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Chapter 5

Fourier Analysis

1. Orthogonal Functions

2. Fourier Series

3. Complex Fourier Series

4. Sturm–Liouville Problem

5. Boundary-Value Problems in Rectangular Coordinates

6. Fourier transform (FT)
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1. Orthogonal Functions

Inner Product

(1) u, v = v, u 

(2) u, v + w = u, v + u, w 

(3) c u, v = cu, v 

(4) v, v  0 and v, v = 0 if and only if v = 0 

▪ Let u, v, and w be vectors in a real vector space V, and let c be any scalar. An 

inner product on V is a function that associates a real number u, v with each 

pair of vectors u and v and satisfies the following axioms:

▪ Note: u, v = u.v = dot product (Euclidean inner product for Rn)
n

i i
i

u v
=


1
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▪ Definition: The inner product of two piecewise-continuous functions f1 and f2 

on an interval [a, b] is the number:

1 2 1 2, ( ) ( )
b

a
f f f x f x dx  = 

Orthogonal Functions

▪ Definition: Two functions f1 and f2 are said to be orthogonal on an interval 

[a, b] if:

1 2 1 2, ( ) ( ) 0
b

a
f f f x f x dx  = =

▪ Example 1: Orthogonal Functions

The functions f1(x) = x2 and f2(x) = x3 are orthogonal on the interval [−1, 1].
1

1 12 3 5 6
1 2 1 1

1

1
, 0

6
f f x x dx x dx x

− −
−


  = = = =
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▪ Definition: The norm, or length, of a vector u is given by:

Orthogonal Sets

▪ Definition: A set of real-valued functions {0(x), 1(x), 2(x), …} is said to be 

orthogonal on an interval [a, b] if:

, ( ) ( ) 0,
b

m n m na
x x dx m n     = = 

Orthonormal Sets
1,

, ( ) ( )
0,

b

m n m na

m n
x x dx

m n
   

=
  = = 




▪ If {n(x)} is an orthogonal set of functions on the interval [a, b] with                for 

n = 0, 1, 2, …, then {n(x)} is said to be an orthonormal set on the interval.
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▪ Example 3: Norms

▪ Example 2: Orthogonal Set of Functions

Show that the set {1, cos x, cos 2x, …} is orthogonal on the interval [−, ]

  
1 1

1, cos cos sin sin sin ( ) 0nx nxdx nx n n
n n

 


 

−−
  = = = − − =

 
1

cos , cos cos cos cos ( ) cos ( )
2

1 sin ( ) sin ( )
0,

2

mx nx mx nxdx m n x m n x dx

m n x m n x
m n

m n m n

 

 





− −

−

  = = + + −

+ − 
= + =  + − 

 

Find the norms of each function in the orthogonal set given in Example 2
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▪ Note: Any orthogonal set of nonzero functions {n(x)}, n = 0, 1, 2, …, can be 

normalized—that is, made into an orthonormal set—by dividing each function by 

its norm.

For example the set is orthonormal on [−, ].

▪ Theorem 1 (Coordinates relative to a basis): If B = {n(x)}, n = 0, 1, 2, …, is an 

orthogonal basis for an inner product space V = C [a, b], and if f is any vector 

in V, then:
( ) ( )n n

n

f x c x


=

= 
0

 2 1
2

( ) cos cos 1 cos 2 , 0n x nx nxdx nx dx n
 

 
 

− −
= = = + =  
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where
( ) ( ),

( ) ( )

b

nn a
n

n n

f x x dxf
c

x x



 

 
= =


2 2

{n(x)} is an orthogonal basis: 
,

( ) ( )
( )

n
n

n n

f
f x x

x








=

 
=  2

0

{n(x)} is an orthonormal basis: ( ) , ( )n n
n

f x f x 


=

=  
0

▪ Definition: A set of real-valued functions {0(x), 1(x), 2(x), …} is said to be 

orthogonal with respect to a weight function w(x) on an interval [a, b] if:

, ( ) ( ) ( ) 0,
b

m n m na
w x x x dx m n     = = 

where w(x) is a positive continuous function
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1 2 1 2, ( ) ( ) ( )  = 
b

a
f f f x f x w x dx

▪ Note: The inner product of two functions f1 and f2 on an interval [a, b], used 

above is:

▪ The set {1, cos x, cos 2x, …} in Example 2 is orthogonal with respect to the 

weight function w(x) = 1 on the interval [−, ].

▪ The series                                 is said to be an orthogonal series expansion of f 

or a generalized Fourier series.

( ) ( )


=
=  n nn

f x c x
0

Complete Sets

▪ To expand f in a series of orthogonal functions, it is certainly necessary that f 
not be orthogonal to each n of the orthogonal set {n(x)}.

