

An Introduction to Mathematical Modeling of Mechanical and Electrical Systems

Mechatronics Engineering Department Assistant Professor Isam Asaad

- Modern Control Systems, Richard C. Dorf and Robert H. Bishop, Prentice Hall, 12th edition, 2010, ISBN-10: 0-13-602458-0
- Modelling, Dynamics and Control, University of Sheffield, John Anthony Rossiter.
- Control Systems Course, professor Aniket Khandekar, Zeal college of engineering and Research, Pune.

Goals and Objectives:

- The lecture focuses on <u>mathematical models</u> of <u>physical systems</u>.
- After completing this chapter, you should be able to:
 - <u>Describe</u> a <u>physical</u> <u>system</u> using <u>differential</u> <u>equations</u>.
 - <u>Understand</u> how these <u>equations</u> are <u>derived</u> based on <u>physical laws</u> governing the system.
 - Recognize the <u>significance</u> of <u>deriving</u> <u>mathematical</u> <u>models</u> in control systems analysis.

Mathematical Models of Systems Objectives:

- <u>Control</u> <u>systems</u> <u>rely on quantitative</u> <u>mathematical</u> <u>models</u> of physical systems.
- These <u>models</u> <u>describe</u> <u>dynamic</u> <u>behavior</u> with ordinary <u>differential</u> <u>equations</u>, covering various systems such as mechanical, hydraulic, and electrical.
- To <u>handle</u> the inherent <u>nonlinearity</u> of most <u>physical systems</u>, we may <u>use</u> <u>linearization approximations</u>, then we will use <u>Laplace transform</u> methods to get a <u>transfer function</u>.
- <u>Transfer</u> <u>functions</u> are introduced to represent the <u>input-output</u> relationships of components and subsystems and are typically organized into <u>block diagrams</u> or <u>signal-flow graphs</u> for graphical analysis.

Mathematical Model in Control Engineering:

- The <u>creation</u> of a <u>mathematical model</u> is a <u>fundamental</u> <u>task</u> in <u>control</u> engineering for <u>analysis</u> and <u>design</u>.
- A <u>mathematical model</u> is a <u>set of differential equations</u> that accurately <u>represents</u> a dynamic <u>system's behavior</u>.
- Note that there can be <u>multiple mathematical models</u> for the <u>same</u> <u>system</u>, depending on the context.

Mathematical mode

• <u>Representation</u> of the <u>input-output</u> (signal) <u>relation</u> of a physical system

- Modeling is the most important and difficult task in control system design.
- <u>No</u> mathematical <u>model</u> <u>exactly</u> <u>represents</u> a <u>physical</u> system.

Math model \neq Physical system Math model \approx Physical system

- Do not confuse models with physical systems!
- In this lecture, we may use the term "system" to mean a mathematical model.

Laplace Transform Properties

Item no.	Theorem		Name	
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition	
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem	
3.	$\mathscr{L}[f_1(t) + f_2(t)]$	$[f] = F_1(s) + F_2(s)$	Linearity theorem	
4.	$\mathscr{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem	
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem	
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem	
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem	
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem	
9.	$\mathscr{L}\left[\frac{d^nf}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem	
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau)d\tau\right]$	$] = \frac{F(s)}{s}$	Integration theorem	
11.	$f(\infty)$	$=\lim_{s\to 0}^{s} sF(s)$	Final value theorem ¹	
12.	f(0+)	$=\lim_{s\to\infty} sF(s)$	Initial value theorem ²	

¹For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts, and no more than one can be at the origin.

²For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (that is, no impulses or their derivatives at t = 0).

