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Tension and Compression in Bars 
1. Stress
2. Strain
3. Constitutive Law
Objectives: Mechanics of Materials investigates the stressing and the deformations of structures subjected 
to applied loads,  starting by the simplest structural members, namely, bars in tension or compression. 

In order to treat such problems, the kinematic relations and a constitutive law are needed to complement 
the equilibrium conditions which are known from Engineering Mechanics (Statics). 

4 .Single Bar under Tension or Compression
5. Systems of Bars
6. Supplementary Examples

The kinematic relations represent the geometry of the deformation, whereas the behavior of the material 
is described by the constitutive law. The students will learn how to apply these equations and how to solve 
determinate as well as statically indeterminate problems. 

الإجهاد
(لالانفعا)التشوه 

قانون السلوك

 الناتجة عن الحمولات الخارجي( الهياكل الحاملة)يدرس ميكانيك المواد إجهادات وتشوهات الجمل الإنشائية 
ً
ة، مبتدأ

.  المشدودة أو المضغوطة( العناصر الطولية)بالعناصر الأبسط أي القضبان 

:  تقوم هذه الدراسة على
(علم السكون )معادلات التوازن التي دُرست في الميكانيك الهندس ي ( 1)
 أي تحدد شكل ومقدار تغيرات الشكل الجي( 2)

ً
.  ومتري العلاقات الكينماتيكية التي ستدرس وهي تصف التشوهات كميا

، قوانين تجريبية تعرّف السلوك الميكانيكي لمادة الهي(  3)
ً
.كل الحاملقوانين سلوك مادة الجملة وهي كما ستُعرض لاحقا

شد أو ضغط: قضيب مفرد
جمل القضبان
أمثلة إضافية

 وأخرى غير مقررة س
ً
 يعالج الطلبة مسائل مقررة سكونيا

ً
كونيا

؟؟
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2 Strain 
Let us first consider a bar with a constant cross-sectional area which has the 

undeformed length 𝑙. 
Under the action of tensile forces (Fig.) it gets slightly longer.

The elongation is denoted by Δ𝑙 and is assumed 
to be much smaller than the original length 𝑙. 

As a measure of the amount of deformation, it is useful to introduce, in addition to the 
elongation, the ratio between the elongation and the original (undeformed) length:

The dimensionless quantity 𝜀 is called strain. 

Example: If, for example, a bar of the length 𝑙 = 1 m undergoes an elongation of Δ𝑙 = 0.5 mm then we 
have 𝜀 = 0.5 × 10−3. This is a strain of 0.05%. 

التشوه

(  واحداتدون )التشوه الطولي النسبي وهنا اختصارا التشوه، مقدار لابعدي 

 بالنظر إلى قضيب بمقطع ثابت وطول أولي غير مش
ً
.𝑙: وه قدرهنبدأ أولا

 تحت تأثير قوتي شد كما في الشكل سيتطاول القض
ً
.يب قليلا

 مقارنة مع الطول 𝑙∆نرمز لهذا التطاول 
ً
.𝑙ونفترض أنه مقدار صغير جدا

نسبة نقيس التشوه الطولي بال
ليبين التطاول والطول الأص

𝜀 =
Δ𝑙

𝑙
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If the bar gets longer (Δ𝑙 > 0) the strain is positive; it is negative in the case of a shortening. 

In what follows we will consider only small deformations

The above definition 𝜀 =
Δ𝑙

𝑙
   for the strain is 

valid only if 𝜀 is constant over the bar length. 

Δ𝑙)إذا ازداد الطول أي كان  > ، وهذا يتوافق مع إجهاد الشد الموجب (0
ً
.  يكون التشوه موجبا

Δ𝑙)أما إذا نقص الطول أي كان  < ، وهذا يتوافق مع إجهاد الضغط السالب(0
ً
..يكون التشوه سالبا

 فيما يلي سنفترض أن التشوهات صغيرة
ً
دوما

|Δ𝑙| ≪ 𝑙 or |𝜀| ≪ 1. 

 على ك
ً
.امل الطول يصح التعريف السابق فقط إذا كان التشوه ثابتا

If the cross-sectional area is not constant or if the bar is subjected 
to volume forces acting along its axis, the strain may depend on 
the location. 

