

كلية الهندسة قسم الهندسة المعلوماتية

مقرر خوارزميات بحث ذكية

د. غزوان علي ريّا

محاضرات الأسبوع التاسع الفصل الأول 2024-2025

Biologically Inspired Algorithms

Ant Colony Optimization

History and Use

- Introduced in 1992
- Author: Marco Doringo
- Based on the behavior of the real ant colonies
- Originally applied to Travelling Salesman Problem (TSP)
- Developed to solve discrete optimization problems

Inspiration by Real Ants

- Each ant produces **pheromones** while travelling from the nest to food and from the place with the food to the nest → type of communication with the other ants from the colony
- The movement of the ants is random, however, during time, their decision is influenced by the pheromones
- On the shortest path, the pheromones are accumulated
- Important feature of pheromones: vaporization

• Thanks to vaporization, the paths which are not the shortest are not so attractive for the ants

History

Example

Principle

[1]

۲

•

- In the TSP:
 - The probability that an ant k at node r will choose the destination node s is

$$p_{k}(r,s) = \begin{cases} \frac{\tau(r,s)^{\alpha}\eta(r,s)^{\beta}}{\sum_{u \in M_{k}}\tau(r,u)^{\alpha}\eta(r,u)^{\beta}}, for \ s \in M_{k}\\ 0, otherwise \end{cases}$$

Principle

pheromone

$$p_{k}(r,s) = \begin{cases} \tau(r,s)^{\alpha} \eta(r,s)^{\beta} & 1\\ \overline{\sum_{u \in M_{k}} \tau(r,u)^{\alpha} \eta(r,u)^{\beta}}, \text{ for } s \in M_{k} & d(r,s)\\ 0, \text{ otherwise} \end{cases}$$

- where:
 - α ... the degree of importance of pheromone
 - β ... degree of importance of the distance
 - $u \in M_k$... is a choice that belongs ant k (neighborhood) when he was at no r
 - Neighborhood of ant k at node r contains all the nodes thatare incident with the node r except already visited nodes

Principle of Pheromones recalculation I

- When all ants finished their journey, the pheromones must be recalculated:
 - 1. Vaporization

$$\tau_{r,s} = \tau_{r,s} * \rho$$
 vaporization coefficient

History

Principle Example

[1]

2. Calculation with pheromones left by all ants during their journey

$$\tau_{r,s} = \tau_{r,s} + \frac{Q}{f(s)}$$

Where :

Q ... is a constant (usually 1)

f ... the value of the objective function of the solution s

Principle of Pheromones recalculation II

- History
- Principle
- Example

When ant k passing the edge, it will leave a pheromone on this edge. The amount
of pheromone contained in the segment i after passed by ant k is given by:

$$\tau_{i,j} \leftarrow \tau_{i,j} + \Delta \tau^k$$

where:

$$\Delta \tau_{i,j}^{k} = \begin{cases} \frac{c * f_{best}}{f_{worst}} & if (ij) \in best \ global \ path \\ 0, \ otherwise \end{cases}$$

where :

 f_{best} ... is the best value of the objective function c ... constant

 f_{worst} ... is the worst value of the objective function

[1]

Principle of Pheromones recalculation II

- History
- Principle
- Example

- With increasing value of pheromone on segment *i*, *j* the probability of this segment to be chosen by ants at the next iteration increases
- When a node is passed, then the pheromone evaporation will occur using the following equation:

$$\tau_{i,j} \leftarrow (1-\rho)\tau_{i,j}, \forall (i,j) \in A$$

Where:

 $\rho \in [0,1]$... evaporation rate parameter

 ${\cal A}$... segments that have been passed by ant k as part of the path from the nest to the food

- 5 cities
- Distance matrix for these cities is:

•	Matrix of inverse distances
	(visibility matrix):

0	10	12	11	14
10	0	13	15	8
12	13	0	9	14
11	15	9	0	16
14	8	14	16	0

0	0.1000	0.0833	0.0909	0.0174
0.1000	0	0.0769	0.0667	0.1250
0.0833	0.0769	0	0.1111	0.0714
0.0909	0.0667	0.1111	0	0.0625
0.0714	0.125	0.0714	0.0625	0