Table 2.2

© John Wiley & Sons, Inc. All rights reserved.

https://www.youtube.com/watch?v=HyKNko7yoHo&list=PL6vQCK4n4KX_2J5WaopJWt8P3Fz_qUYZi

- Transfer functions are commonly <u>used</u> to <u>characterize</u> the <u>input-output</u> relationships of <u>components</u> or systems that can be <u>described</u> by <u>linear</u>, <u>time-invariant</u>, <u>differential equations</u>.
- The *transfer function* of a linear, time-invariant, differential equation system is defined as "<u>the ratio of the Laplace transform of the output</u> (response function) to the Laplace transform of the input (driving function) under the assumption that all initial conditions are zero".

TRANSFER FUNCTION

(n) (n-1) (m) (m-1)

$$a_0 \hat{y} + a_1 \hat{y} + ... + a_{n-1} \dot{y} + a_n y = b_0 \hat{x} + b_1 \hat{x} + ... + b_{m-1} \dot{x} + b_m x$$

مًـنارة

□ The general form of the differential equation for LTI-System is given by

Input

u(t)

LTI

system

Time domain

Output

y(t)

 \Box where <u>y</u> is the system <u>output</u> and <u>x</u> is the <u>input</u> of the System

model

□The <u>transfer</u> <u>function</u> of this system is <u>obtained</u> by <u>taking</u> the <u>Laplace</u> <u>transforms</u> of <u>both</u> <u>sides</u> of Equation (under the assumption that all <u>initial</u> <u>conditions</u> are <u>zero</u>).

 $a_0 S^n Y(s) + \dots + a_{n-1} S^1 Y(s) + a_n Y(s) = b_0 S^m X(s) + \dots + b_{m-1} S^1 X(s) + b_m X(s)$ **Then:** $[a_0 S^n + \dots + a_{n-1} S^1 + a_n] Y(s) = [b_0 S^m + \dots + b_{m-1} S^1 + b_m] X(s)$

□ Then the transfer function is

Transfer Function = $G(s) = \left[\frac{Laplace \ of \ Output}{Laplace \ of \ Input}\right]_{Assuming \ Zero \ initial \ Condition}$

$$G(s) = \frac{Y(s)}{X(s)} = \frac{b_0 S^m + \dots + b_{m-1} S^1 + b_m}{a_0 S^n + a_1 S^{n-1} + \dots + a_{n-1} S^1 + a_n}$$

Poles: are roots of the denominator (Values of s such that transfer function becomes infinite)

□ <u>Zeros</u>: are <u>roots</u> of the <u>numerator</u> (Values of <u>s</u> such that <u>transfer</u> function becomes <u>0</u>)

Why do we need LAPLACE transform?

Transfer function (Conclusion):

- 1. The <u>transfer function of a system</u> is a <u>mathematical model</u> in that it is an operational <u>method</u> of <u>expressing</u> the <u>differential equation</u> that <u>relates</u> the <u>output</u> variable <u>to</u> the <u>input</u> variable.
- 2. The transfer function is a property of a system itself, independent of the magnitude and <u>nature</u> of the <u>input</u> or driving function.
- 3. The transfer function <u>includes</u> the <u>units</u> <u>necessary</u> to <u>relate</u> the <u>input</u> to the <u>output</u>; however, it <u>does</u> <u>not</u> <u>provide</u> <u>any</u> <u>information</u> concerning the <u>physical</u> <u>structure</u> of the system (The <u>transfer functions</u> of many <u>physically different</u> <u>systems</u> <u>can</u> <u>be</u> <u>identical</u>).
- 4. If the <u>transfer function</u> of a system is <u>known</u>, the <u>output</u> or response can be <u>studied</u> for various forms of <u>inputs</u> with a view toward understanding the nature of the system.
- 5. If the <u>transfer function</u> of a system is <u>unknown</u>, it may be <u>established experimentally</u> by <u>introducing known inputs</u> and studying the <u>output</u> of the system. Once established, a transfer function gives a full description of the dynamic characteristics of the system, as distinct from its physical description.

Modeling methods

Analytic method

• According to

- A. Newton's Law of Motion
- B. Law of Kirchhoff
- C. System structure and parameters
- The mathematical expression of system input and output can be derived.
- Thus, we build the mathematical model (suitable for simple systems).

