Tension and Compression in Bars
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Objectives: Mechanics of Materialsinvestigates the stressing and the deformations of structures subjected

to applied loads, starting by the simplest structural members, namely, bars in tension or compression.
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In order to treat such problems, the kinematic relations and a constitutive law are needed to complement

the equilibrium conditions which are known from Engineering Mechanics (Statics). e Tyl o o943
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The kinematic relations represent the geometry of the deformation, whereas the behavior of the material

is described by the constitutive law. The students will learn how to apply these equations and how to solve

determinate as well as statically indeterminate problems. L5oSat Bysho p (Geirlo LiigSiun s yyha Jilowo dullall Pl
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2 Strain &gl

L et us first consider a bar with a constant cross-sectional area which has the

undeformed length L. Lioyad ogdie pe ol dsbog bl padiay cuand ) Sladlly Yl s
Under the action of tensile forces (Fig.) it gets slightly longer. | |
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The elongation is denoted by Al and is assumed F F
to be much smaller than the original length [. L Jslall a0 Tus pdo lade f (asiasy Al Jollatll 1L 5a s
As a measure of the amount of deformation, it is useful to introduce, in addition to the Lealy Jolatl o9 a4l pcids
elongation, the ratio between the elongation and the original (undeformed) length: ¥l Joladlg Jollazll oy
Al
E = —
[

The dimensionless quantity € is called strain. (=1as>9 G9s) goa¥ ylude ogidl |yLais | Lag qudd! Jglall o541

Example: If, for example, a bar of the length [=1m undergoes an elongation of AL = 0.5 mm then we

have € = 0.5 X 1073, This is a strain of 0.05%.
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If the bar gets longer (Al > 0) the strain is positive; it is negative in the case of a shortening.
gl il sl ae 33lsn Idag Lz ga ol 058G (AL > 0) o f Jaladl sl 13)
cedladl il slea) ae 38155 1day Ldlu ogadll 055, (Al < 0) o & Jsladl i 13] L
In what follows we will consider only small deformations | |
Logs o ilagadll of (ofaiw b Lasd - I e AL =]
ALl < Lor|e] « 1. - -
he above def 2L for th , , 1 ,
The above definition & = . or the strain is J#‘JASJLUJUD “*‘U\s‘-’l “&w‘h"-j Al

valid only if € is constant over the bar length.

I x
|

If the cross-sectional area is not constant or if the bar is subjected |

i-l

| undeformed bar

i
|
to volume forces acting along its axis, the strain may depend on L |
| T

the |0cat|on I | deformed bar

Jﬁ-’-'l‘ e (e 3T ] pios0 (0 pon 05-*0—'-“

Instead of the whole we consider an element of the bar (Fig.). It has the length dx in the undeformed state.

Its left end is located at x, the right end at x + dx.
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Instead of the whole we consider an element of the bar (Fig.). It has the length dx in the
undeformed state. Its left end is located at x, the right end at x + dx.

|
|
If the bar is elongated, the cross sections undergo displacements | 1 l undeformed bar

in the x-direction which are denoted by u. They depend on the LI | ‘1

I | deformed bar

location: u = u(x). '

Thus, the displacements are U at the left end of the elementand u + du at the right end.

The length of the elongated elementis dx + (u + du) —u = dx + du.

Hence, the elongation of the element is given by du. Now the local strain can be defined as the ratio

between the elongation and the undeformed length of the element:

du
e(x) = o
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Now the local strain can be defined as the ratio between the elongation and the undeformed

du

length of the element: s(x) = —
g (x) = —

If the displacement u(x) is known, the strain £(x) can be |

[ | undeformed bar

|
determined through differentiation. Reversely, if £(x) is known, L | __‘ |
|

the displacement u(x) is obtained through integration.

I | deformed bar

The displacement 1 (x) and the strain £(x) describe the geometry of the deformation. Therefore they are

. , L : du . : : :
called kinematic quantities. So the equation £(x) = = i referred to as a kinematic relation.

External Loads

— T du

i — — kinematic
Statics olx) = o > S(X) ,
( ) A(X) constitutive law dx

salal) &l glad) oy gitd
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3 Constitutive Law 83kl & sla oy gl
Stresses are quantities derived from statics; they are a measure for the stressing in the material .
On the other hand, strains are kinematic quantities; they measure the deformation of a body.

