
Lecture (7-8)
PID Controller

Mechatronics Engineering Department

Assistant Professor Isam Asaad

References

• Control Systems Course, professor Aniket Khandekar, Zeal college of
engineering and Research, Pune.

• Gopal, M. - Control Systems_ Principles and Design 3rd edition-Tata
McGraw Hill Publishing Co. Ltd. (2008)

• Modern Control Systems, Richard C. Dorf and Robert H. Bishop,
Prentice Hall, 12th edition, 2010, ISBN-10: 0-13-602458-0

• Modelling, Dynamics and Control, University of Sheffield,
John Anthony Rossiter.

• https://www.wevolver.com/article/mastering-pid-tuning-the-
comprehensive-guide

2

Introduction
 This introduction will show you the characteristics of the each of proportional

(P), the integral (I), and the derivative (D) controls, and how to use them to

obtain a desired response.

 In this lecture, we will consider the following unity feedback system:

 Plant: A system to be controlled

 Controller: Provides the excitation for the plant; Designed to control the

overall system behavior

3

The PID controller
 The transfer function of the PID controller looks like the following:

 Kp = Proportional gain

 KI = Integral gain

 Kd = Derivative gain

4

The PID controller

𝒖 𝒕 = 𝑲𝒑 𝒆(𝒕) + 𝑲𝑰 ∫ 𝒆 𝒕 .𝒅𝒕 + 𝑲𝑫

 First, let's take a look at how the PID controller works in a closed-loop system using the

schematic shown above. The variable [E(s)] represents the tracking error, the difference

between the desired input value [R(s)] and the actual output [C(s)].

 This error signal (e) will be sent to the PID controller, and the controller computes both the

derivative and the integral of this error signal.

 The signal [U(s)] just past the controller is now equal to the proportional gain (Kp) times

the magnitude of the error plus the integral gain (Ki) times the integral of the error plus

the derivative gain (Kd) times the derivative of the error.

𝒅 𝒆(𝒕)

𝒅𝒕

 This signal (u) will be sent to the plant, and the new output will be obtained. This new

output will be sent back to the sensor again to find the new error signal (e). The controller

takes this new error signal and computes its derivative and its integral again.

 This process goes on and on.

5

The PID controller

6

The characteristics of P, I, and D controllers
 A proportional controller (Kp) will have the effect of reducing the rise time and will

reduce ,but never eliminate, the steady-state error.

 An integral control (Ki) will have the effect of eliminating the steady-state error, but it

may make the transient response worse.

 A derivative control (Kd) will have the effect of increasing the stability of the system,

reducing the overshoot, and improving the transient response.

 Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are summarized

in the table shown below.

RISE TIME OVERSHOOT SETTLING TIME
Steady-State

Response

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

7

Proportional Controller

8

where

P = controller output, including error

Po= controller output without error (%)

EP = error signal in proportional control action

KP = proportional controller gain or

proportional constant between error and

controller output.

Integral Controller

10

Integral gain and integration time:

11
• In the context of integral control, windup refers to a situation where the integral term continues to accumulate an error

even when the system has reached a saturation limit (maximum or minimum output). Windup can occur when the
integral action is unable to correct the error due to constraints on the manipulated variable. This situation can lead to
overshooting and prolonged settling times.

Ti =1/Ki [min]

How a PID controller work:

12

Derivative time:

13

Derivative gain and derivative time:

14

Kd=Td [min]

PID Circuit:

15

• XOP2 (Proportional): -(RP2/RP1)(Verr)

• XOP3 (Derivative): -(RD*CD)*(d(VERR)/dt)

• XOP4 (Integral): -(1/RI*CI)*(∫Verr dt)

• XOP5 (Summer): [(R7/R4)(XOP2) + (R7/R5)(XOP3) + (R7/R6)*(XOP4)]

• XOP6 (Inverter): -(R9/R8)*(XOP5)

Example Problem
 Suppose we have a simple mass, spring, and damper problem.