Instead of the whole we consider an element of the bar (Fig.). It has the length 𝑑𝑥 in the undeformed state. 
Its left end is located at 𝑥, the right end at 𝑥 + 𝑑𝑥. 

https://manara.edu.sy/               Mechancs of Materials 1

ور ، فإن إذا كان المقطع متغير أو كانت القوى الخارجيةمتغيرة على طول المح
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If the bar is elongated, the cross sections undergo displacements 
in the 𝑥-direction which are denoted by 𝑢. They depend on the 
location: 𝑢 = 𝑢 𝑥 .

Thus, the displacements are 𝑢 at the left end of the element and 𝑢 + 𝑑𝑢 at the right end. 

The length of the elongated element is 𝑑𝑥 + (𝑢 + 𝑑𝑢) − 𝑢 = 𝑑𝑥 + 𝑑𝑢. 

Hence, the elongation of the element is given by 𝑑𝑢. Now the local strain can be defined as the ratio 
between the elongation and the undeformed length of the element:

Instead of the whole we consider an element of the bar (Fig.). It has the length 𝑑𝑥 in the 
undeformed state. Its left end is located at 𝑥, the right end at 𝑥 + 𝑑𝑥. 

https://manara.edu.sy/               Mechancs of Materials 1
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Now the local strain can be defined as the ratio between the elongation and the undeformed 

length of the element: 𝜀(𝑥) =
𝑑𝑢

𝑑𝑥

If the displacement 𝑢(𝑥) is known, the strain 𝜀(𝑥) can be 
determined through differentiation. Reversely, if 𝜀(𝑥) is known, 
the displacement 𝑢(𝑥) is obtained through integration. 

The displacement 𝑢(𝑥) and the strain 𝜀(𝑥) describe the geometry of the deformation. Therefore they are 

called kinematic quantities. So the equation 𝜀 𝑥 =
𝑑𝑢

𝑑𝑥
  is referred to as a kinematic relation. 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐿𝑜𝑎𝑑𝑠

𝜀 𝑥 =
𝑑𝑢

𝑑𝑥
 , 𝜎 𝑥 =

𝑁(𝑥)

𝐴(𝑥)
kinematicStatics
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3 Constitutive Law
Stresses are quantities derived from statics; they are a measure for the stressing in the material . 
On the other hand, strains are kinematic quantities; they measure the deformation of a body. 
However, the deformation depends on the load which acts on the body. Therefore, the stresses and the 
strains are not independent. 

The physical relation that connects these quantities is called constitutive law. 

It describes the behavior of the material of the body under a load. It depends on the material and can be 
obtained only with the aid of experiments. 

One of the most important experiments to find the relationship between stress and strain is the tension or 
compression test. Here, a small specimen of the material is placed into a testing machine and elongated or 
shortened. 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐿𝑜𝑎𝑑𝑠

𝜀 𝑥 =
𝑑𝑢

𝑑𝑥
 , 𝜎 𝑥 =

𝑁(𝑥)

𝐴(𝑥)
kinematicStatics

constitutive law

قانون السلوك المادة
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The force 𝐹 applied by the machine onto the specimen can be read on the dial of the 
machine; it causes the normal stress 𝜎 = 𝐹/𝐴. The change Δ𝑙 of the length 𝑙 of the 
specimen can be measured and the strain 𝜀 = Δ𝑙/𝑙 can be calculated. 
The graph of the relationship between stress and strain is shown 
schematically (not to scale) for a steel specimen in Fig. 

This graph is referred to as stress-strain diagram. One can see 
that for small values of the strain the relationship is linear 
(straight line) and the stress is proportional to the strain. 

This behavior is valid until the stress reaches the proportional 
limit 𝜎𝑃. If the stress exceeds the proportional limit the strain 
begins to increase more rapidly and the slope of the curve 
decreases. 
This continues until the stress reaches the yield stress 𝜎𝑌 . From this point of the stress-strain 
diagram the strain increases at a practically constant stress: the material begins to yield. Note 
that many materials do not exhibit a pronounced yield point. 