System identification method

- Building the system model based on the system input-output signal.
- This method is usually <u>applied</u> when there is <u>little information</u> <u>available</u> for the system.

Neural Networks, Fuzzy Systems

- <u>Black</u> box: the system is <u>totally unknown</u>.
- Grey box: the system is partially known.

Why Focus on Linear Time-Invariant (LTI) System

What is linear system?

-A system is called linear if the principle of superposition applies.

Why Focus on Linear Time-Invariant (LTI) System

Advantages of linear systems:

The overall response of a linear system can be obtained by

- -- decomposing the input into a sum of elementary signals
- -- figuring out each response to the respective elementary signal

-- <u>adding all</u> these <u>responses</u> together.

Models of system components

Subsystem types found in controls systems

Electrical	Motors, Solenoids, Transducers, Control Electronics
Mechanical	Control Valves, Gear Boxes, Linkages
Liquid Flow	Piping Tapka Pumpa Compressors
Gas Flow	Filters
Thermal	Heating Elements, Heat Exchangers, Insulation,

Models of system components

Systems' behavior defined by component characteristics

Example: electrical components

Models of system components

Systems' behavior defined by component characteristics

Example: Mechanical Systems

- Translational
 - Linear Motion

- Rotational
 - Rotational Motion

m

k

 $\overline{\mathbf{m}}$

Х

Modelling basics:

- Awareness that <u>many</u>
 <u>components can</u> be <u>modelled</u> by <u>simple</u> linear <u>equations</u> of the same structure.
- 2. <u>Same mathematical structure</u> implies <u>analogous behaviour</u> so <u>understanding one</u> means <u>understanding all</u>!
- 3. Learn <u>governing equations</u> and models for some <u>key</u> <u>engineering components</u>.

Describing Differential Equations for Translation

جًـامعة المَـنارة

Heavy Duty Mechanical Scale with Dashpot

Bridge Suspension

Vehicle Suspension

Flyover Suspension

https://manara.edu

Shocks in a vehicle

Describing Differential Equations for Electrical and Electronic Elements

 TABLE 2.3
 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-///- Resistor	v(t) = Ri(t)	$i(t)=\frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L\frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Table 2.3 © John Wiley & Sons, Inc. All rights reserved.

Numerical Examples

Example1

Determine the differential equation and transfer function

Applying
$$\notin UL$$
 we get
 $V_{in}(t) = R_{i}(t) + L \frac{di(t)}{dt} + \frac{1}{2} \int i(t) dt - ct$
 $V_{0}(t) = \frac{1}{2} \int i(t) dt - ct$

Taking Laplace transform on both sides of (1) $V_{in}(s) = RI(s) + LsI(s) + t_sI(s)$ $= [Ls + R + t_s]I(s)$ $= (Lcs^2 + Rcs + 1]I(s)$

Taking L.T. on both sides of CD

$$V_0(s) = \frac{1}{cs} I(s)$$

 $T.F.$ is $\frac{1}{cs} I(s) = \frac{1}{Lcs^2 + Rcs + 1} I(s) = \frac{1}{Lcs^2 + Rcs + 1} I(s) = \frac{1}{Lcs^2 + Rcs + 1} I(s) = \frac{1}{s^2 + R + s + 1} I(s)$

Example2 Determine the differential equation and transfer function

s-//manara

Applying KVL to loop I we get, $V_{in}(t) = R_1 i_1(t) + t_1 \int (i_1 - i_2) dt - c_1$ Applying EVL to loop I we get, t ((i,-i_) + = + i_+ + t | i_d+ - (1) A 130, $V_0 = \pm \int i_2 dt - (III)$ Taking L.T. of (I) - (ID) we get $V_{in}(s) = k_1 I_{i(s)} + \frac{1}{C_{is}} [I_{i}(s) - I_{i(s)}]$ $= [R_1 + \frac{1}{c_1 s}] I_1(s) - \frac{1}{c_1 s} I_2(s)$ $= \left(\frac{P_1C_1S+1}{C_1S}\right) \mathbf{I}_1(S) - \frac{1}{C_1S} \mathbf{I}_2(S) - (\mathbf{I})$ $\frac{1}{c_{1S}} [I_1(s) - I_2(s)] = R_2 I_2(s) + \frac{1}{c_{1S}} I_2(s)$