- 5 cities, city 1 is a departure city. Since city 1 is chosen as the beginning , it cannot be chosen again → visibility of the city is 0
- Initial pheromone matrix

• Visibility matrix

1	1	1	1	1	0	0.1000	0.0833	0.0909	0.0174
1	1	1	1	1	0	0	0.0769	0.0667	0.1250
1	1	1	1	1	0	0.0769	0	0.1111	0.0714
1	1	1	1	1	0	0.0667	0.1111	0	0.0625
1	1	1	1	1	0	0.125	0.0714	0.0625	0

History

• Example

Principle

•

HistoryPrincipleExample

• We calculate the posibility to visit other city using the formula

$$p_{k}(r,s) = \begin{cases} \frac{\tau(r,s)^{\alpha} \eta(r,s)^{\beta}}{\sum_{u \in M_{k}} \tau(r,u)^{\alpha} \eta(r,u)^{\beta}}, for \ s \in M_{k} \\ 0, otherwise \end{cases}$$

 $\tau(1,s)^1\eta(1,s)^2$:

- $1 * 0.1000^2 = 0.0100$
- $1 * 0.0833^2 = 0.0069$
- $1 * 0.0909^2 = 0.0083$
- $1 * 0.07142^2 = 0.0051$

$$\sum_{s \in M_k} \tau(1,s)^1 \eta(1,s)^2 = 0.0303$$

0	0.1000	0.0833	0.0909	0.0174
0	0	0.0769	0.0667	0.1250
0	0.0769	0	0.1111	0.0714
0	0.0667	0.1111	0	0.0625
0	0.125	0.0714	0.0625	0
				[1]

Visibility matrix

HistoryPrincipleExample

[1]

 $\tau(1,s)^1\eta(1,s)^2$:

- $1 * 0.1000^2 = 0.0100$
- $1 * 0.0833^2 = 0.0069$
- $1 * 0.0909^2 = 0.0083$
- $1 * 0.07142^2 = 0.0051$

$$\sum_{s \in M_k} \tau(1, s)^1 \eta(1, s)^2 = 0.0303$$

• Visibility matrix

0	0.1000	0.0833	0.0909	0.0174
0	0	0.0769	0.0667	0.1250
0	0.0769	0	0.1111	0.0714
0	0.0667	0.1111	0	0.0625
0	0.125	0.0714	0.0625	0

The probabilities:

City 1 to 2:
$$\frac{0.01}{0.0303} = 0.3299$$
City 1 to 4: $\frac{0.0083}{0.0303} = 0.2727$ City 1 to 3: $\frac{0.0069}{0.0303} = 0.2291$ City 1 to 5: $\frac{0.0051}{0.0303} = 0.1683$

HistoryPrincipleExample

• The probabilities:

City 1 to 2:
$$\frac{0.01}{0.0303} = 0.3299$$
City 1 to 4: $\frac{0.0083}{0.0303} = 0.2727$ City 1 to 3: $\frac{0.0069}{0.0303} = 0.2291$ City 1 to 5: $\frac{0.0051}{0.0303} = 0.1683$

- The cumulative numbers of these probabilities:
 - City 2: 0.3299
 - City 3: 0.5590
 - City 4: 0.8317
 - City 5: 1

[1]

- The cumulative numbers of these probabilities:
 - City 2: 0.3299
 - City 3: 0.5590
 - City 4: 0.8317
 - City 5: 1
- Generate random number $r \in [0,1]$: suppose we have generated number r = 0.6841
- Compare *r* with cumulative numbers:
 - $0.5590 < r < 0.8317 \Rightarrow$ an ant will visit the city 4

ExampleStep 4HistoryExample

• The city 4 was visited \Rightarrow the visibility matrix must be adjusted:

0	0.1000	0.0833	0	0.0174
0	0	0.0769	0	0.1250
0	0.0769	0	0	0.0714
0	0.0667	0.1111	0	0.0625
0	0.125	0.0714	0	0

• Now, the proces of the calculation of the probability of visiting the neighbor city will be repeated

HistoryPrincipleExample

$\tau(4,s)^1\eta(4,s)^2$:

- $1 * 0.0667^2 = 0.0044$
- $1 * 0.1111^2 = 0.0123$
- $1 * 0.07142^2 = 0.0039$

$$\sum_{s \in M_k} \tau(1, s)^1 \eta(1, s)^2 = 0.0207$$

The probabilities:

