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Second Order Systems -

0 A general second-order system (without zeros) is characterized by the
following transfer function.

C(s)  G(s)
R(s) E(s) o2 C(s) R(s) ~11G0)
s(s +2{w,) :
C{S] o ( +2§ "-‘-'1'1.]) . EL’.,EL
R N 2 2 . 2
{S) 1+ s{s+?cwn]) S H2Ewns T wn
Y
G(S) = 2 ) .
s(s+ 2@0),7) =>» Open-Loop Transfer Function
2
C(s) O

R(S) ) P+ 20,5+ w2 =» Closed-Loop Transfer Function
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Second Order Systems -
Cs) __ ko,

R(s) & +2o s+
as) _ o’

n

R(S) & +2Lm s+

EIC_, = damping ratio of the second order system, which is a measure of
the degree of resistance to change in the system output.

d®,=>»un-damped natural frequency of the second order system, which
is the frequency of oscillation of the system without damping
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daoola
Example 1 oo
0 Determine the un-damped natural frequency and damping ratio of the
following second order system.

c(s) _ 4
R(S) & +2s+4

o Compare the numerator and denominator of the given transfer function
with the general 2nd order transfer function.

a9
R(s) & +2Lw s+w?

wi=4 =w,=2 rad/sec

FP+22Aw,5+0% =& +25+4 > 200,5=25
! = (o, =1

1'.t:|::;".-iia~1& rijlz .5y O - 5
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Example 2 o
QFor the second order system described by the closed loop transfer
function T(s), determine o, and ¢ .

s 24 B 6
7(s) = = =
R(S) 48 +125+256 S +3s+64

0 Compare with the standard equation we have:
Since ;=64 and 20w, =3 and ko’=06

—> ® =8 g:%:c).s and k = 0.094
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Second Order Systems - Pges

0 The second order system Transfer fumcmmn is
C(s) o;
&2 2
R(S) s +2¢w, s+ o
0 The characteristic polynomial of a second order system is:

§+2Lo, s+ =(5—5)(5-5)=0

0 The closed-loop poles of the system are

—2 n— 4 n -4 n
51 5= o 4L o) 4o =—Cw,to( -1

2
S :_wn§+wn \/4/2 -1

= -t =2
\/27 <1 |5, = O, 16
_a)né/_a)n é/ -1
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Classification of secon@rder systems’ response

according to damping ratio:

a According the value of C_, , a second-order system‘s response can be
set into one of the four categories:

= Case 1: Over damped response (§ > 1) 'two roots are real but not equal]

= Case 2: Critically damped response (§ = 1) [two roots are real and equal]

= Case 3: Under damped response (0 < € <1) [two roots are complex conjugate]

= Case 4: No damped (undamped) response (¢ = 0) [two roots are imaginary]

S :_a)né/+a)n \/4/2 -1
S, :_a)né/_a)n \/4/2 -1

https://manara.cdusy/ 14



Classification of second d@er systems’ response
according to damping ratio:

A ()

Cdecreasing {—0 |

s-plane

i
}!‘3;? .
If =1, corresponding to an is calculated based on
overdamped system, the two / AN the real part and
o f PoCOsTG :
oles are real and lie in t _ s magn!tugreq?g‘sth pole
left-half plane. '..t 50 0
*
™ ‘ X ............................. - —jo, Jl _ L;E
H"_L - ﬂ"'--—_b__
C decreasing =

Definition of the parameters w,, and ¢ for an underdamped, second-order system from

the complex conjugate pole locations.
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Unit-step Response of Sécond Order Systems

}... I Hm_-
f'i'} _ frf'i‘}: _ - n _
R(s) §- +20w, s + @y,

The unit-step response of the transfer function is given by

(=0 W) = K(l—cos @,1); 12 0

i —I':I:I.:lf
e ; & . ; £ : . _
b<i<1 (1) = h{l—e "mﬂr[cmmﬂ!+ 2 qlnml.,r” = h{l— %ln[ml_,r +tan™'