R2 21, +02, 5 $\frac{1}{45}I_1(3) = [t_1 + R_1 + t_2]I_2(3)$ $I_1(s) = [1 + R_1(s + S_1) I_1(s) - (2)$ - (2) Vo (3)= + I2 (3)

From (2) & (2) we got, $V_{in}(s) = \left[\frac{R_{1}c_{1}s+1}{c_{1}s}\right] \left[1 + R_{2}c_{1}s + \frac{c_{1}}{c_{2}}\right] I_{2}(s) - \frac{1}{c_{1}s} I_{2}(s)$ = $(1+R_1C_1S)(1+R_2C_1S+S_2)-1$ I(S)

C2S

 $\frac{V_0(s)}{V_0(s)} = \frac{c_2 s}{(1 + R_1 c_1 s)(1 + R_2 c_1 s + \frac{c_2}{c_2}) - 1}$

Example2 (continued) Determine the differential equation and transfer function R2 $[1 + R_2 C_1 s + S_1 + R_1 C_1 s + R_1 R_2 C_1^2$ C1R2C1S+C1+R1C1C1S+R1R2C1C1S+++1C1S CIC,S $r_{2}s$ $R_{2}c_{2}s+1+R_{1}c_{2}s+R_{1}R_{2}c_{1}c_{2}s^{2}$ R, R, C, C, S+R, C, S+R, C, S+R, C, S+I

Example3 (Lead Compensator) Determine the D.E. and T.F. جَامعة الم_نارة Applying KCL at rode A we get 1, +12 = 13 $\frac{V_{in}-V_0}{R_1}+c\frac{d}{dt}(V_{in}-V_0)=\frac{V_0}{R_1}$ Applying L.T. we get Vincs)-Voce) + cs [Vince)-Voce)] = Voce) Vincso[t+cs] = Voro[t+t+cs+t] $V_{in}(s) \left[\frac{1+R_1(s)}{R_1} \right] = V_0(s) \left[\frac{R_2+R_1R_2(s+R_1)}{R_1R_2} \right]$ $\frac{V_{0}(s)}{V_{1}(s)} = \frac{R_2(1+R_1cs)}{R_1+R_2+R_1R_2cs}$

Example4 (Lag Compensator) Determine the D.E. and T.F.

Applying EVL we get Vin = Rii + R2i+ z Sidt - CD Vo = Rit + fidt - CD Applying L.T. to (I) (I) we get Vincos= R, ICO+RICO++ ICO+ ICO = [R1+R2+ 2] ICO = (RI+RI)CS +1 ICS) Vo(s)= R, I (s) + 1 I(s) $= \left[\frac{R_2(s+1)}{c_1}\right] I(s)$ 1+ R2CS · Vo(s)

Free Block Diagram (FBD):

- The free body diagram helps in <u>visualizing</u> the <u>forces</u> acting on the <u>mass</u>.
- Case study: spring-mass-damper system.
- 1. External Force (f):
 - The <u>external force</u> f <u>acts</u> <u>directly</u> on the <u>mass</u>. It's the "driving force" that initiates the <u>system's motion</u>.
 - This force is <u>responsible</u> for the mass's <u>acceleration</u>.
- 2. Internal Forces:
 - Inertia (m^{*} \ddot{x}): This is the force <u>due</u> to the <u>mass's</u> <u>inertia</u> (<u>resistance</u> to <u>change</u> in motion). The <u>mass resists acceleration</u>.
 - Spring Force (k*x): The spring exerts a <u>force proportional</u> to its <u>deformation</u> (the <u>change</u> in <u>length</u>). This force always acts <u>opposite</u> the <u>direction</u> of <u>deformation</u>.
 - Damping Force (b \dot{x}): The damper <u>opposes</u> the <u>mass's</u> <u>velocity</u> (\dot{x}). This force is <u>proportional</u> to the <u>velocity</u> and acts in the <u>opposite direction</u>.

