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[ZV Applied Optimization

LR LT T

EXAMPLE 1 An open-top box is to be made by cutting small congruent squares from
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should
the squares cut from the corners be to make the box hold as much as possible?
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PAV Applied Optimization

ﬂJ'—*—'f'-]_! Solution We start with a picture (Figure 4.36). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

Vix) = x(12 — 2x)* = 144x — 48x* + 4x°. V = hiw

Since the sides of the sheet of tin are only 12 in. long, x = 6 and the domain of V is the
interval 0'=x = 6.
A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and

a maximum near x = 2. To learn more, we examine the first derivative of V with respect Maimum
to x: )
AV . v=x(12 = 2x)%,
— = 144 — 96x + 12x* = 12(12 — 8x + x°) = 12(2 — x)(6 — x). E 0=x=86
dx E
Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s _ min
" _— e " " . ¥ min
domain and makes the critical-point list. The values of V at this one critical point and two N l .
endpoints are 0 S oseats 6
Crntcal point value: V(2) = 128
Endpoint values: V(o) =0, Vie) = 0.
The maximum volume is 128 in’. The cutout squares should be 2 in. on a side. |
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PAV Exercices

guall A rectangle is to be inscribed in a semicircle of radius 2.
What is the largest area the rectangle can have, and what
are its dimensions?

b

https://manara.edu.sy/


https://manara.edu.sy/

isos  Solution Let (x, V4 — x?)
Length: 2x, Height: V4 — x*, Area: 2xV4 — x2
Alx) = x4 — x?

on the domain [0, 2].
The denvative

dA _ =24
e AV
dx /4 — 32

1s not defined when x = 2 and is equal to zero when

—_"
X 4t Va—2=0

22+ 24 = x5 =0
8§ —4x?=0
=2

xr= +V2

-2 —x
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Of the two zeros, x = \/’E and x = = V2, only x = “\/E lies in the interior of A’s domain

and makes the critical-point list. The values of A at the endpoints and at this one critical
point are

Critical point value: A(V2) =2V2V4 -2 =4
Endpoint values: A(0) = 0, A(2) = 0.

The area has a maximum value of 4 when the rectangle is V4 — x? = \/2 units high and
2x = 22 units long. ]
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THEOREM 4—The Number e as a Limit  The number e can be calculated as the
limit

e = lim (1 + x)'*.

x—0

y=(1+x)/*

> X
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Exponential Function

Derivative of y = ¢*

ife”} = ]+e* =¢".
dx

d d
— (3¢ )=3—=c" =3¢’
dr ax

d 1
—(z7c¢"Y=2zc" +x7¢ =zc' (z+2)
dx
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[ZV Exponential Function

d *5 "5 2 ¢ =51
d_(c.r —:ur)zcr _H(ﬂ_':_—5$) — (2:5_5)
T

N o 2 f = _ 7~ =3
ic r~—3 — .1“—3( $2_3)r:{: I'—E%(:EE_:S)—UE'ZI: X

4 77 =3
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DEFINITION Natural Logarithm

For x = 0, v =Inxif, and onlyif, x = &'

Property

(1) In 1 = 0; equivalently, (1. 0) on graph of y = In x

(2) In e = 1; equivalently, (e. 1) on graphof y = In x

(3) In ¢* = x; equivalently, (¢*, x) on graph of y = In x

(4) &n* = x; equivalently, (In x, x) on graph of y = "

https://manara.edu.sy/


https://manara.edu.sy/

PA‘V natural Logarithm function

Properties of natural logarithm functions

Property: For x,y > 0,
and b any number

Examples

In words

(1) In of a Product:
In(x-y)=Inx+Iny

In(6) = In(2-3)=1n2 + In 3
In(27) =In(3-9) =In3 +In9

In of a product 1s the sum
ofIn’s

(2) In of an Inverse:

1
In (—) = —Inx
X

]11[%} =—In2
1n[$} = —In(V2)

In of 1/x is minus In of x, or

In of an 1inverse 1s minus the In

(3) In of a Quotient:

In (l) =Inx—Iny
Y

(4) In of a Power:
In(x") = bIn x

In(3) =In4—1In3

]n(%)=]nx—ln§

In(2’) =31n2
]11[_1:2} =2Inx
In Vx = ln{:r”;"} = %ln X

In of a quotient 1s the
difference of In’s

In of x to the h1s b times In x
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DAV natural Logarithm function

Note: each function of ¢* and In z is the Iinverse
of the other

INc= g, forall ze R
dnr=g forall z> 0
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DAV natural Logarithm function

5iall  Theorem:
Inz exists only for positive numbers z. The domain is {0, «)
Inz<0for0<z<1
Inz=0 when z=1
Inz > 0 for 2 > 1

Derivative of y = Inx

d 1

E{ln X) —E, x >0, (1)
d d d 5 1 |
—(z'Inz+5z)=—(x ' Inz)+—0GBz)=2z-Inz+2" —+5=2z-lnzx+z+5
dx dx dx T
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DAV natural Logarithm function

deol o
o)lioaJl

Chain Rule for Log Function

d 1 d - gX
2 () = = 2og(v) == @)
If u = g(x), equation (4) can be written in the form
1 du
[ln u) = e (2a)
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DAV natural Logarithm function

? '_5
i]11(:3“ —Sz) = 21:r

dx T =Sz

n(AB)=InA+InB A, B>0

lnézhuil—lnﬁ A B>0
B
* -5 :
ilﬂm . — = ;l [11’1(:}:“1 —5)—1113:] :ilﬂ(ﬂf —5)—&111:5: —

2r

;
=5

1

X
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Inverse Trigonometric Functions

The inverse sine function:

: : . : bra T
4 = arcsing — asine = sin lzzf@arzsmy, —1<z <] and ——iyi;

The inverse cosine function:

4§ =arccosz = acosr =cos T r=cosy, —1<zr<land0<y<nx

The inverse tangent function:

-1 7 7

y = arctanz = atanz =tan "z <  =tany, —c <z <0 and ——iyig
R af 1Yy 2z 41 7z .1 Vs
cos  —=— Cos | —— |=— tan —— = — sinT ——=-=-2
2 3 2 3 3 6 2 6
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[>A Inverse Trigonometric Functions

ﬁ TABLE 3.1 Derivatives of the inverse trigonometric functions
d(sin ' u
AT 1 du
dx V1] — yldx
dcos™'u) B 1 du | < 1
dx VT = @ dx
5 dltan”'u) 1 du
' dx 1 + udx
g deothu) 1 du
Codx 14 4fdx
EXAMPLE
— arct . .
iz T dx V1 — (x2)? dx V1 —x*
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DAV Hyperbolic Function

ojligJi

Definitions: Hyperbolic Functions

et -t |
shz = simnhx = ' cschz = — x>0
2 sinhz
I -7 1
e o+ _
_ _ sechr =
chr = coshx = osha
: |
sinhr _
the = tanhz = cothz = T . o z>0
coshz tanhz
2 inh? 0082x+sin2x:1
cosh”z —sinh“z =1
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%‘\7 Exercices

Derivatives Involving ¢* Differentiate
l + ‘r‘. |
2x

(a) (1 + x2)e® and (b)

Derivative of Functions of the Form %! Differentiate

{ﬂ.} ¥V == E'i.". {h]. V= E-"'-I_I I:E-:l V= E..'l.'—]Jl".'l'
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d d d
SOLUTION (a) d_[“ + x2)e’] = (1 + ﬂ]d—[g*] - sr*ﬂ,—l;l + x2)  Product rule.
X X X

= (1 + xH)e* + ¢"(2x)
= & (x? + 2x + 1) = (1 + x)~.

d[1+e]  Qu)e” + 11— (¥ + 1724

(b) ﬂ‘xl_ e ) 5 Quotient rule.
_ 2xet = (e" + IN2)  2xe* —2eF -2
B 4x° ; 4572
_ 2xet—et = 1) xet—e*—1
- 4x2 B 2x2
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LILEE PSS et