£=1 v() = K[1—e % — @ te™); 12 0

H
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Unit-step Response of?S;fﬂe‘?fcond Order Systems

vit) 4

| | | -t
0 2 - &} 5

step-response curves of a second-order system (m, = 1]

https://manara.cdusy/ 1 7
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Unit-Step Response of Second Order Systems

a Case 1: Over damped response (§ > 1)

= The two roots of the characteristic equation s1 and s2 are real and distinct.

jo
Sy :_wn§+wn \/4/2 -1
. v 32:—0)”4/—&)” \/4/2_1

QOExample: Calculate and plot the output of the system with the following
transfer function:

0 Solution: With unil'zstep input, its response is:
r(s) =

S + 35+ 2
_ _ 2 _ 1
cs) = R9) 7'(5)—5(52 +35+2) _T9+

hitps-//manara.edusy/ 19
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Unit-Step Response of S&bnd Order Systems

a The corresponding time domain olUtplt is given by:

adh)=L{A9Y}=[1-2 "+ e ]

1 T

09

0.5

o7

0.6

0.5

0.4

0.3

output signal

0.2

0.1

o
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Unit-Step Response of Second Order Systems
0 Case 2: Critically damped response (€ = 1)

= The two roots of the characteristic equation s1 and s2 are real and equal.
jo

51,2 — _(Dn

> S Y

QOExample: Calculate and plot the output of the system with the following
transfer function:

0 Solution: With unit step input, its response is:

5 + 4
I(s) =
(5) S + 45+ 4
55+4 1 -1 3

Cleli= ZeHC (8 +45+4) _T9+ 5+2+(5+ 2)?
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Unit-Step Response of Second Order Systems

O The corresponding time domain output is given by:

o) = L{AY}=[1-€*"+3 1 e ]uU})

1

ST R 5 < SOOI NN N S -
L S
a7

0.6

0.5

0.4

0.3

output signal

0.2

0.1

0 I I I | |
g 10 12 14 16 18

[
time |sec|
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Unit-Step Response of Second Order Systems

0 Case 3: Under damped response (€ < 1)
=The two roots of the characteristic equation s1 and s2 are complex conjugates of one another.

jw

- ‘. g
4 — { + _— 2
x s o jo [1-C

=-m, % jo,

512

X

0 _Example: Calculate and plot the output of the system with the following
transfer function:

0 Solution: With unit step input, its response is:

A
7 (s) =
() $° + 25+ 4

4 1 —5-2
C(s) = R T(S) = e
() 7() S(S° +25+4) s & 42514

hitps-//manara.edusy/ 23




Unit-Step Response of %ond Order Systems

0 The corresponding time domain output is given by:

c (B = LIC(9} =1 - exp™(cos(v/3*t) + *sin(V3*1))

Step Response

Amplitude

Time (seconds)

24
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Unit-Step Responseof Second Order Systems
0 Case 4: Undamped response (§ = 0)

=The two roots of the characteristic equation s1 and s2 are imaginary poles.
jw

X

()

0 _Example: Calculate and plot the output of the system with the following
transfer function:

0 Solution: With unit step input, its response is:
7(8) = —
s* + 4 c(t)= L{C(S)}= (1-c0S2t) (1

SCRLCR(CE — - e

hitps-//manara.edusy/ .
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Step Response ofinde

rdamped System

"|, .'; IIIII II'I \
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Step Response o@pderdamped System

c(t) =1 — e %@t

&)liall
CoS @yt +

4

-2

sin @yt

217



Time-Domain Specification (ur%rdamped systems)

doola
For 0< ¢ <1 and w, > 0, the 22%prder system’s response
due to a unit step input looks like

c(t) A

Allowable tolerance

&f ______________ ;_f_/_/{}.u:i

|
|
|
1 | /O]‘
L ST T = 0.02
. - f
| | |
| | |
I I I
I I I
0.5 ] |
[ [ [
I I I
| | |
| | |
I I I
I I I
| | | |
0 '
I
- [ —
— r'p -
— I -
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Time-Domain Specifi%ion -Delay Time

*The delay (7) time isdthé time required for the
response to reach half the final value the very first
time.

c(r) A

Allowable tolerance

&f ______________ ;_f_//,{}.nﬁ

S ﬁ/ 0.02

0

31



Time-Domain Specifi&ion -Delay Time

E—Eu.rnt
clt) =1 — sin(w t + @
() =1 (s ) sin(wat + )

The final value of the step response is cne.