 The modeling equation of this system is

 Let

 M = 1kg

 fv = 10 N.s/m

 k = 20 N/m

 F(s) = 1 = unit step

K

fv

M
f (t)

x(t)

dtdt 2

d 2x(t) dx(t)
M fv Kx(t) f (t)

=
𝑋(𝑠) 1

2
𝑣

𝐹(𝑠) 𝑀 𝑠 + 𝑓 𝑠 + 𝐾

16

Open-loop step response
 Let's first view the open-loop step response.

 Create a new m-file and add in the following code:

>> num=1;

>> den=[1 10 20];

>> step (num,den)

 Running this m-file in the Matlab command window should give you the

plot shown below.

17

Open-loop step response

 The DC gain of the plant transfer function is

1/20, so 0.05 is the final value of the output to

an unit step input. This corresponds to the

steady-state error of 0.95, quite large indeed.

 Furthermore, the rise time is about one second,

and the settling time is about 1.5 seconds.

 Let's design a controller that will reduce the rise

time, reduce the settling time, and eliminates

the steady-state error.

18

Closed Loop with P-Controller

 The closed-loop T.F is
𝐶(𝑠)

=
𝑅(𝑠)

𝐾𝑝

𝑝𝑠2 + 10 𝑠 + (20 + 𝐾)

 Let the proportional gain (Kp) equals 300 and change the m-file to the
following:
>> Kp =300;

>> num = [Kp];

>> den = [1 10 20+Kp];

>> t = 0:0.01:2;

>> step (num,den,t)

19

Closed Loop with P-Controller

 Running this m-file in the Matlab command
window should give you the following plot.

20

The plot shows that the proportional

controller reduced both the rise time

and the steady-state error, increased

the overshoot, and decreased

the settling time by small amount.

Closed Loop with PD-Controller

 The closed-loop T.F is

𝐶(𝑠) 𝐾𝑝 + 𝐾𝐷 𝑆=
𝑅(𝑠) 𝑠2 + 10 + 𝐾𝐷 𝑠 + (20 + 𝐾𝑝)

 Let Kp equals 300 and Kd equals 10, then change the m-file to the following:

>> Kp =300; KD=10;

>> num = [KD Kp];

>> den = [1 10+KD 20+Kp];

>> t = 0:0.01:2;

>> step (num,den,t) 21

Closed Loop with PD-Controller

 Running this m-file in the Matlab command
window should gives you the following plot.

22

The plot shows that the derivative

controller reduced both the overshoot

and the settling time, and had small

effect on the rise time and the steady-

state error.

Closed Loop with PI-Controller

 The closed-loop T.F is
𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑝 𝑠 + 𝐾𝐼

𝑠3 + 10 𝑠2 + 20 + 𝐾𝑝 𝑠 + 𝐾𝐼

 Let Kp equals 300 and Ki equals 70, then change the m-file to the following:

>> Kp = 300; KI = 70;

>> num = [Kp KI];

>> den = [1 10 20+Kp KI]

>> t = 0:0.01:2;

>> step (num,den,t)

23

Closed Loop with PI-Controller
 Running this m-file in the Matlab command window should gives you the

following plot.

 We have reduced the proportional gain

(Kp) because the integral controller also

reduces the rise time and increases the

overshoot as the proportional controller

does (double effect). The above response

shows that the integral controller

eliminated the steady-state error.

24

Closed Loop with PID-Controller

 The closed-loop T.F is

𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝐷 𝑠2 + 𝐾𝑝 𝑠 + 𝐾𝐼

𝑠3 + (10 + 𝐾𝐷)𝑠2 + 20 + 𝐾𝑝 𝑠 + 𝐾𝐼

 Let Kp equals 350, Kd equals 50 and Ki equals 300, then change the m-file to
the following:
>> Kp = 350; KI = 300; KD = 50;

>> num = [KD Kp KI];

>> den = [1 10+KD 20+Kp KI];

>> t = 0:0.01:2;

>> step (num,den,t)

25

Closed Loop with PID-Controller

 Running this m-file in the Matlab command
window should gives you the following plot.

26

Now, we have obtained the system with

no overshoot, fast rise time, and no

steady- state error.

PID Tuning:
 What is the process of PID tuning?