At the end of the yielding the slope of the curve increases again which shows that the 
material can sustain an additional load. This phenomenon is called strain hardening. 

https://manara.edu.sy/               Mechancs of Materials 1
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Experiments show that an elongation of the bar leads to a reduction of the cross-
sectional area 𝐴. This phenomenon is referred to as lateral contraction. 

Whereas the cross-sectional area decreases uniformly over the 
entire length of the bar in the case of small stresses, it begins to 
decrease locally at very high stresses. 

This phenomenon is called necking. Since the actual cross section 
𝐴𝑎 may then be considerably smaller than the original cross 
section 𝐴, the stress 𝜎 = 𝐹/𝐴 does not describe the real stress 
any more. 

It is therefore appropriate to introduce the stress 𝜎𝑡 = 𝐹/𝐴𝑎 which is called true stress or 
physical stress. It represents the true stress in the region where necking takes place. The 
stress 𝜎 = 𝐹/𝐴 is referred to as nominal or conventional or engineering stress. The Fig. shows 
both stresses until fracture occurs. 

Consider a specimen being first loaded by a force which causes the stress 𝜎. Assume that 𝜎 
is smaller than the yield stress 𝜎𝑌 , i.e., 𝜎 < 𝜎𝑌. 

https://manara.edu.sy/               Mechancs of Materials 1
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Subsequently, the load is again removed. Then the specimen will return to its original 
length: the strain returns to zero. 

In addition, the curves during the loading and the unloading 
coincide. This behavior of the material is called elastic ; the 
behavior in the region 𝜎 ≤ 𝜎𝑃 is referred to as linearly elastic. 

Now assume that the specimen is loaded beyond the yield 
stress, i.e., until a stress 𝜎 > 𝜎𝑌 is reached. Then the curve 
during the unloading is a straight line which is parallel to the 
straight line in the linear-elastic region, see Fig. If the load is 
completely removed the strain does not return to zero: a 
plastic strain 𝜀𝑝𝑙 remains after the unloading. This material 
behavior is referred to as plastic. 

In the following we will always restrict ourselves to a linearly elastic material behavior.
For the sake of simplicity we will refer to this behavior shortly as elastic, i.e., Then we have 
the linear relationship between the stress and the strain.  

𝜎 = 𝐸𝜀

https://manara.edu.sy/               Mechancs of Materials 1
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The proportionality factor 𝐸 is called modulus of elasticity or Young’s modulus (Thomas 
Young, 1773–1829). The constitutive law 𝜎 = 𝐸𝜀 is called Hooke’s law after Robert 
Hooke (1635–1703). Note that Robert Hooke could not present this law in this form 
since the notion of stress was introduced only in 1822 by Augustin Louis Cauchy. 

The modulus of elasticity has the same value for tension and compression. But, 𝜎 must be less 
than the proportional limit 𝜎𝑃 which may be different for tension or compression. 

The modulus of elasticity 𝐸 is a constant which depends on the material and which can be 
determined with the aid of a tension test. It has the dimension of force/area (which is also 
the dimension of stress); it is given, for example, in the unit MPa. 

Next Table shows the values of 𝐸 for several materials at room temperature. Note that these 
values are just a guidance since the modulus of elasticity depends on the composition of the 
material and on the temperature. 
A tensile or a compressive force, respectively, causes the strain: 𝜀 = 𝜎/𝐸

Changes of the length and thus strains are not only caused by forces but also by changes of 
the temperature. Experiments show that the thermal strain 𝜀𝑇 is proportional to the change 
Δ𝑇 of the temperature if the temperature of the bar is changed uniformly across its section 
and along its length:𝜀𝑇 = 𝛼𝑇Δ𝑇 

https://manara.edu.sy/               Mechancs of Materials 1
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The proportionality factor 𝛼𝑇 is called coefficient of thermal expansion. It is a material 
constant and is given in the unit 1/℃. Next Table shows several values of 𝛼𝑇 and 𝐸. 

If the change of the temperature is not the same along the entire length of the bar (if it 
depends on the location) then 𝜀𝑇 = 𝛼𝑇Δ𝑇 represents the local strain 𝜀𝑇(𝑥) = 𝛼𝑇 Δ𝑇(𝑥). 

