

Lecture (4)

Block Diagrams and Signal Flow

Mechatronics Engineering Department
Assistant Professor Isam Asaad

References

- Gopal, M. - Control Systems_ Principles and Design 3rd edition- Tata McGraw Hill Publishing Co. Ltd. (2008)
- Modern Control Systems, Richard C. Dorf and Robert H. Bishop, Prentice Hall, 12th edition, 2010, ISBN-10: 0-13-602458-0
- Modelling, Dynamics and Control, University of Sheffield, John Anthony Rossiter.
- Control Systems Course, professor Aniket Khandekar, Zeal college of engineering and Research, Pune.

Block diagram representations

A block diagram represents dependencies between signals.

$$Y(s) = G(s)U(s)$$

Block diagram representations (Convolution)

Animation of Convolution
of Two Time Signals

<https://www.youtube.com/watch?v=C1N55M1VD2o>

$$Y(s) = G(s)U(s)$$

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

<https://www.youtube.com/watch?v=kkm0DXSMTPI>

<https://www.youtube.com/watch?v=jwlfSIBNqP8>

Systems in series

This part deals with scenarios where systems are arranged in series, so for example the output of system 1 is the input to system 2.

System 1 with
input u and
output x .

$$u = 5 \frac{dx}{dt} + 7x$$

System 2 with
input x and
output y .

$$2x = 6 \frac{dy}{dt} + 10y$$

The proposal is to use Laplace to
reduce the computation of y to
simple multiplications.

Systems in series 2

First, take Laplace of each model in turn:

$$u = 5 \frac{dx}{dt} + 7x \Rightarrow X(s) = \left[\frac{1}{5s + 7} \right] U(s) = G_1(s)U(s)$$

$$2x = 6$$

Next, eliminate u and x to find $Y(s)$

$$Y(s) =$$

Systems in series 2

Finally, this can be represented in a single block diagram.

Systems in series example 2

A system's behaviour is governed by the following ODEs.
Find a single model to represent the input to output
relationship (that is $u \rightarrow y$).

$$\frac{dw}{dt} + 4w = 2u; \quad \frac{dz}{dt} + z = w; \quad \frac{dy}{dt} + 3y = 4z;$$

Sharing an input signal

Taking the definitions provided on the previous slide.

$$X(s) = G(s)U(s); \quad Y(s) = H(s)U(s); \quad W(s) = M(s)Y(s)$$

What is DC motor?

An actuator, converting electrical energy into rotational mechanical energy

How does DC motor work?

Model of DC motor

“a”:armature

e_a :applied voltage

i_a :armature current

“b”:back EMF

mechanical

θ :angular position

ω :angular velocity

J : rotor inertia

B : viscous friction

Modeling of DC motor: time domain

- Armature circuit

$$e_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_b(t)$$

- Connection between mechanical/electrical parts

- Motor torque
 - Back EMF

$$\tau(t) = K_\tau i_a(t)$$

$$e_b(t) = K_b \omega(t)$$

- Mechanical load

$$J \ddot{\theta}(t) = \tau(t) - B \dot{\theta}(t) - \tau_l(t)$$

Load torque

- Angular position

$$\omega(t) = \dot{\theta}(t)$$

Modeling of DC motor: s-domain

- Armature circuit

$$I_a(s) = \frac{1}{R_a + L_a s} (E_a(s) - E_b(s))$$

- Connection between mechanical/electrical parts

- Motor torque
 - Back EMF

$$T(s) = K_\tau I_a(s)$$

$$E_b(s) = K_b \Omega(s)$$

- Mechanical load

$$\Omega(s) = \frac{1}{J_s + B} (T(s) - T_L(s))$$

- Angular position

$$\Theta(s) = \frac{1}{s} \Omega(s)$$

DC motor: Block diagram

Feedback system

Block Diagram Models

- ❑ A block diagram of a system is a pictorial representation of the functions performed by each component and of the flow of signals.
- ❑ Such diagram depicts the interrelationships that exist among the various components. Differing from a purely abstract mathematical representation, a block diagram has the advantage of indicating more realistically the signal flows of the actual system.
- ❑ Transfer function can be represented as a block diagram:

Components Of a block diagram for a LTI system

Signals

(a)

System

(b)

Summing junction

(c)

Pickoff point

(d)

Block Diagram Reduction

□ Rules for reduction of the block diagram:

1. Any number of cascaded blocks can be reduced by a single block representing transfer function being a product of transfer functions of all cascaded blocks.

Block Diagram Reduction

2. Moving a summing point

Block Diagram Reduction

3. Moving a pickoff point

Block Diagram Reduction

- Equivalent transfer function for parallel subsystems is the sum of their transfer functions

(a)

(b)

Block Diagram Reduction

5. Feedback control system

$$\begin{aligned}C(s) &= G(s)E(s) \\E(s) &= R(s) - B(s) \\&= R(s) - H(s)C(s) \\C(s) &= G(s)[R(s) - H(s)C(s)] \\ \frac{C(s)}{R(s)} &= \frac{G(s)}{1 + G(s)H(s)}\end{aligned}$$

Block Diagram

Rules of block diagram algebra

Rule	Original diagram	Equivalent diagram
1		
2		
3		
4		
5		
6		

Block Diagram Reduction

Rule	Original diagram	Equivalent diagram
7		
8		
9		
10		

Block Diagram Reduction

- Follow these rules for simplifying (reducing) the block diagram, which is having many blocks, summing points and take-off points.
 - **Rule 1** – Check for the blocks connected in series and simplify.
 - **Rule 2** – Check for the blocks connected in parallel and simplify.
 - **Rule 3** – Check for the blocks connected in feedback loop and simplify.
 - **Rule 4** – If there is difficulty with take-off point while simplifying, shift it towards right.
 - **Rule 5** – If there is difficulty with summing point while simplifying, shift it towards left.
 - **Rule 6** – Repeat the above steps till you get the simplified form, i.e., single block.

Block diagram reduction via familiar forms for Example1

Problem: Reduce the block diagram shown in figure to a single transfer function

Block diagram reduction via familiar forms for Example Cont.

Example 2

Moving the summing point ahead of G_1 , we have:

Combining G_1 and G_2 in Cascade, we get:

Eliminating the feedback loop G_1 , G_2 and H_1 we get:

Combining the two blocks in Cascade, we get

Similarly eliminating the second feedback loop we get:

Similarly eliminating the third feedback loop we get:

The system is reduced to the following block diagram:

Example3

Example3

Example 4

(e)

Example 5

(a)

(b)

$$X(s) = G_1 R(s) + R(s)$$

The output signal $C(s)$ is the sum of $G_2 X(s)$ and $R(s)$. Hence

$$C(s) = G_2 X(s) + R(s) = G_2 [G_1 R(s) + R(s)] + R(s)$$

And so we have the same result as before:

$$\frac{C(s)}{R(s)} = G_1 G_2 + G_2 + 1$$