1

Example5 Determine the D.E. and T.F.

F. B. D. of the given system is

F= MX+BX+FX Applying L.T. we get $F(s) = Ms^{2} x(s) + Bs x(s) + k x(s)$ F(s) = [Ms^{2}+BS+k] x(s) FIS = ms+Bs+k 1/m

36

1 2

Applying L.T. we get F(s) = m1 s2 x1(s) + B, s x1(s) + 4 ×1(s) + K2 (X, W) - X2(2) =[m15+B1s+k1+k2]×145)-K,X,W Applying force balance to My we get $M_{1}x_{1} = k_{1}(x_{1} - x_{2})$ Applying L.T. We get m25x2 (2) = \$2 [X1(2) - X2(2)] (m25+ k2)×20) = k2×10 X1 (5) = M25+ K2 X2 (5) $X_{L}(S) = \frac{k_{L}}{m_{c}^{2}LL} \times (S)$ https://manara.edu.sy/

جَـامعة المَـنارة

 $F(s) = [m_{1}s^{2} + b_{1}s + k_{1} + k_{2}]x_{1}(s) - \frac{k_{2}^{2}}{m_{2}s^{2} + k_{2}} \times_{1}(s)$ $= \frac{(m_{1}s^{2} + b_{1}s + k_{1} + k_{2})(m_{2}s^{2} + k_{2}) - k_{2}}{m_{2}s^{2} + k_{2}} \times_{1}(s)$ $= \frac{m_{2}s^{2} + k_{2}}{(m_{1}s^{2} + b_{1}s + k_{1} + k_{2})(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ Find $x_{2}(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ Find $x_{2}(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$ $F(s) = \sqrt{m_{1}s^{2} + b_{1}s + k_{1} + k_{2}}(m_{2}s^{2} + k_{2}) - k_{3}^{2}}$

Example8 Determine the D.E. and T.F.

F.B.Q. is as shown below

$$x_1$$
 m_1 x_2 x_3 m_2 F
 x_1 m_1 x_2 x_3 m_2 F

Applying force balance to M_1 we get $m_1 \dot{x}_1 + B_1 \dot{x}_1 + k_1 \dot{x}_1 = k_2 (x_2 - x_1)$ Applying L.T. we get $[m_1 \dot{s}^2 + B_1 \dot{s} + k_1 + k_2] \times I(s) = k_2 \times I(s)$ $\times I(s) = \frac{k_2}{m_1 \dot{s}^2 + B_1 \dot{s} + k_1 + k_2} \times I(s)$ $\times I(s) = \frac{m_1 \dot{s}^2 + B_1 \dot{s} + k_1 + k_2}{k_2} \times I(s)$

Applying force balance to M_2 we get $F = M_2 \dot{X}_1 + B_2 \dot{X}_2 + k_2 (M_2 - M_2)$ Applying L.T. we get $F(s) = [M_2 s^2 + B_2 s + k_2] X_2(s) - k_2 X_1(s)$ Determine $\frac{X_1(s)}{F(s)} \leq \frac{X_2(s)}{F(s)}$

40

EX. Air bag and accelerometer

• Tiny MEMS accelerometer

• Microelectromechanical systems (MEMS)

EX. RC Circuit Model of the Membrane

• Basic model of membrane of a neuron:

42

EX. Human Body

Ex: Mechanical accelerometer

الم_نارة