(If f were orthogonal to every n, then cn = 0, n = 0, 1, 2, ….)
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▪ To avoid the latter problem we shall assume that an orthogonal set is 

complete. This means that the only continuous function orthogonal to each 

member of the set is the zero function.

▪ Note: Suppose that {0(x), 1(x), 2(x), …} is an infinite set of real-valued 

functions that are continuous on an interval [a, b]. If this set is linearly 

independent on [a, b], then it can always be made into an orthogonal set using 

Gram-Schmidt process.

Orthogonal Polynomials

▪ Let P∞ be the vector space of all polynomials and define the inner product of 

two polynomials P and Q, on P∞ by:

, ( ) ( ) ( )  = 
b

a
P Q P x Q x w x dx
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▪ Let P0(x), P1(x), ... be a sequence of polynomials with deg Pn(x) = n for each n. 

If           whenever m ≠ n, then {Pn(x)} is said to be a sequence of 

orthogonal polynomials. If                       , then {Pn(x)} is said to be a sequence 

of orthonormal polynomials.

, 0m nP P  =

,m n mnP P   =

Legendre Polynomials

1 1( 1) ( ) (2 1) ( ) ( )n n nn P x n xP x nP x+ −+ = + −

1

1
, ( ) ( )m n m nP P P x P x dx

−
  = 

Pn(1) = 1 for each n, then

2 2
( ) , 0 1

2 1
nP x n

n
= =

+
, ,

2(1 ) ( ) 2 ( ) ( 1) ( ) 0n n nx P x xP x n n P x − − + + =

21
0 1 2 2

3 4 21 1
3 42 8

( ) 1 ( ) ( ) (3 1)

( ) (5 3 ) ( ) (35 30 3)

P x P x x P x x

P x x x P x x x

= = = −

= − = − +

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis 12/752024-2025

Chebyshev Polynomials
1 1/2

1
, ( ) ( )(1 )m n m nT T T x T x x dx−

−
  = −

1
0 1, 2 ( 1, 2, ...)k

ka a k−= = =

2 2

0 ( ) , ( ) , 1 2
2

nT x T x n


= = = , ,

(cos ) cos and cos( 1) 2cos cos cos( 1)  gives:nT n n n n     = + = − −

1 0 1 1( ) ( ), ( ) 2 ( ) ( ), 1n n nT x xT x T x xT x T x n+ −= = − 

2
0 1 2

3 4 2
3 4

( ) 1 ( ) ( ) 2 1

( ) 4 3 ( ) 8 8 1

T x T x x T x x

T x x x T x x x

= = = −

= − = − +

2 2(1 ) ( ) ( ) ( ) 0n n nx T x xT x n T x − − + =
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Hermite Polynomials
2

, ( ) ( ) x
m n m nH H H x H x e dx

 −

−
  = 

0 1

1 1

( ) 1, ( ) 2

( ) 2 ( ) 2 ( ), 1n n n

H x H x x

H x xH x nH x n+ −

= =

= − 

2
( ) 2 !, 0 1n
nH x n n= = , ,

( ) 2 ( ) 2 ( ) 0n n nH x xH x nH x − + =

2
0 1 2

3 4 2
3 4

( ) 1 ( ) 2 ( ) 4 2

( ) 8 12 ( ) 16 48 12

H x H x x H x x

H x x x H x x x

= = = −

= − = − +

Laguerre Polynomials

0
, ( ) ( ) x

m n m nL L L x L x e dx
 −  = 

1 1( 1) ( ) (2 1 ) ( ) ( )n n nn L x n x L x nL x+ −+ = + − − (1 ) 0xy x y ny + − + =

2
( ) 1, 0 1nL x n= = , ,
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21
0 1 2 2

3 2 4 3 21 1
3 46 24

( ) 1 ( ) 1 ( ) ( 4 2)

( ) ( 9 18 6) ( ) ( 16 72 96 24)

L x L x x L x x x

L x x x x L x x x x x

= = − + = − +

= − + − + = − + − +

Legendre Polynomials Chebyshev Polynomials
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2. Fourier Series

▪ In this section we shall expand functions in terms of a special orthogonal set 

of trigonometric functions.

▪ If {0(x), 1(x), 2(x), …} is a set of real-valued functions that is orthogonal on an 

interval [a, b] and if f is a function defined on the same interval, then we can 

formally expand f in an orthogonal series c00(x) + c11(x) + c22(x) + … . 

