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Introduction T

O This introduction will show you the characteristics of the each of proportional
(P), the integral (l), and the derivative (D) controls, and how to use them to
obtain a desired response.

QO In this lecture, we will consider the following unity feedback system:

R(s) E(s) C(s)
Controller Plant

0 Plant: A system to be controlled

0 Controller: Provides the excitation for the plant; Designed to control the
overall system behavior
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The PID controller &
O The transfer function of the PID controller looks like the following:

K;
G.(s) = HP—I—HD.E.*-I——

= Kp = Proportional gain s

= K, = Integral gain

P
= Kd = Derivative gain

Ke(t)

Plant /
Process

https-//manara.edusy,
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The PID controller T

First, let's take a look at how the PID controller works in a closed-loop system using the
schematic shown above. The variable [E(s)] represents the tracking error, the difference
between the desired input value [R(s)] and the actual output [C(s)].

a This error signal (e) will be sent to the PID controller, and the controller computes both the
derivative and the integral of this error signal.

0 The signal [U(s)] just past the controller is now equal to the proportional gain (Kp) times
the magnitude of the error plus the integral gain (Ki) times the integral of the error plus
the derivative gain (Kd) times the derivative of the error.

e(t)
dt

d
u(t) = Kye(t)+K; [ e(t).dt+ Kp

a This signal (u) will be sent to the plant, and the new output will be obtained. This new
output will be sent back to the sensor again to find the new error signal (e). The controller
takes this new error signal and computes its derivative and its integral again.

0 This process goes on and on.

https-//manara.edusy,
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The PID controller &
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The characteristics of Biiand D controllers

O

Q

A proportional controller (Kp) will have the effect of reducing the rise time and will
reduce ,but never eliminate, the steady-state error.

An integral control (Ki) will have the effect of eliminating the steady-state error, but it
may make the transient response worse.

A derivative control (Kd) will have the effect of increasing the stability of the system,
reducing the overshoot, and improving the transient response.

Effects of each of controllers Kp, Kd, and Ki on a closed-loop system are summarized
in the table shown below.

- RISE TIME OVERSHOOT | SETTLING TIME Steady-State
Response

Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate
Kd Small Change Decrease Decrease Small Change

hitps-//manara.edusy, 7
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Proportional Controll&ta

P=K,E,+P,

where
P = controller output, including error
P,= controller output without error (%)
Ep = error signal in proportional control action
Kp = proportional controller gain or
proportional constant between error and
controller output.
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Integral Controller
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Integral gain and integtation time:

T.=1/Ki [min]

In the context of integral control, windup refers to a S|tuat|on where the integral term contlnues to accumulate an error

CVEC Wills C V C CC cCU cd dAlUl c O AN U U U JULlpulL). VV U U U C U U VVIIC C

integral action is unable to correct the error due to conscm-ihﬁanlulate variable. This situation can lead to 11
overshooting and prolonaged settling times.




How a PID controller wo%v
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PID Circuit:

RP1 5
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XOP2 (Proportional): -(RP2/RP1)(Verr)

XOP3 (Derivative): -(RD*CD)*(d(VERR)/dt)

XOP4 (Integral): -(1/RI*Cl)*(JVerr dt)

XOP5 (Summer): [(R7/R4)(XOP2) + (R7/R5)(XOP3) + (R7/R6)*(XOP4)]
e XOP6 (Inverter): -(R9/R8)*(XOP5)

INYERTER
15

RO

HOPA
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Example Problem oo

O Suppose we have a simple mass, spring, and damper problem.

O The modeling ecﬂuatmn of this system is

X9 . axd K
e + 1, p + Kx() = () —
X(s) 1
F(s)  Ms2+ f s+K -
Q Let 1,
= M = 1kg
= f, =10 N.s/m
= k=20 N/m

» F(s) =1 = unit step

X(s) _ 1

X(0)

K

F(s) s2+10s+ 20

16|
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Open-loop step response

QO Let's first view the open-loop step response.

R(s) 1 C(s
s2410 s+420

0 Create a new m-file and add in the following code:
>> num=1;
>> den=[1 10 20];
>> step (hum,den)

O Running this m-file in the Matlab command window should give you the
plot shown below.

https-//manara.edusy,
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Open-loop step respon

e

se

0 The DC gain of the plant transfer function is
1/20, so 0.05 is the final value of the output to
an unit step input. This corresponds to the
steady-state error of 0.95, quite large indeed.

0 Furthermore, the rise time is about one second,
and the settling time is about 1.5 seconds.

0 Let's design a controller that will reduce the rise
time, reduce the settling time, and eliminates
the steady-state error.