However, the deformation depends on the load which acts on the body. Therefore, the stresses and the

strains are not independent.

External Loads

Statics o(x) = (x) P , £(x) = —, kinematic

constitutive law
alall & gludd) oy gil8

The physical relation that connects these quantities is called consritutive law.

It describes the behavior of the material of the body under a load. It depends on the material and can be

obtained only with the aid of experiments.

One of the most important experiments to find the relationship between stress and strain is the tension or

compression test. Here, a small specimen of the material is placed into a testing machine and elongated or

shortened.
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The force F applied by the machine onto the specimen can be read on the dial of the
machine; it causes the normal stress ¢ = F /A. The change Al of the length [ of the
specimen can be measured and the strain € = Al/l can be calculated.

The graph of the relationship between stress and strain is shown
schematically (not to scale) for a steel specimen in Fig.

This graph is referred to as stress-strain diagram. One can see
that for small values of the strain the relationship is linear
(straight line) and the stress is proportional to the strain.

T A

This behavior is valid until the stress reaches the proportional

limit op. If the stress exceeds the proportional limit the strain

begins to increase more rapidly and the slope of the curve

decreases.

This continues until the stress reaches the yield stress o, . From this point of the stress-strain

diagram the strain increases at a practically constant stress: the material begins to yield. Note

that many materials do not exhibit a pronounced yield point.

At the end of the yielding the slope of the curve increases again which shows that the
material can sustain an additional load. This phenomenon is called strain hardening.
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Experiments show that an elongation of the bar leads to a reduction of the cross-
sectional area A. This phenomenon is referred to as lateral contraction.

Whereas the cross-sectional area decreases uniformly over the
entire length of the bar in the case of small stresses, it beginsto
decrease locally at very high stresses.

This phenomenon is called necking. Since the actual cross section o |
A, may then be considerably smaller than the original cross a
section A4, the stress 0 = F /A does not describe the real stress
any more.

It is therefore appropriate to introduce the stress o, = F /Aa which is called true stress or
physical stress. It represents the true stress in the region where necking takes place. The
stress 0 = F /A is referred to as nominal or conventional or engineering stress. The Fig. shows

both stresses until fracture occurs.

Consider a specimen being first loaded by a force which causes the stress . Assume that o
is smaller than the yield stress gy , i.e., 0 < 0y.
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Subsequently, the load is again removed. Then the specimen will return to its original
length: the strain returns to zero.

In addition, the curves during the loading and the unloading
coincide. This behavior of the material is called elastic ; the
behavior in the region o < o, is referred to as linearly elastic.

Now assume that the specimen is loaded beyond the yield
stress, i.e., until a stress 0 > gy is reached. Then the curve
during the unloading is a straight line which is parallel to the
straight line in the linear-elastic region, see Fig. If the load is
completely removed the strain does not return to zero: a
plastic strain &, remains after the unloading. This material
behavior is referred to as plastic.

In the following we will always restrict ourselves to a linearly elastic material behavior.
For the sake of simplicity we will refer to this behavior shortly as elastic, i.e., Then we have
the linear relationship between the stress and the strain.

o=FLe
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The proportionality factor E is called modulus of elasticity or Young’s modulus (Thomas
Young, 1773-1829). The constitutive law o = E¢ is called Hooke’s [aw after Robert
Hooke (1635-1703). Note that Robert Hooke could not present this law in this form
since the notion of stress was introduced only in 1822 by Augustin Louis Cauchy.

The modulus of elasticity has the same value for tension and compression. But, ¢ must be less
than the proportional limit o, which may be different for tension or compression.

The modulus of elasticity E is a constant which depends on the material and which can be
determined with the aid of a tension test. It has the dimension of force/area (which is also
the dimension of stress); it is given, for example, in the unit MPa.

Next Table shows the values of E for several materials at room temperature. Note that these
values are just a guidance since the modulus of elasticity depends on the composition of the
material and on the temperature.

A tensile or a compressive force, respectively, causes the strain: € = g /E

Changes of the length and thus strains are not only caused by forces but also by changes of

the temperature. Experiments show that the thermal strain &; is proportional to the change

AT of the temperature if the temperature of the bar is changed uniformly across its section
and along its length:er = arAT
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The proportionality factor a; is called coefficient of thermal expansion. It is a material
constant and is given in the unit 1/°C. Next Table shows several values of a and E.

