

جامعة المنارة

كلية: الصيدلة

اسم المقرر: التحليل الالي

رقم الجلسة (4+5)

عنوان الجلسة

مقياس الطيف الضوئي Spectrophotometer



الفصل الدراسي

MU-EPP-FM-009 Issue date:01May2023 Issue no.1 Page 1 | 7

# https://manara.edu.sy/



#### الغاية من الجلسة:

التعرف على تقانة مقياس الطيف الضوئي و تطبيقاته الهامة في مجال التحليل الكيميائي و الصيدلاني .

#### مقدمة:

تعد الطرق التحليلية الطيفية من أهم الطرق التحليلية المستخدمة في التحليل ميزاتها العديدة: السرعة – الدقة-سهولة التطبيق.

تعتمد هذه الطرق على قياس الامتصاصية الضوئية ضمن مجالات محددة من الطيف الضوئي وهي: المجال المرئي و المجال فوق البنفسجي.

- المجال المرئى: 000-800 nm
- المجال فوق البنفسجي: 200-200

# أقسام جهازالسبيكتروفوتومتر

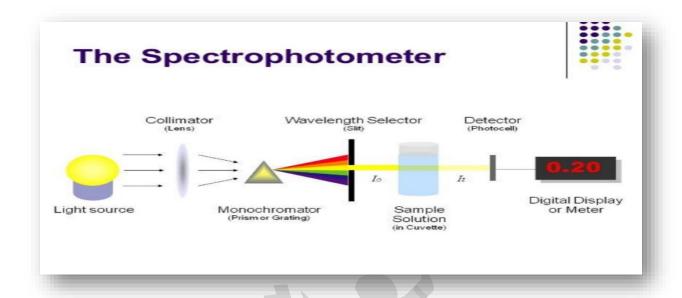
1- المنبع الضوئي: يختلف نوع المنبع الضوئي حسب مجال الضوء المستخدم

المجال المرئي: مصباح التنفستين

مجال .U.V: مصبح الديتيريوم

2- مستفرد اللون:

يقوم بالسماح لطول موجة محدد فقط بالمرور و المتابعة نحو محلول العينة, وله عدة أنوع ؟؟؟؟


◄ خلايا وضع العينات (الكوفيت):

يختلف نوع خلية القياس حسب طبيعة العينة وخواصها وحسب المجال الضوئي المستخدم بالقياس

- كوفيت بلاستيك
  - کوفیت زجاج
  - كوفيت كوارتز
    - 3- مكشاف detector:
- 4- يقوم بتحويل الاشارة الضوئية الواردة اليه الى اشارة كهربائية قابلة للقياس.
  - 5- مسجل البيانات

https://manara.edu.sy/





## مبدأ عمل الجهاز:

- يصدر المنبع الضوئي حزمة من الأشعة (حسب المجال المستخدم)
- يقوم مستفرد اللون بالسماح لطول موجة محدد بالمرورفقط (طول موجة الامتصاص الأعظمي)
- يسقط الشعاع الضوئي على محلول العينة: تمتص جزيئات المادة كمية من الضوء تتناسب طرداً مع تركيزها
  - يتابع الشعاع النافذ ( المتبقي) طريقه الى الكاشف Detector
- يقوم الكاشف بتحويل الشعاع الضوئي الى اشارة كهربائية ويقيس الفرق ما بين الشعاع الوارد و النافذ

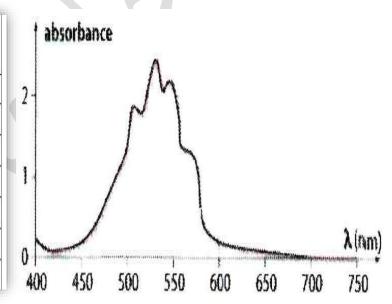
# تطبيقات السبيكتروفوتومتر:

- 1- رسم طيف الامتصاص الخاص بالمادة
- 2- الحصول على طول موجة الامتصاص الأعظمي
  - 3- القياس الكمى و تحديد التركيز