If a bar is subjected to a stress 𝜎 as well as to a change Δ𝑇 of the temperature, the total strain 
𝜀 is obtained through a superposition 𝜀 = 𝜎

𝐸
+ 𝛼𝑇Δ𝑇

This relation can also be written in the form 𝜎 = 𝐸(𝜀 − 𝛼𝑇Δ𝑇).
Table of Material Constants

https://manara.edu.sy/               Mechancs of Materials 1
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4 Single Bar under Tension or Compression 
There are three different types of equations that allow us to determine the stresses & the strains in a 
bar: the equilibrium condition, the kinematic relation and Hooke’s law. 
Depending on the problem, the equilibrium condition may be formulated for the entire bar, a portion of 
the bar or for an element of the bar. 
We will derive the equilibrium condition for an element. For this purpose we consider a bar which is 
subjected to two forces 𝐹1 & 𝐹2 at its ends and to a line load 𝑛 = 𝑛(𝑥), see Fig.a. 

The forces are assumed to be in equilibrium. We imagine a slice element of infinitesimal length 𝑑𝑥 
separated from the bar as shown in Fig.b. 

The F. B. D. shows the normal forces 𝑁 and 𝑁 + 𝑑𝑁, respectively, at the ends of the element; the line 
load is replaced by its resultant 𝑛𝑑𝑥 (note that 𝑛 may be considered to be constant over the length 𝑑𝑥). 
Equilibrium of the forces in the direction of the axis of the bar 
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→: 𝑁 + 𝑑𝑁 + 𝑛 𝑑𝑥 − 𝑁 = 0
yields the equilibrium condition 

𝑑𝑁

𝑑𝑥
+ 𝑛 = 0

In the special case of a vanishing line load (𝑛 ≡ 0) 𝐹1 = 𝐹2 = 𝑁

The kinematic relation for the bar is 𝜀 =
𝑑𝑢

𝑑𝑥
and Hooke’s law is given by 𝜀 =

𝜎

𝐸
If we insert the kinematic relation and 𝜎 = 𝑁/𝐴 into Hooke’s law we obtain 

𝜀(𝑥) =
𝑑𝑢

𝑑𝑥
=

𝑁(𝑥)

𝐸𝐴(𝑥)
This differential equation relates the displacements 𝑢(𝑥) of the cross sections and the normal force 𝑁(𝑥). 

It may be called the constitutive law for the bar. 
The displacement 𝑢 of a cross section is found through integration of the strain: 

𝜀 =
𝑑𝑢

𝑑𝑥
→ න 𝑑𝑢 = න 𝜀𝑑𝑥 → 𝑢 𝑥 − 𝑢 0 = න

0

𝑥

𝜀𝑑 ҧ𝑥 .

https://manara.edu.sy/       Mechancs of Materials 1
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𝑑𝑢
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The elongation Δ𝑙 follows as the difference of the displacements at the ends 𝑥 = 𝑙 and 𝑥 = 0 of 
the bar: 

Δ𝑙 = 𝑢 𝑙 − 𝑢 0 = න
0

𝑙

𝜀𝑑𝑥

With 𝜀 = 𝑑𝑢/𝑑𝑥 and the constitutive law for the bar  this yields 

Δ𝑙 = න
0

𝑙 𝑁(𝑥)

𝐸𝐴(𝑥)
𝑑𝑥

In the special case of a bar (length 𝑙) with constant axial rigidity (𝐸𝐴 = 𝑐𝑜𝑛𝑠𝑡) which is subjected only 
to forces at its end (𝑛 ≡ 0, 𝑁 = 𝐹) the elongation is given by 

Δ𝑙 =
𝑙

𝐸𝐴
𝐹 ⇔ 𝐹 =

𝐸𝐴

𝑙
Δ𝑙

Quantity 
𝐸𝐴

𝑙
 is the axial rigidity (Stiffness) of the bar.