(a) Here g(x) = 5x, g'(x) = 5, s0
d d
E{Ei"] = ES'TE{SIJ =5 = 5"

(b) Here g(x) = x~ — 1, g'(x) = 2x, s0
L3
dx

~

-I'.'-'..'|Il s i
€ H=e" Tl = ) =" (2x) = 2xe L

ax

(x

1 1
(c) Here g(x) = x — = glx)=1+ —,s0
X

d v—1/ — x—1/x l _ 1 v—1/x
E[&' )y =¢ -"r*(l+E)—(l+E)E ~
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Using Properties of Exponential and Logarithm Functions Simplify

{EI,) l‘|:,F|,|I'l'5|--i-11‘15 (h) E|I14—1ﬂ3 (E) Elﬂ 3+2In4d (d] ln{i%)
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SOLUTION

(a) Eln 4+In5 _ ,In4_ In5

=@-0)
=20

In 4

Ind—In3 _
(b) e CE

4

(c) EI113+2I114 — E,]113,.5,_21114'-1

_ 3. ,(n4)2)

= 3. {E‘ln 4}2
= (3)(4) = 48
1 s
(d) ln(—,}) = In(e )
2
= -2
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S Derivatives Involving In x Differentiate
(@) y=(nx)’> (b) y=xInx

SOLUTION (a) By the general power rule,

d d I 5(nx)*
—(Inx)> = 5(In x)*-—(Inx) = 5(In x)*-— = (nx) :
dx dx

X X

(b) By the product rule,

d d ]
E{Ilﬂl’}:l"a“ﬂx}*“{lﬂf]' ] = I.;—i— nx=1+Inx.
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Derivatives of Functions of the Form y = In|g(x)] Differentiate
s (a) y=In(2x + 1) (b) v = 111(43:2 —2x+9) (c) v = In(xe")

(a) Here, g(x) =2x + 1, g'(x) = 2, and so,

d | d
— f— —|-— — .
i@y + DI =5+ 1) = 5=

(b) Here, g(x) = 4x?> — 2x + 9, g'(x) = 8x — 2. and so,

d 5 ]. d 5 S_T - 2
—[In(4x- — 2x + 9)] = dx-—2x +9) = :
el 1= o dx )T 2t 9
(¢c) Tocompute the derivative of g(x) = xe*, we use the product rule: g'(x) = xe* + e* =
e‘(x + 1). So,
d 1 _el(x+ 1} x+ 1
dl_(xex}  xe d'c xe" x )
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Analyzing a Function Involving In x The function f(x) = (Inx)/x has a relative
extreme point for some x > 0. Find the point and determine whether it is a relative

maximum or a relative minimum point.

SOLUTION By the quotient rule,

1
x-;—{lna)-l

o) = — =
xz-( 1) — (1 — In x)(2x)
(%) = ~
b
~ —x—(2x—2xInXx)
A
_ —3x+2xInx  x(—3+2Inx)
x4 x
=3+ 2Inx
e
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‘ﬁ If we set f'(x) = 0, then,
1 Ilzn X _0
l=Inx=0 Multiply by x> # 0.
Inx =1 Add In x to each side.
e =¢l = Take exponential of each side.
X =e. en¥ = x,

Therefore, the only possible relative extreme point is at x = e. When x = e, f(e) =
(Ine)/e = 1/e. Furthermore,
2lne—3 1
" )= — = ﬂj
1(e) 3 3
which implies that the graph of f(x) is concave down at x = e. Therefore, (e, 1/¢) 1s a
relative maximum point of the graph of f(x). )
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Derivative of In|x| The function y = In|x| is defined for all nonzero values of x. Its
graph is sketched in Fig. 3. Compute the derivative of y = In|x].

If x is positive, |x| = x, so,
ilnh‘ - ilr1 X = 1
dx dx X
If x is negative, |x| = —x and, by the chain rule,
il||__l __i ._L 1y)=—
dxnx _dxn{ xj_—x dx{ X) = —X ( }_x'

- —— D

Therefore, we have established the following useful fact:

d 1
aln|x| =_ x#0.
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Thank you for your attention
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