MU-EPP-FM-009 Issue date:01May2023 Issue no.1 Page 3 | 7

#### https://manara.edu.sy/




#### 1- رسم الطيف Spectrum:

يتم رسم الطيف Spectrum Measurement باستخدام جهاز السبيكتروفوتومتر, يمكن من خلال رسم الطيف الاستفادة في المجالات التالية

1 - ذاتية (تحديد الهوية): وذلك بالمقارنة مع الطيف المرجعي

2 الحصول على طول موجة الامتصاص الأعظمي للمادة: التحديد الكمي

| Wavelength (nm) | Absorbance | Wavelength(nm) | Absorbance |
|-----------------|------------|----------------|------------|
| 400             | 0.278      | 520            | 0.857      |
| 420             | 0.140      | 540            | 0.833      |
| 440             | 0.185      | 560            | 0.532      |
| 460             | 0.227      | 580            | 0.268      |
| 480             | 0.346      | 600            | 0.097      |
| 500             | 0.628      | 620            | 0.074      |







#### القياس الكمى بواسطة السبيكتروفوتومتر (قياس التركيز):

يمكن قياس التركيز في المجال المرئى و مجال UV بعدة طرق

1 - باستخدام علاقة بيير- لامبرت:

 $A = \epsilon.C.l$ 

#### 2- باستخدام خطية الطريقة التحليلية:

الخطية Linearity : تعنى وجود علاقة تناسب طردى ما بين الاستجابة و التركيز.

يجب ان تتحق الخطية كشرط أساسي كي نتمكن من تحديد التركيز

يتم ذلك وفق الخطوات التالية:

- 1- نحضر سلسلة عيارية من محلول المادة المراد تحديد تركيزها
  - 2- تقاس الامتصاصية المقابلة لكل محلول
- 3- نقوم برسم الخط البياني المعبر عن العلاقة مابين التركيز والاستجابة (الامتصاصية)
  - y = m x + b نحصل على المعادلة المعبرة عن الخط البياني السابق -4
    - 5- نتحقق من شروط الخطية

#### شروط الخطية:

- 1- ان تكون قيمة  $R^2$  أقرب ما يمكن من الواحد (1)
- 2- أن تكون قيمة  $\, b \,$  أقل من  $\, 5 \% \,$  من استجابة نقطة تقع في منتصف السلسلة العيارية.

أمثلة

MU-EPP-FM-009 Issue date:01May2023 Issue no.1 Page 5 | 7

#### https://manara.edu.sy/



#### تمرين 1

تم تحضير السلسلة العيارية التالية من مركب Levofloxacin . وأعطت المعادلة

التالية

Y = 0.0981 X + 0.0019

 $R^2 = 0.9999$ 

احسب تركيز عينة من هذه المادة أعطت امتصاصية y=0.546

كيف تحسب تركيز عينة خارج المجال الخطي للطريقة؟

| А     | C mcg\ml |
|-------|----------|
| 0.303 | 3        |
| 0.405 | 4        |
| 0.500 | 5        |
| 0.598 | 6        |
| 0.696 | 7        |
| 0.794 | 8        |

# A mg\50ml 0.204 0.63 0.384 1.26 0.694 2.21 0.771 2.48

0.979

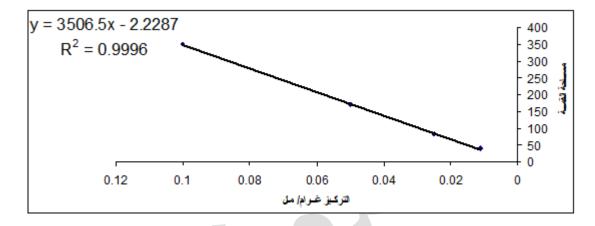
C

3.15

### تمرين 2:

لديك السلسة العيارية التالية:

- احسب تركيز عينة أعطت امتصاصية y= 0.998


 $y = 0.3093 \times 0.0041$ 

 $R^2 = 0.9998$ 

https://manara.edu.sy/



تمرين 3: هل يمكن استخدام هذه السلسة للقياس الكمي



MU-EPP-FM-009 Issue date:01May2023 Issue no.1 Page 7 | 7