Trigonometric Series

▪ The set of trigonometric functions

, cos , cos , cos , , sin , sin , sin , x x x x x x
L L L L L L

      
 
 

2 3 2 3
1

is orthogonal on the interval −L, L].
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▪ Expand a function f defined on −L, L] in an orthogonal series consisting of the 

trigonometric functions.

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

( ) ( ),

( ) ( )



 

−
 

=

L

nn L

n n

f x x dxf

x x
2 2

The coefficients a0, a1, a2, …, b1, b2, …, can be determined using:

( ) ( ) cos cos ,,
L L

nL L

n n
x dx L x x x dx L n

L L
 

 
− −

= = = = = =  
2

2 2 2 2
0 1 2 0

( ) sin sin ,
L

n L

n n
x x x dx L n

L L
 


−

= = = 
2

2 2 0
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( )

( )
( )

co
( )

(
s

)
( ) sin









−

−

−

−






=

=





=

=








L

L
L

n L
L

n L

L

nL

n

L

n
L L

n
L L

f x x
a f x dx

a f x x dx

b f x x d

dx

x
x

2

0
1
2

1

1

Fourier coefficients of f

▪ Definition: The Fourier series (FS) of a function f defined on the interval (−L, 

L) is given by:
( )( ) cos sin 



=

= + + n n
n

n n
L Lf x a a x b x0

1
where

( ) , ( ) cos , ( ) sin 

− − −
= =  

L L L

n nL L L

n n
L L L L Lf x dx a f x x dx b f x x dx1 1 1
2
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▪ Example 4: Expansion in a Fourier Series

Expand                                             in a Fourier series
,

( )
,

x
f x

x x


 

−  
=  −  

0 0
0

( ) ( )a f x dx x dx
 






 −
= = − = 0 0

1 1

2 2 4

cos ( )
( ) cos ( ) cos

n

n

n
a f x nxdx x nxdx

n n

 






   −

− − −
= = − = =  2 20

11 1 1 1

( )sin ( )sinnb f x nxdx x nxdx
n

 




 −
= = − = 0
1 1 1

( )
( ) cos sin

n

n

f x nx nx
nn







=

 − −
= + + 

 
 2
1

1 1 1
4
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Convergence of a Fourier Series

▪ Theorem 2 (Conditions for Convergence): Let f and f’ be piecewise continuous 

on the interval [−L, L]; that is, let f and f’ be continuous except at a finite 

number of points in the interval and have only finite discontinuities at these 

points. Then for all x in the interval (−L, L) the FS of f converges to f(x) at a 

point of continuity. At a point of discontinuity, the FS converges to the average:

( ) ( )+ −+f x f x
2

where f(x+) and f(x−) denote the limit of f at x from the right and from the left, 

respectively.

▪ The function in Example 4 satisfies the conditions of Theorem 2. Thus for 

every x in the interval (−L, L), except at x = 0, the series will converge to f(x).
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At x = 0 the function is discontinuous, and so the series will converge to:

( ) ( )f f  + −+ +
= =

0 0 0
2 2 2

at x = /2 the series converge to f(/2) = /2. 

( )
cos sin

   





=

 − −
= + + 

 


n

n

n n
nn21

1 1 1
2 4 2 2


= − + − +

1 1 1
1

4 3 5 7
at x = 0 the series converge to /2. 

( )
cos sin 

 





=

 − −
= + + 

 


n

n
nn21

1 1 1
0 0

2 4

 


 = + + +  = + + + 
 

2

2 2 2 2 2 2

2 1 1 1 1 1 1
4 81 3 5 1 3 5
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▪ The right hand side of equation above is 2L-periodic; indeed, 2L is the 

fundamental period of the sum. 

▪ We conclude that a Fourier series not only represents the function on the 

interval (−L, L) but also gives the periodic extension of f outside this interval.

▪ We may assume from the outset that the given function is periodic with period 

T = 2L; that is, f(x + T) = f(x).

▪ When f is piecewise continuous and the right-and left-hand derivatives exist at 

x = −L and x = L, respectively, then the series converges to [f(L−) + f (−L+)]/2 at 

these endpoints and to this value extended periodically to ±3L, ±5L, ±7L, and 

so on.

Periodic Extension
( )( ) cos sinn nn

n n
L Lf x a a x b x 

=
= + +0 1
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▪ Fourier series in example 4 converges to the periodic extension of f(x) on the 

entire x-axis. At 0, ±2, ±4, …, and at ±, ±3, ±5, …, the series converges to 

the values: ) )( ) ( ( ) (
and

f f f f 
+ − + −+ +

= =
00

2 2 2 0

respectively. The solid dots in figure below represent the value /2.