• Choosing the proper values for P, I, and D is called "PID Tuning“.

• Used to get a desired and stable response of the controlled variable.
 PID Tuning Methods:

1) There are lots of methods.

2) We will use three basic and common methods:

1) Manual method.

2) Ziegler-Nichols method.

1) Open-Loop method.

2) Closed-Loop method.

3) Using MATLAB. 28

PID Tuning (Manual method):
 Step-by-step guide to manual PID tuning:

1. Set all gains to zero (Kp = 0, Ki = 0, Kd = 0).

2. Increase Kp until the system responds to setpoint changes with

acceptable speed, but without excessive overshoot.

3. Increase Ki gradually to eliminate steady-state error. Watch for

oscillations or instability.

4. If needed, introduce Kd to reduce overshoot and dampen oscillations. Be

cautious, as too much derivative action can introduce noise sensitivity.

5. Fine-tune all parameters iteratively, making small adjustments and

observing the system response.

6. Test the system with various setpoints and disturbances to ensure robust

performance.

29

RISE TIME OVERSHOOT SETTLING TIME
Steady-State
Response

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

PID Tuning (Manual method):

30

RISE TIME OVERSHOOT SETTLING TIME
Steady-State
Response

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change

PID Tuning -Ziegler-Nichols method(Open-Loop):

32

PID Tuning -Ziegler-Nichols method(Closed Loop):
A practical walkthrough of the Ziegler-Nichols method:

1. Disable integral and derivative actions (set Ti = ∞ and Td = 0).

2. Increase Kp=Kc until the system exhibits sustained oscillations. This gain

is the ultimate gain (Ku)>>Calculate Ku manually or using Routh method.

3. Measure the period of oscillations (Tu).

4. Calculate PID parameters based on Ziegler-Nichols method:

34

Control type Kp Ki Kd

P 0.50Ku — —

PI 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

PID Tuning (Ziegler-Nichols method) Example1:

35

https://www.youtube.com/watch?v=MRA-yt22j5I

K=Ku=7.5

Tu=1.985sec

PID Tuning (Ziegler-Nichols method) Example1:

36

Manual Method:

Kp = 0.60 x KcKp = 0.6 x 7.5Kp = 4.5

Ki=1.2xKc/Tu=1.2x7.5/1.985Ki=4.53

Kd=3x Kc x Tu/40=3x7.5x1.985/40Kd=1.117

Control type Kp Ki Kd

P 0.50Ku — —

PI 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

PID Tuning (Ziegler-Nichols method) Example1:

37

PID Tuning (Ziegler-Nichols method) Example1:

38

Kp = 0.60 x KcKp = 0.6 x 7.5Kp = 4.5

Ki=1.2xKc/Tu=1.2x7.5/1.985Ki=4.53

Kd=3x Kc x Tu/40=3x7.5x1.985/40Kd=1.117

PID Tuning (Ziegler-Nichols method) Example1:

39

PID Tuning using MATLAB PID Tuner (Example1):

40

PID Tuning using MATLAB PID Tuner(Example1):

41

PID Tuning (Ziegler-Nichols method) Example2:

42

num=1;

den= [1 6 5];

plant= tf(num,den);

step(plant)

PID Tuning (Ziegler-Nichols method) Example2:

43

K=Ku=30

Tu=2.816sec

PID Tuning (Ziegler-Nichols method) Example2:

44

Manual Method:

Kp = 0.60 x KcKp = 0.6 x 30Kp = 18

Ki=1.2xKc/Tu=1.2x30/2.816Ki=12.78

Kd=3x Kc x Tu/40=3x30x2.816/40Kd=6.336

Control type Kp Ki Kd

P 0.50Ku — —

PI 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

PID Tuning (Ziegler-Nichols method) Example2:

45

Kp = 0.60 x KcKp = 0.6 x 30Kp = 18

Ki=1.2xKc/Tu=1.2x30/2.816Ki=12.78

Kd=3x Kc x Tu/40=3x30x2.816/40Kd=6.336

Hardware Demo of a Digital PID Controller:

46https://www.youtube.com/watch?v=fusr9eTceEo

