= X_1 \cup X_3 \end{aligned}$	X_4 is the result of pruning set <i>A</i> . The number of times that the first equation is applied to obtain X_1 must be specified. Structuring elements V are used for the first two equations. In the third equation <i>H</i> denotes structuring element I.	(Tables from Rafael C. Gonzalez and Richard E. Ward Divisio Jacons