If the change of the temperature is not the same along the entire length of the bar (if it
depends on the location) then e = a+AT represents the local strain &.(x) = a; AT (x).

If a bar is subjected to a stress o as well as to a change AT of the temperature, the total strain

€ is obtained through a superposition € = % + ar AT

This relation can also be written in the form ¢ = E(¢ — atAT).
Table of Material Constants

Material E in MPa o in 1/°C
Steel 2.1-10° 1.2.103
Aluminium 0.7-10° 2.3-10~°
Concrete 0.3-10° 1.0-107°
Wood (in fibre direction)  0.7... 2.0-10* 2.2 ...3.1.107°
Cast iron 1.0-10° 0.9-10—°
Copper 1.2-10° 1.6-10%
Brass 1.0-10° 1.8.102
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4 Single Bar under Tension or Compression

There are three different types of equations that allow us to determine the stresses & the strains in a
bar: the equilibrium condition, the kinematic relation and Hooke's law.

Depending on the problem, the equilibrium condition may be formulated for the entire bar, a portion of
the bar or for an element of the bar.

We will derive the equilibrium condition for an element. For this purpose we consider a bar which is
subjected to two forces F'; & F',, atits ends and to a line load 7. = 1.(X), see Fig.a.

ndx
- |- = - - — - — [ —
7, (@] p,) N N+dN
x
r( ..’|‘*_ |-| (1.." a-l
g e I - x r+dz

b

The forces are assumed to be in equilibrium. We imagine a slice element of infinitesimal length dx
separated from the bar as shown in Fig.b.

The F. B. D. shows the normal forces N and N + d NN, respectively, at the ends of the element; the line

load is replaced by its resultant ndx (note that 1 may be considered to be constant over the length dx).
Equilibrium of the forces in the direction of the axis of the bar
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- N + dN + ndx — N = 0

ndx
yields the equilibrium condition *;l——* = = G —;2- 1T Ty
dN J""d Jf"_ | dz —
E+n=0 a b [ -] p ¢ ohdr
In the special case of a vanishing line load (n = 0) Fi=F,=N
du
The kinematic relationfor the bar is £ = — and Hooke’s law is siven b £ = g
dx 5 4 /3
If we insert the kinematic relation and @ = N /A into Hooke’s law we obtain
du N(x) du
ExX) = —=——— N(x) = EA(x)e(x) = EA(x) —
)= = Facs () = EAQ)e(x) = EA(x) o

This differential equation relates the displacements () of the cross sections and the normal force N (x).
It may be called the constitutive law for the bar.
The displacement U of a cross section is found through integration of the strain:

X

€=Z—Z—>jdu=jedx—>u(x)—u(0)=foedf.
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The elongation Al follows as the difference of the displacements at the ends x = [ and x = 0 of
l

Al =u(l) —u(0) = f sdx

0
with & = du/dx andthe constitutive law for the bar this yields

B LN(x)
Al—f0 EA(x)dx

the bar:

In the special case of a bar (length [) with constant axial rigidity (EA = const) which is subjected only
to forces atitsend (n = 0, N = F) the elongation is given by

Al = : F(:F—EAAZ
 EA o

EA
Quantity — is the axial rigidity (Stiffness) of the bar.

The Inverse a is the axial f/exibility of the bar

1/14/2025 https://manara.edu.sy/  Mechancs of Materials 1




If we want to apply these equations to specific problems, we have to distinguish between

star/'ca/b/ determinate and star/'ca/b/ /ndeterminate pro blems.

In a statically determinate system we can always calculate the normal force N (x ) with the aid of the
equilibrium condition.

Subsequently, the strain E(X) follows from o = N/A and Hooke's law & = O'/E. Finally,
integration yields the displacement U(.X') and the elongation Al.

In a statically indeterminate problem, with the equilibrium condition alone the normal force
cannot be calculated.

In such problems the basic equations (equilibrium condition, kinematic relation and Hooke’s law) are a
system of coupledequations and have to be solved simultaneously.

Finally we will reduce the basic equations to a single equation for the displacement U.

By combining the two equations: £ = d_u — l d_N +n=0 To get:

dx EA dx

d du (N) _ With, the primes denoting

T\ FAZ, (EAu)' = —n

derivatives with respect to X
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If the functions EA (X), TL(X), are given, the equation (EAu') = —n

the displacement U(X) of an arbitrary cross section can be determined by integration.