Displacement {m)

0.03

0.04

—
i
Cal

i—
-
M3

et e o e Bt e o e ot

Open-Loop Step

I 0.2

1
Time (sec)

1.3
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Closed Loop with P-Cor%;ller

R(s) E(s) K 1 C(s)
P

s24+10 s+20

QO The closed-loop T.F is — —
CGs) _ K,

R(s) s?+10s+(20+K))

O Let the proportional gain (Kp) equals 300 and change the m-file to the
following:
>> Kp =300;
>> num = [Kp];
>> den = [1 10 20+Kp];
>>t=0:0.01:2;
>> step (num,den,t)

https-//manara.edusy,
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Closed Loop with P-Cofitroller

Q Running this m-file in the Matlab command
window should give you the following plot.

The plot shows that the proportional
controller reduced both the rise time
and the steady-state error, increased
the overshoot, and decreased
the settling time by small amount.

Displacement {m)

—
I=

—
M

—_—
T

=
oo

e
O

L
=

=
r

=

Closed-Loop Step: Kp=300

=

0.3 1 1.2
Time {sec)
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Closed Loop with PD-Géatroller

R(s) E(s) 1 C(s)

s24+10 s+20

QO The closed-loop T.F is

C(S): Kp+ KDS
R(s) s?2+(10+Kp)s+ (20+K))

0 Let Kp equals 300 and Kd equals 10, then change the m-file to the following:
>> Kp =300; KD=10;
>> num = [KD Kp];
>> den = [1 10+KD 20+Kp];
>>t =0:0.01:2;

>>"step (num,den,t)

https-//manara.edusy,
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Closed Loop with PD-G&atroller

A Running this m-file in the Matlab command Closed-Loop Step: Kp-300, Kd-10

1.4
window should gives you the following plot. | |
The plot shows that the derivative E " [\
controller reduced both the overshoot g 08}
and the settling time, and had small G086}
effect on the rise time and the steady- 204l
state error.
0.&
] . . .
0 0.5 1 1.2 ra

Time {sec)
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Closed Loop with PI-Céatroller

R(s) E(s) K, 1 C(s)
KP T 3 s2410 s+20

QO The closed-loop T.F is
C(s) K,s+ K;
R(s) s3+10s2+(20+K,)s+K;
0 Let Kp equals 300 and Ki equals 70, then change the m-file to the following:
>> Kp = 300; KI = 70;
>> num = [Kp KiIJ;
>> den = [1 10 20+Kp Kl]
>>t=0:0.01:2;
>> step (num,den,t)

https-//manara.edusy, 2 3
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Closed Loop with PI-Céatroller

0 Running this m-file in the Matlab command window should gives you the

following plot.

O We have reduced the proportional gain
(Kp) because the integral controller also
reduces the rise time and increases the
overshoot as the proportional controller
does (double effect). The above response
shows that the integral controller
eliminated the steady-state error.

Displacement {m)

1.4

—_—
M

[—
W

o
oo

=
L2

S
=

Closed-Loop Step: Kp=30 Ki=70

O 0.9

1
Time {sec)

1.9 &
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Closed Loop with PID-€&ntroller

QO The closed-loop T.F is

R(s) z 2 E(s)

C(s) _

K
K,+Kj s+?'

o]

1

s24+10 s+20

KDSZ+Kp

C(s)

S+K1

R(s)  s3+ (10 +Kp)s? + (20 + K,) s + K|

0 Let Kp equals 350, Kd equals 50 and Ki equals 300, then change the m-file to

the following:
>> Kp = 350; KI = 300; KD = 50;
>>num = [Ky K, KJ;
>> den = [1 10+Kp 20+K, K|];
>>t =0:0.01:2;
>> step (num,den,t)

https-//manara.edusy,
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Closed Loop with PID-Gontroller

Q Running this m-file in the Matlab command
window should gives you the following plot.

Now, we have obtained the system with
no overshoot, fast rise time, and no
steady- state error.

Displacement (m)

-

=
O

=
o

=
=

=
rg

Closed-Loop Step: Kp=3320 Ki=300 Kd=53200

______________________________________________

U 0.2

1
Time {sec)

1.2
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PID Tuning: Byl o

Q What is the process of PID tuning?
Choosing the proper values for P, |, and D is called "PID Tuning".

Used to get a desired and stable response of the controlled variable.
0 PID Tuning Methods:

1) There are lots of methods.
2) We will use three basic and common methods:
1) Manual method.
2) Ziegler-Nichols method.
1) Open-Loop method.
2) Closed-Loop method.
3) Using MATLAB. hitps://manara.edu.sy/ 28



PID Tuning (Manual metlﬂ%ﬂ):

O Step-by-step guide to manual PIDtining:

1. Set all gains to zero (Kp = 0, Ki =0, Kd = 0).

2. Increase Kp until the system responds to setpoint changes with
acceptable speed, but without excessive overshoot.

3. Increase Ki gradually to eliminate steady-state error. Watch for
oscillations or instability.

4. If needed, introduce Kd to reduce overshoot and dampen oscillations. Be
cautious, as too much derivative action can introduce noise sensitivity.