Sequence of Partial Sums

▪ It is interesting to see how the sequence of partial sums {SN(x)} of a Fourier 

series approximates a function. In example 4, the first three partial sums are:

( ) , ( ) + cos sin , ( ) + cos sin sinS x S x x x S x x x x  
 

= = + = + +0 1 2
2 2 1

4 4 4 2 2
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Fourier Cosine and Sine Series

▪ Definition: Fourier Cosine and Sine Series

(i) The FS of an even function on the interval (−L, L) is the cosine series:

( ) , ( )cos
L L

n
n

L L La f x dx a f x xdx= = 0 0 0

1 2

( ) cosnn
n
Lf x a a x

=
= + 0 1

where

(ii) The FS of an odd function on the interval (−L, L) is the sine series:

( ) sinnn
n
Lf x b x

=
=  1

( )sin
L

n
n

L Lb f x xdx= 0
2where

▪ Example 5: Expansion in a Sine Series

Expand f(x) = x, −2  x  2, in a Fourier series
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The given function is odd on the interval (−2, 2), and so we 

expand f in a sine series. With the identification 2L = 4, we 

have L = 2.

( ) ( )
sin ( ) sin

n n

n
n

n n
b x xdx f x x

L n n

 

 

+ +

=

− −
= =  = 

1 12

0
1

4 1 4 1

2

The series converges to the function on (−2, 2) and the periodic extension 

(of period 4).
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The given function is odd on the interval (−, ), and 

so we expand f in a sine series.

( ) ( )
sin ( ) sin

n n

n
n

n
b xdx f x nx

L n n

 

  



=

− − − −
= =  = 0

1

2 2 1 1 2 1 1

Gibbs Phenomenon

▪ The partial sums {SN(x)} of a Fourier series shows oscillations (spikes) near 

the points of discontinuity of f(x). these oscillations don’t disappear as the 

value of N gets larger. With increasing N, they are shifted closer to the points 

of discontinuity of f(x). This behavior is known as the Gibbs phenomenon.

▪ Example 6: Expansion in a Sine Series

Expand in a Fourier series
,

( )
x

f x
x





− −  
=   

1 0
1 0
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Half-Range Expansions

▪ When we are interested in representing a function that is defined on an 

interval (0, L) by a trigonometric series. This can be done in many different 

ways by supplying an arbitrary definition of the function on the interval (−L, 0). 

Three most important cases:

Even reflection Odd reflection Identity reflection

Even reflection: The function is even on the interval (−L, L) 

( ) , ( )cos
L L

n
n

L L La f x dx a f x xdx= = 0 0 0

1 2( ) cosnn
n
Lf x a a x

=
= + 0 1
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Odd reflection: The function is odd on the interval (−L, L) 

( ) sinnn
n
Lf x b x

=
=  1

( )sin
L

n
n

L Lb f x xdx= 0
2

Identity reflection: The function values on the interval (−L, 0) are the same as the 

values on (0, L). We identify L → L/2 and The resulting Fourier series will give 

the periodic extension of the function with period L.

▪ Example 7: Half Range Expansion

Expand f(x) = x2, 0  x  L, (a) in a cosine series, (b) in a sine series, (c) in a FS.

(a) 
( )

, cos
nL L

n

n L
a x dx L a x xdx

L L L n





−
= = = = 

2
2 2 2

0 2 20 0

1 1 2 4 1

3

( )
( ) cos

n

n

L n
f x L x

Ln







=

−
= + 

2
2

2 2
1

1 4 1
3
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(b) 
( )

sin [( ) ]
nL n

n

n L L
b x xdx

L L n n



 

+−
= = + − −

2 1 2
2

3 30

2 2 1 4
1 1

( )
( ) [( ) ] sin

n
n

n

L n
f x x

n Ln



 

 +

=

 −
= + − − 

 


2 1

3 3
1

2 1 2
1 1

(c) , cos
L L

n

n L
a x dx L a x xdx

L L L n




= = = = 

2
2 2 2

0 2 20 0

1 1 2 2

3

( ) cos sin
n

L L n n
f x L x x

L n Ln

 

 



=

 
= + − 

 


2 2
2

2
1

1 2 1 2
3

sin
L

n

n L
b x xdx

L L n





−
= =

2
2

0

2 2
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Parseval formula

For a full Fourier Series on [−L, L]: ( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1

  ( )( )
L

n nL
n

f x dx a a b
L



−
=

= + +
2 2 2 2

0
1

1
2

▪ Example 8: Expansion in a Sine Series

The Fourier series for the function f(x) = x (−  x   ):
( )

( ) sin
n

n

f x nx
n

 +

=

−
= 

1

1

1
2

2( )n

n n

x dx
n n









 +

−
= =

 −
=  = 

 
 