The constants of integration are calculated from the boundary conditions.

If, for example, one end of the bar is fixed then 1/ = 0 at this end.

If, on the other hand, one end of the bar can move and is subjected to a force I, then applyingd N = F,
yields the boundary condition 2" = F,/EA .

This reduces to the boundary condition 11" = 0 in the special case of a stress-free end (F, = 0) of a bar.

1/14/2025 https://manara.edu.sy/  Mechancs of Materials 1



illustrative example As a statically determinate system let us consider a slender bar (weight W, cross-
sectional area A) that is suspended from the ceiling (Fig.a).

First we determine the normal force caused by the weight of the bar. We cut the bar at an

arbitrary position x (Fig.b). _ X

The normal force N = the weight W* of the portion of the bar below

the imaginary cut. Thus, it is given by N(x) = W*(x) = W — x)/L. N 1N(a:)
v

|4
-t

_ N(X) 114 X l 1%7%4
Then the normal stress is o(x) = T = (1 l)

Accordingly, the normal stress in the bar varies linearly; it decreases
from the value a(0) = W /A at the upper end to a(l) = 0 at the
free end.

L

®
= |

The elongation Al of the bar due to its own weight is obtained from

Al—led W l(1 x)d 1wl
=) EA™ TEa), T U™ T 2EaA

It is half the elongation of a bar with negligible weight which is subjected to the force W at
the free end.

1/14/2025 https://manara.edu.sy/  Mechancs of Materials 1



illustrative example As a statically determinate system let us consider a slender bar (weight W, cross-
sectional area A) that is suspended from the ceiling (Fig.a).

We may also solve the problem by applying the differential equation (EAu')’ = —n
for the displacements u(x) of the cross sections of the bar. Integration with the

constant line load n = W /[, yields TTOT
EAU' = -W/l =EAu' =-W/Dx+ N 1N<w)
= EAu = —(W/2Dx? + Cix + C, collw T
C, & C,, constants of integration, can be determined from the boundary * wr=Ll=z w
conditions. The displacement of the cross section at the upper end of the

bar is equal to zero: u(0) = 0. Since the stress o vanishes at the free end, - - -
we have u'(l) = 0. Thisleadsto C, = 0and C; = W.

1 Wi °
Thus, the displacement and the normal force are given by ~ u(x) = - — (2§ - %)

2EA

be
and the normal force N(x)=FEAu' =W({1 —-
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illustrative example As an illustrative example of a statically indeterminate system let us consider a solid
circular steel cylinder (cross-sectional area Ag, modulus of elasticity E, length [) is placed inside a copper tube
(cross-sectional area A,, modulus of elasticity E ., length [). The assembly is compressed between a rigid plate
and the rigid floor by a force F (Fig.a). Calculate the shortening of the assembly and Determine the normal Forces
in the cylinder and in the tube..

Solution: 4 unknowns, Fg, F¢, Alg, Al JVF J,FC &Fs J:

Denote the compressive forces in the steel cylinder and in the copper tube by ————
be

F¢and F, respectively (Fig.b). Equilibrium at the F. B. D. of the plate yields

L
L1

| | |
| | | v
Fs+ F; =F. s | | f
Since equilibrium furnishes only one equation for the two unknown forces Fs G- : : : : Fe
and Fc, the problem is statically indeterminate. : J : : Fs+F.=F.
obtain a second equation by taking into account the deformation of the system. : | | Al = Al
The shortenings (here counted positive) of the two parts are given according to ;7 77 7 ) Z
Al = (I/EAF, by I 7
Alr = Ec/fc and Alg = Esjs Al = Alg = Al

The plate and the floor are assumed to be rigid. Therefore the geometry of the problem requires that the shortenings of the
copper tube and of the steel cylinder coincide. This gives the compatibility condition

Sub. in the two last equations gives  Fg = E¢AgAl/l and Fo= EcAcAl/l  Sub. these into the equilibrium Eq. gives

Fl ESAS ES ECAC EC

Al = F. = F o¢= F F. = F oc= F
EsAs+EcAc  ° EgAg + EcAc 5 EgAs + EcAc C T EcAs + E A, C T EAs+ EA,
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