5. Fine-tune all parameters iteratively, making small adjustments and
observing the system response.

6. Test the system with various setpoints and disturbances to ensure robust
performance.

Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease Small Change



PID Tuning (Manual metlﬁ;%@?):

16

14

1z

I Kp=1
Ei=0
A K, —0 -

Kp

Ki

Kd

Steady-State

RISE TIME OVERSHOOT SETTLING TIME Response
Decrease Increase Small Change Decrease
Decrease Increase Increase Eliminate

Small Change Decrease Decrease Small Change
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PID Tuning -Ziegler-Nichalsimethod(Open-Loop):

Tangent line ot
inflaction polnt
1| 8 —
uff ot 2,
Ziegler—Nichols Tuning Rule Based on Step
Response of Plant (First Method)
Type ol
Controller K, 7, =1/Ki 1.4 =Kd
— —
P | 5 S O
S x: AL
Pl 0.9 2 0.3 0 o
P11 1.2 7 21 0.5L




PID Tuning -Ziegler-Nichelsimethod(Closed Loop):

LA practical walkthrough of the Ziegler-Nichols method:

1. Disable integral and derivative actions (set Ti = « and Td = 0).

2. Increase Kp=Kc until the system exhibits sustained oscillations. This gain
IS the ultimate gain (Ku)>>Calculate Ku manually or using Routh method.

3. Measure the period of oscillations (Tu).

4. Calculate PID parameters based on Ziegler-Nichols method:

Control type Kp Ki Kd
P 0.50Ku — —
P 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

hitps-//manara.edusy/
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PID Tuning (Ziegler- N|ch%method) Examplel

::rjh_.u_ll
P+ 20
P - 5+ 155 + 10s >
E |L| I [
K=Ku=[/.5

u=1.985seq

https://www.youtube.com/watch?v=MRA-yt22j5I
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PID Tuning (Ziegler-Nichelsimethod) Examplel:

Manual Method:

Kp=0.60 X Kc=2Kp=0.6Xx7.59Kp=45
Ki=1.2xKc/Tu=1.2x7.5/1.985=»Ki=4.53
Kd=3x Kc x Tu/40=3x7.5x1.985/40=»Kd=1.117

Control type Kp Ki Kd
P 0.50Ku — —
P 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

hitps-//manara.edusy/
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PID Tuning (Ziegler-Nichélsimethod) Examplel:

Block Parameters: PID Controllerl

PID Controller

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-windup, external
reset, and signal tracking. You can tune the PID gains automatically using the 'Tune..." button (requires Simulink Control Design).

Controller: | PID

Time domain:

(®) Continuous-time

() Discrete-time

Main PID Advanced
Controller parameters

Source:
Proportional (P):
Integral (I):
Derivative (D):

Filter coefficient (N):

Select Tuning Method: | Transfer Function Based (PID Tuner App)

"}.

Data Types

internal

State Attributes

-

Form: | Parallel

-

4.5

4,53

1.117

100

-

Tune...

OK

Cancel

B Compensator formula

P+IL+D

5

Help

N

1
1+ N
2

Apply

37




PID Tuning (Ziegler—Nich%method) Examplel:

i
=2 =M

.__ _.'

PID(s)

20
£+ 1582 + 105

]

BN
i

Proportional gain  Integrator

Input

+
]
> K, -
d + Output

, +
Integral gain

- Filter

>0

Derivative gain  Derivative filter coefficient

Kp =0.60 X Kc»Kp=0.6 X 7.59Kp = 4.5
Ki=1.2xKc/Tu=1.2x7.5/1.985»Ki=4.53
Kd=3x Kc x Tu/40=3x7.5x1.985/40=»Kd=1.117

38
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PID Tuning (Ziegler-Nichélsimethod) Examplel:

Block Parameters: PID Controllerl

PID Controller

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-windup, external
reset, and signal tracking. You can tune the PID gains automatically using the 'Tune..." button (requires Simulink Control Design).

Controller: | PID

Time domain:

(®) Continuous-time

() Discrete-time

Main PID Advanced
Controller parameters

Source:
Proportional (P):
Integral (I):
Derivative (D):

Filter coefficient (N):

Select Tuning Method: | Transfer Function Based (PID Tuner App)

"}.