•	Visibility matrix				
0	0.1000	0.0833	0	0.0174	
0	0	0.0769	0	0.1250	
0	0.0769	0	0	0.0714	
0	0.0667	0.1111	0	0.0625	
0	0.125	0.0714	0	0	

City 4 to 2: $\frac{0.0044}{0.0207} = 0.2147$ City 4 to 3: $\frac{0.0123}{0.0207} = 0.5942$

City 4 to 5:
$$\frac{0.0039}{0.0207} = 0.1887$$

[1]

- The cumulative numbers of these probabilities:
 - City 2: 0.2147
 - City 3: 0.8113
 - City 5: 1
- Generate random number r ∈ [0,1]: suppose we have generated number r = 0.4024.
 Compare r with cumulative numbers:
 - $0.2147 < r < 0.8113 \Rightarrow$ an ant will visit the city 3
- For now, we have path $1 \rightarrow 4 \rightarrow 3$

HistoryPrincipleExample

- This processs is repeated until all ants have their own paths
- Remember: Each ant starts from another city
- Suppose that we have the paths as follows:
 - Ant 1: $1 \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 1$ Total distance: 5
 - Ant 2: $1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 1$
 - Ant 3: $1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 1$

Total distance: 52 Total distance: 60

- $2 \rightarrow 3 \rightarrow 1$ Total distance: 60
- Use total distances (objective function evaluation) to recalculate the pheromones on the edges:

$$\tau_{r,s} \leftarrow (1-\rho)\tau_{r,s} + \sum_{k=1}^{N} \Delta \tau_{r,s}^{k}$$

• Use total distances (objective function evaluation) to recalculate the pheromones on the edges:

$$\tau_{r,s} \leftarrow (1-\rho)\tau_{r,s} + \sum_{k=1}^{N} \Delta \tau_{r,s}^{k}$$

 ho_{\cdots} evaporation coefficient equals to 0.5

• Pheromone matrix recalculated based on the Ant 1:

0.5000	0.5000	0.5000	0.5192	0.5000	
0.5192	0.5000	0.5000	0.5000	0.5000	
0.5000	0.5000	0.5000	0.5000	0.5192	
0.5000	0.5000	0.5192	0.5000	0.5000	
0.5000	0.5192	0.5000	0.5000	0.5000	

$$\Delta \tau_{r,s}^k = \frac{Q}{f(s)} = \frac{1}{52}$$

[1]

History

• Example

Principle

• Use total distances (objective function evaluation) to recalculate the pheromones on the edges:

$$\tau_{r,s} \leftarrow (1-\rho)\tau_{r,s} + \sum_{k=1}^{N} \Delta \tau_{r,s}^{k}$$

 ho_{\cdots} evaporation coefficient equals to 0.5

• Pheromone matrix recalculated based on the Ant 2:

0.5000	0.5000	0.5000	0.5359	0.5000	
0.5192	0.5000	0.5000	0.5000	0.5167	
0.5167	0.5000	0.5000	0.5000	0.5192	
0.5000	0.5167	0.5192	0.5000	0.5000	
0.5000	0.5192	0.5167	0.5000	0.5000	

$$\Delta \tau_{r,s}^k = \frac{Q}{f(s)} = \frac{1}{60}$$

History

• Example

Principle

• Use total distances (objective function evaluation) to recalculate the pheromones on the edges:

$$\tau_{r,s} \leftarrow (1-\rho)\tau_{r,s} + \sum_{k=1}^{N} \Delta \tau_{r,s}^{k}$$

 ho_{\cdots} evaporation coefficient equals to 0.5

• Pheromone matrix recalculated based on the Ant 3:

0.5000	0.5000	0.5000	0.5526	0.5000	
0.5192	0.5000	0.5167	0.5000	0.5167	
0.5334	0.5000	0.5000	0.5000	0.5192	
0.5000	0.5167	0.5192	0.5000	0.5167	
0.5000	0.5359	0.5167	0.5000	0.5000	

$$\Delta \tau_{r,s}^k = \frac{Q}{f(s)} = \frac{1}{60}$$

[1]

History

• Example

Principle

• Repeat the proces until the number of iterations equals to the maximum number of iterations

[1]