Therefore, at £ = tg, the value of the step response will be 0.5. Substitute,

these values in the above eguation.

_rj"-l"nt'-uf

r o € =, L
cltg) =05 =1— («.,f'l — ) sin(wgty + #)

E—ﬂmntd
—. ( ) Siﬂ{wdtd -+ H:l — (0.5

V1 —4?
1+ 0.76
td =
'I"'"ITE-

https-//manara.edusy,
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Time-Domain Specification — Rise Time
O_Rise-Time (T,): The rise time is the time required for the response to
rise from ]
= 10% to 90% of its final value, = over damped systems
= 5% to 95% of its final value, = Critical damped systems
= or 0% to 100% of its final value. = under damped systems

c(r) A

] AN \ f =9
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Time-Domain Specification — Rise Time

Att =ty =0, c(t)= 0.

g dwnt

c(t) =1— (v"ﬁf) sin(wgt + 6)

c(ta) =1=1-— (yfl — ) sin(wgts + 6)

E—tj'wﬂi'j
= sin(wgts +6) = 0
(J) s

= sin(wgts +6) =0

= wyta + 6 = nw :n=1 For rise time

T— 6

= fg =

Wd

34
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Time-Domain Specification — Settling time

QO The settling time (Ts):

absolute percentage of the final value (usually 2% or 5%).

Allowable tolerance

is the time required for the response curve to
reach and stay within a range about the final value of size specified by

Settling Time (2%)

0.5

0

S

[. =

A

&,

Settling Time (5%)

A
Y

[

S

3

G,

35



D

Time-Domain Specification — Settling time

The settling time for 5% tolerance band is: s = :

The settling time for 2% tolerance band is: |

Where, T1is the time constant and is equal to

hitps-//manara.edusy/
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Time-Domain Specification — Peak Time
0 Peak Time (Tp): The peak time is the time required for the response to
reach the first (maximum) peak of the overshoot.

c(r) A

N
1
b=




Time-Domain Specificatio

dwy,
clt) =1~ ("1—) sin(wat + 0)

Differentiate ¢(t) with respect to 't".

de(t Ot —dwy,
Z(t) = — (el—) wq cos(wgt + 0) — ( o

S, t

P

le(t
Substitute, t = ¢, and -(:# = 0 in the above equation.

e dwnt, ) )
0= — | ——= ] |wag cos(wgt, + 0) — dw, sin(wqt, + 0)
( m [ ( ! F ]

— AR mcos(wdt,, + 0) — dwy, sin(wqt, +0) =0
=> ﬂcos(w.zt,, + 0) — dsin(wqatp +0) =0
= sin(0) cos(wgt, + @) — cos(f) sin(wqt, +0) = 0
= sin(f — wqt, —0) =0

—

= sin(—watp) = 0 = —sin(wqtp) = 0 = sin(wqtp) = 0

™
:,“—tp:_

Wy

= wgt, = m Si(nm)=0;n=1 for the first peak

n— Peak Time

ﬁ) sin (wqt + 0)
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Time-Domain Specificatiofi= Maximum Overshoot

0 _Maximum Overshoot (MP): is the maximum peak value of the response

curve measured from unity.

a Maximum percent overshoot (P.0): is defined as follows:

c(r) A

)i

Y i

O

)
»

Mp= e*‘/?
_LE

e V1°5° x100%

40
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Time-Domain Specificationim=Maximum Overshoot

The maximum overshoot is the maximum peak value of the response curve
measured from unity. If the final steady-state value of the response differs

from unity, then it Is common to use the maximum percent overshoot. It Is
defined by