Data Types

internal

State Attributes

-

Form: | Parallel

4.5

4,53

1.117

100

-

—~

Tune... ]

OK

Cancel

Compensator formula

P+IL+D

5

Help

N

1
1+ N
2

Apply

39




PID Tuning using MATLAB P@\Iuner Examplel):

.
[ PID TUNER VIEW
Plant: Type: PIDF Domain: « | ' o l 1 » 1602 = Cé) E ’>
Plant = Form; Parallel Time e Slower Response Time (seconds) Faster
) | | | | [ | | | Reset Show Update
- T T T T T 1 0.6
4, Inspect €} options ke Add Pt Aggrassive Transiant Bebavior Robust ~| Design Parameters Block +
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS a
& - | StepPlot Reference tracking |
-
(=]
@
= Step Plot: Reference tracking
1.8 T T
Tuned response
LY = = =Block response
1.6 I
i
I 1 .
! \ Controller Parameters
14— 3 "
1 ' Tuned Block
- I 1 PN p 0.72843 4.5
: ! 1 ' “‘ | 0.11633 453
: ! ; \ -— D 0.82433 117
0] — ¢ LS = L, - = = -
= 1 f . i \ , .~_ - - - = M 6.8095 100
£ L1 1 ! -
']
: ] ' Performance and Robustness
- | A !
s 1 4 Tuned Block
! Rize time 1.02 seconds 0.382 seconds
0.4 —: Settling time 11.7 seconds 10,7 seconds
I Cvershoot 10.2 % 66.2 %
Peak 1.1 1.66
0.2 H : .
I Gain margin 24 dB @ 9.76 rad/s -10.2 dB @ 1.36 rad/s
1 Phase rargin 69 deg @ 1.23 rad/s 17.7 deg @ 2.49 rad/’s
0 | | | Closed-loop stability  |Stable Stable
0 5 10 15
Time (seconds) 40

Controller Parameters: P = 0.7284, [ = 0.1163, D = 0.8243, N = 6,809 me—
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PID Tuning using MATLABRID Tuner(Examplel):

4 Py

PID TUMER WIEWY

lil Iﬁ LeftRight! % H=| Tabs Position

ER =IOk

E Top/Bottom [M1 Shrink Tabs to Fit
Single
5 Custom = M Alphabetize
TILES DOCUMENT TABS -
o | Step Plot: Reference tracking [
g
@
E 18 S e SR e e e K g Controller Parameters
Tuned response Tuned Block
= = = Block response P 0.72843 4.5
I 0.11633 4.53
D 0.82433 1.117
M 6.2095 100

1}

= =

= o

%_ Performance and Robustness

E Tuned Block
Rize time 1.02 seconds 0.382 seconds
Settling time 11.7 seconds 10.7 seconds
Owershoot 10.2 % 66.2 %
Peak 1.1 1.66

10

15 20

Time (seconds)

25

Gain margin

24 dB @ 9.76 rad/s

-10.2 dB @ 1.36 rad/s

Phase margin

89 deg @ 1.25 rad/s

17.7 deg @ 2.4% rad/s

Closed-loop stability

Stable

Stable

Controller Parameters: P = 00,7284, | = 001163, D = 0.8243, N = 6.809
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PID Tuning (Ziegler-Nichélsimethod) Example2:

R(s) - |
i% : Cls) s + I Ms + 5)

PlD

controller

Cixs)

l 1 014}
— — — = 3 > p 0.12
s(s+1)(s+5) S°>+65%+05s £ oif
num=1,; 0:04
den= [1 6 5]; n.nz-f.-"f
plant=tf(hnum,den), of—

https-//manara.e

step(plant)

Step Response
.--'_"_'_'-'_ ”
.—"'_Fd-
4
Time (seconds)
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PID Tuning (Ziegler—Nich@method) Example?2:

P>+ 1
— —p- $ 4652+ 55 >l

=T ] | - K=Ku=30 |
u=2.816sec
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PID Tuning (Ziegler-Nichelsimethod) Example2:

Manual Method:

Kp = 0.60 x Kc»Kp = 0.6 X 30»Kp = 18
Ki=1.2xKc/Tu=1.2x30/2.816> Ki=12.78
Kd=3x K¢ x Tu/40=3x30x2.816/40» Kd=6.336

Control type Kp Ki Kd
P 0.50Ku — —
P 0.45Ku 0.54Ku/Tu —

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

hitps-//manara.edusy/
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PID Tuning (Ziegler—Nich@method) Example?2:

daal &

e+
— 3! PID(s) > 1 >l

5 + 65% + S5

<+ Kp=0.60 x KcPKp = 0.6 x 30»Kp =18
| Ki=1.2xKc/Tu=1.2x30/2.816=»Ki=12.78
Kd=3x Kc x Tu/40=3x30x2.816/40=»Kd=6.336

45|




Hardware Demo of a Digit@lD Controller:

This is a physical demonstration of a PID controller
controlling the angular position of the shaft of a
DC motor. It was designed as a teaching tool to show
the effects of proportional, integral, and derivative
control schemes as well as the effect of saturation,
anti-windup, and controller update rate on stability,
overshoot, and steady state error. Enjoy!

Gregory Holst
December 2015
http://gregoryholst.com
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