 The Inverse 
𝑙

𝐸𝐴
 is the axial flexibility of the bar  

https://manara.edu.sy/       Mechancs of Materials 1



1/14/2025 15

If we want to apply these equations to specific problems, we have to distinguish between 
statically determinate and statically indeterminate problems. 

In a statically determinate system we can always calculate the normal force 𝑁(𝑥) with the aid of the 
equilibrium condition. 
Subsequently, the strain 𝜀(𝑥) follows from 𝜎 = 𝑁/𝐴 and Hooke’s law 𝜀 = 𝜎/𝐸. Finally, 
integration yields the displacement 𝑢(𝑥) and the elongation Δ𝑙. 

In a statically indeterminate problem, with the equilibrium condition alone the normal force 
cannot be calculated. 
In such problems the basic equations (equilibrium condition, kinematic relation and Hooke´s law) are a 
system of coupled equations and have to be solved simultaneously. 

Finally we will reduce the basic equations to a single equation for the displacement 𝑢. 

𝑑𝑁

𝑑𝑥
+ 𝑛 = 0𝜀 =

𝑑𝑢

𝑑𝑥
=

𝑁

𝐸𝐴
By combining the two equations: To get: 

𝑑

𝑑𝑥
𝐸𝐴

𝑑𝑢

𝑑𝑥
=

𝑑

𝑑𝑥
𝑁 = −𝑛

With, the primes denoting 

derivatives with respect to 𝑥 
𝐸𝐴𝑢′ ′ = −𝑛

https://manara.edu.sy/       Mechancs of Materials 1
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If the functions 𝐸𝐴(𝑥), 𝑛(𝑥), are given, the equation 𝐸𝐴𝑢′ ′ = −𝑛

the displacement 𝑢(𝑥) of an arbitrary cross section can be determined by integration. 
The constants of integration are calculated from the boundary conditions.
If, for example, one end of the bar is fixed then 𝑢 = 0 at this end. 
If, on the other hand, one end of the bar can move and is subjected to a force 𝐹𝑒 , then applying d 𝑁 = 𝐹𝑒

yields the boundary condition 𝑢′ = 𝐹𝑒/𝐸𝐴 .
This reduces to the boundary condition 𝑢′ = 0 in the special case of a stress-free end (𝐹𝑒 = 0) of a bar. 

https://manara.edu.sy/       Mechancs of Materials 1
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illustrative example As a statically determinate system let us consider a slender bar (weight W, cross-

sectional area A) that is suspended from the ceiling (Fig.a). 

First we determine the normal force caused by the weight of the bar. We cut the bar at an 
arbitrary position 𝑥 (Fig.b). 

The normal force 𝑁 = the weight 𝑊∗ of the portion of the bar below 
the imaginary cut. Thus, it is given by 𝑁(𝑥) = 𝑊∗(𝑥) = 𝑊(𝑙 −  𝑥)/𝑙. 

𝜎 𝑥 =
𝑁(𝑥)

𝐴
=

𝑊

𝐴
1 −

𝑥

𝑙

Accordingly, the normal stress in the bar varies linearly; it decreases 
from the value 𝜎(0) = 𝑊/𝐴 at the upper end to 𝜎(𝑙) = 0 at the 
free end. 

Then the normal stress is

The elongation Δ𝑙 of the bar due to its own weight is obtained from 

Δ𝑙 = න
0

𝑙 𝑁

𝐸𝐴
𝑑𝑥 =

𝑊

𝐸𝐴
න

0

𝑙

1 −
𝑥

𝑙
𝑑𝑥 =

1

2

𝑊𝑙

𝐸𝐴

It is half the elongation of a bar with negligible weight which is subjected to the force 𝑊 at 
the free end. 

https://manara.edu.sy/       Mechancs of Materials 1
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illustrative example As a statically determinate system let us consider a slender bar (weight W, cross-

sectional area A) that is suspended from the ceiling (Fig.a). 