. c(t,) — c(0) o
Maximum percent overshoot = (o0) X 100%
c(oo

The amount of the maximum (percent) overshoot directly indicates the
relative stability of the system.

hitps-//manara.edusy/
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Time-Domain Specificatiofi= Maximum Overshoot

e oty by

V1 — 42

c(t,) =1 — ( ) sin(wgt, + 0)

Substitute, £, = DTZ in the right hand side of the above equation.

cftp) =1— (E il \ Ein(wd (i) _9)

\ Vi & wa
= efty) = 1— (v(ﬁ‘j ) (—sin(6))

sin(f) = /1 — §°

We know that

So, we will get ¢(t,) as

i
c(ty) = 1+e (xm)

42
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Time-Domain Specificatioh= Maximum Overshoot

N i
c(ty,) =1+e (v"' *“)

Substitute the values of ¢(t,) and ¢(oo) in the peak overshoot equation

M,=1+e (‘r"'l“)—l > <

aximum percent overshoot =

C(’/}) - ¢(o0)

hitps-//manara.edusy/ 43
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Time-Domain Specificatiofi= Maximum Overshoot

Percentage of peak overshoot % MF.P can be calculated by using this
formula.

M
%M, = —L x 100%
¢(o0)
By substituting the values of M, and c¢(oc) in above formula, we will get the
Percentage of the peak overshoot %M, as

dx

%M, = e_(v" 52) x 100%

https-//manara.edusy,
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Time Domain Specificagﬂs

&)liall

Rise Time — 'Peak Time Delay Time
" =0 _  7-0 tp:i: i t 1+0.7¢
r — — 2 d —
Wy a)n\/l—QVZ “d a)n\/l_; Wn
Settling Time (2%)
4
t,=4T = ——
SOy Maximum Overshoot
3 g
tS — 3T = —— - / 2
é/a)n M = @ I=¢ X 100

P
Settling Time (5%)
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Example 1

-

Ex=\ cConsider a second oder sSystem with ¢losed | eDp

TaNeter funchon G(s)- 2S5 _ Detesmine

-

S+ 8s8+25

Hiwe domain Specificabions and ouwtput Yesponse Yb)
Tov Step .Iﬁpﬂ'-

st . 25
ol We have, (Ges)- —
S— / SH4+8stis

Comparing denominetr of 6 (%) with '+ 139ns4Vn we s,
w,,‘:zs > w, = SYad)sec

4V = @ = @ = 0.8

Wiz Wh\i-gt = S \|-(o.8)" = 3vad/sec

= :;025 = & °-.?S__2‘°'? = 0:3)2 sec

-} .
tee =2 T’-Cos%:""ocl’ss = 09323 secC
Wy wy N
.
tf,-_;)_j,s-_lo‘p?zscc.
4 ‘e -
= = = lsee (27 band)
“= W=
- 2 - 2 -0.35%e (57 band)
=W G s



Va

Example 1 )i
-4t
Yeb) = |- € . sio (wyt 4@
Vi-%2
= e'__"t sin(st+0-6‘vss°)
— 06

C
| — lete e AEsin(at + 0.6k 45
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Example2 oo
O For the control system shown in Figure, determine k and a that satisfies
the following requirements:
a) Maximum percentage overshoot P.O =10%.

b) The 5% settling time t, = 1 sec.
k| 7(S) 1
S+ a S+2

0 Solution: The closed loop transfer function is given by

R(S)
e

)
C(s) s+a) §+—2£ k k

R(s) - [+ { k ] 1 ] B (s+a)(s+2)+k R s(a+2)+2a+k)
s+ 2

s+a,




Va

Example2 oo

0 The maximum percent overshoot (P.O )is given by:

__Cm
p.o = Vit - 10 = C=06
100

Q For 5%, the settling time ts is given by:

3
= :—:1 ~ —
[.=37 ‘o ®, =5
a+2=2Cwm, & 2a+ k=qr,

0 From these two equations wegeta+2=6 thena=4 and k=17

https-//manara.edusy,



Bx. -2 Conasidevr u(\'\*y feedback Aystem wWith open |mep tan.ster

‘F\N\'Hc\‘_ "f},) - ._.(‘.E_ .’. Dch(rW\'ﬂ( 'h“":( AMain SP(c;ﬁ'(Aﬁ'bn.s
S (S4-4

Example 3 < coei i oo

Sol™ I Res) =
201=  We e  6¢Co) = S(.Mu), )

|16
() = g -

Se oty 245 416

W,m = 16 D W, =4 $T6d/see

29V = 4 D BT o5

Wy = %\j | =A™= =& Qy-(a.g)": 3,464 vadfsee

tg= 1toIs _ |+0-a‘:0-$> = 0-33 35S sec
Wp

Wy 3. 464)
te = IL - 1 - 4.9069 Sec
wy 3.9¢4)
W TN

15e

n e YR rmeien ] 5L
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Ex-3 Consider unidy feal back system wih apen \of Manster
'f\h‘\;&’.?m (~ (s) - |2

. Determine al) Hme deain

Example 4

spedfhealns and step vesponse ot closed leop sy shem.

sol e have GesH=- 12 , RHCS) =)
(E+Xxs44)
Gesd _ &
= G(L(.'ii - l»:}f G i '-6
GO HD S 4554}

Wiz |6 DWW, =4 1 [see

2QWpy =5 = 3 =0.625

wy = u)n\l | =g+ = QW’@"‘QL =8.]1225 Td,"‘"
$is o 0.3% - 140306122 — o.3594 See

Wy 4
b= - _ T- sy - 0.7193 ¢
¥ =- v‘ — q
e = IT — ).006) sec
Wy

A _ = 1.6 se 1y. band
ts = E’&\;: 2. < C )

M = e—“‘s/\IFu'- = 0.0908 = &8.0%87.




Example 4

Y (4

Va

daplo
ool
k=0.75
\ _sat .
=2 ’—E__Ei 90(“’4%4’0)_7
" \!‘,.cql-
-ZOSt ' o
P }_[l__ e SlO(QdZ}.St"’O'B’S?ﬂ
b 0. 7806
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Ex.-4 A clsed levp System 1S Vefvesented by the diffeenhial

Example 5 ..

n‘q'\xk (,',; b‘;'#;? SY=29% . Dc"‘c,(rn\'m "-}3 N e Aom")
e caions \
we hwe Y46v425y= 2567 System input is r

Taking L.T. on kot sides we o<

Sl

Yes )4 6sYC) 425Y(D = 2SR

1(2 s 15

gL - siies+2s

“’DL: 15 :%:SN/S@L
24Wn =6 D KL=0.6
We = Wy \1~q2 =S\ 1=Co.65t = 4 Yad)see

T

‘tv:

te
ts

—
-_—

0.7 % _ 1403)¢06) _
% - 5 - 0'28" kﬂ.

b -

u - 17- (oS a" ey O,SS36 sec
Wy t

0. 7354 Sec

b | 2
w4

”_
r
b - -
T = .‘__;._1.3333 se¢ € 2. band)
e YNNI _0.0948-9.48

| 55



EX.-S Cons)dec a syakerno i\t closed |oop Tansfer ‘Fund{m

G - T S— Determine ky and k, sueh
s+ k,s4+ Kk,

Example 6 thet peak overshewt is 1s». and feak hwme is 2 seconds.

Also detecmine delay hme, rise Hme and Se¥+ling Hime.
p [ d Ll
SOT We have Mpz Isy. 4p= 24ec
Me = e—ﬂ%/ & w
0-18 = c"‘n%/ [t




Example 6

Py

wyz I = )5708

woh—ﬁ’- - |+SPe ¥
' 53 ¥
Wy, |

Y1 —0.26%2
Froro Qe T-F

B
k. oW, "= 3.267)

k, 225w, = 2 (0.51%) (1 §350)
= ). 2934

1z 14938 [ 0.342) sec

- | g§280 w,n

7 - Cos
e T Ir5309 S‘k.
tsz o o =4.2)63

Qw, (0.5130(1.g350 e