We may also solve the problem by applying the differential equation 𝐸𝐴𝑢′ ′ = −𝑛 
for the displacements 𝑢(𝑥) of the cross sections of the bar. Integration with the 
constant line load 𝑛 = 𝑊/𝑙 , yields 

𝐸𝐴𝑢′′ = −𝑊/𝑙 ⇒ 𝐸𝐴𝑢′ = −( Τ𝑊 𝑙)𝑥 + 𝐶1

⇒ 𝐸𝐴𝑢 = −( Τ𝑊 2𝑙)𝑥2  + 𝐶1𝑥 + 𝐶2

𝐶1 & 𝐶2 , constants of integration, can be determined from the boundary 
conditions. The displacement of the cross section at the upper end of the 
bar is equal to zero: 𝑢(0) = 0. Since the stress 𝜎 vanishes at the free end, 
we have 𝑢′(𝑙) = 0. This leads to 𝐶2 = 0 and 𝐶1 = 𝑊.

𝑢 𝑥 =
1

2

𝑊𝑙

𝐸𝐴
2

𝑥

𝑙
−

𝑥2

𝑙2  

The bar elongation Δ𝑙 = 𝑢 𝑙 =
1

2

𝑊𝑙

𝐸𝐴

and the normal force 𝑁 𝑥 = 𝐸𝐴𝑢′ = 𝑊(1 −
𝑥

𝑙
)

Thus, the displacement and the normal force are given by 
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illustrative example As an illustrative example of a statically indeterminate system let us consider a solid 

circular steel cylinder (cross-sectional area 𝐴𝑆, modulus of elasticity 𝐸𝑆, length 𝑙) is placed inside a copper tube 
(cross-sectional area 𝐴𝐶, modulus of elasticity 𝐸𝐶, length 𝑙). The assembly is compressed between a rigid plate 
and the rigid floor by a force 𝐹 (Fig.a). Calculate the shortening of the assembly and Determine the normal Forces 
in the cylinder and in the tube.. 
Solution: 4 unknowns, 𝐹𝑆, 𝐹𝐶 , Δ𝑙𝑆, Δ𝑙𝐶  
Denote the compressive forces in the steel cylinder and in the copper tube by 
𝐹𝑆 and 𝐹𝐶, respectively (Fig.b). Equilibrium at the F. B. D. of the plate yields 

𝐹𝑆 + 𝐹𝐶 = 𝐹. 

𝐹𝑆 + 𝐹𝐶 = 𝐹. 

Since equilibrium furnishes only one equation for the two unknown forces 𝐹𝑆 

and 𝐹𝐶, the problem is statically indeterminate. 

obtain a second equation by taking into account the deformation of the system. 
The shortenings (here counted positive) of the two parts are given according to 
Δ𝑙 = Τ𝑙 𝐸𝐴 𝐹 , by 

Δ𝑙𝐶 =
𝑙𝐹𝐶

𝐸𝐶𝐴𝐶
  and  Δ𝑙𝑆 =

𝑙𝐹𝑆

𝐸𝑆𝐴𝑆

Δ𝑙𝐶 = Δ𝑙𝑆

The plate and the floor are assumed to be rigid. Therefore the geometry of the problem requires that the shortenings of the 
copper tube and of the steel cylinder coincide. This gives the compatibility condition 

Δ𝑙𝐶 = Δ𝑙𝑆 = ∆𝑙

Sub. in the two last equations gives 𝐹𝑆 = 𝐸𝑆𝐴𝑆∆𝑙/𝑙  and 𝐹𝐶= 𝐸𝐶𝐴𝐶∆𝑙/𝑙 Sub. these into the equilibrium Eq. gives 

Δ𝑙 =
𝐹𝑙

𝐸𝑆𝐴𝑆 + 𝐸𝐶𝐴𝐶
𝐹𝑆 =

𝐸𝑆𝐴𝑆

𝐸𝑆𝐴𝑆 + 𝐸𝐶𝐴𝐶
𝐹 𝐹𝐶 =

𝐸𝐶𝐴𝐶

𝐸𝑆𝐴𝑆 + 𝐸𝐶𝐴𝐶
𝐹𝜎𝑆 =

𝐸𝑆

𝐸𝑆𝐴𝑆 + 𝐸𝐶𝐴𝐶
𝐹 𝜎𝐶 =

𝐸𝐶

𝐸𝑆𝐴𝑆 + 𝐸𝐶𝐴𝐶
𝐹
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