21 2
2

2
1 1

1 1 2 4
3

n n



=

=
2

2
1

1
6
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Differentiation of Fourier Series

▪ Theorem 3 (Differentiation of FS): Let f be a continuous function on the interval 

[−L, L] such that f(−L) = f(L), and suppose also that f ’ is piecewise continuous 

on the interval (−L, L). Then for any x strictly inside the interval at which f“(x) 

exists, the derivative of f(x) can be obtained by term-by-term differentiation of 

the FS representation of f. So, if f has the FS representation:

( )( ) cos sin 

=
= + + n nn

n n
L Lf x a a x b x0 1

Then:
( )( ) sin cos  

=
 = − + n nn

n n
L L Lf x na x nb x

1
for −L  x  L

except for points at where f ’(x) and f “(x) are not defined.

▪ Note: Not all Fourier series are differentiable.
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▪ Example 9: a Series is not differentiable 

The Fourier series for the function f(x) = x (−  x  ) converges to f(x) at 

each point in the interval −  x   :
( )

( ) sin
n

n

f x nx
n

 +

=

−
= 

1

1

1
2

But the differentiated series                                  does not converge since its 

nth term fails to approach zero as n tends to infinity.

( ) cos
 +

=
−

n
n

nx1
1

2 1

▪ Example 10: a Series is differentiable 

The Fourier series for the function f(x) = cosh ax (−  x  ) a  0

sinh ( )
cosh cos

n

n

a
ax a nx

a a n







=

 −
= + + 

2 2 2
1

1
1 2
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This series converges to cosh ax on the interval −  x  . The hypothesis of 

the theorem is satisfied when, it follows that:

2sinh
sinh ( ) sinn

n

a n
ax nx

a n






+

=

= −
+

 1
2 2

1

1 −  x  

▪ Note: The equation above is valid when the condition a = 0 is dropped.

Integration of Fourier Series

▪ Theorem 4 (Integration of FS): A Fourier series of a piecewise smooth function 

f can always be integrated term by term and the result is a convergent infinite 

series that always converges to the integral of f on [−L, L]:

( ) cos sinn n
n

n n
f x a a x b x

L L
 

=

 = + + 
 

0
1
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The equation

( ) ( ) sin cos ( )
x nn n

L
n

a bL n n
f u du a x L x x

n L n L
 




+

−
=

  = + + − + −    


1
0

1

1

is valid when −L  x  L.

Use the FS representation of the function                                        to find a FS

 

▪ Example 11: Integration of Fourier Series

 ,
( )

,

x
f x

x




− −  
=

 

1 0
1 0

find a FS representation of                            in the interval −  x  ( ) ( )
x

F x f t dt
−

= 

( ) sin ( )
n

f x n x
n



=

= −
−

1

4 1
2 1

2 1

sin ( ) cos ( ) cos ( )
( )

( ) ( )

x

n n n

n t n x n
F x dt

n n n



 

  

−
= = =

− − − 
= = − − − − − 

   2 2
1 1 1

2 1 2 1 2 14 4
2 1 2 1 2 1
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cos ( )
( )

( ) ( )n n

n x
F x

n n 

 

= =

−
= − −

− −
 2 2
1 1

2 14 4 1

2 1 2 1
applying the Parseval formula to the Fourier series representation of f(x)

( ) ( )n n n

dx
n n n







  

  

−
= = =

  =  =  = 
−  − −

  
2 2

2 2 2
1 1 1

1 4 1 16 1 1
1 2

2 1 82 1 2 1

cos ( ) cos ( )
( )

( ) ( )n n

n x n x
F x

n n

 

  

 

= =

− −
= − − = − −

− −
 

2

2 2
1 1

2 1 2 14 4 4
8 22 1 2 1

( )n n



=

 =
−


2

2
1

1
82 1

( ),
( ) ( )

,

x

x

x

dt x x
F x f t dt

dt dt x x







 

 

−

−

−

 − = − + −  
= = 

− + = −  




 
0

0

1 0

1 1 0
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cos ( )
( ) ( )

( )








−
=

−
= = − = − −

−


x

n

n x
F x f t dt x

n 2
1

2 14
2 2 1

cos ( )

( )n

n x
x

n







=

−
= −

−
 2
1

2 14
2 2 1

−  x  

3. Complex Fourier Series

Complex Fourier Series

▪ In certain applications, for example, the analysis of periodic signals in 

electrical engineering, it is actually more convenient to represent a function f 
in an infinite series of complex-valued functions of a real variable x such as 

the exponential functions einx, n = 0, 1, 2, …, and where i is the imaginary unit.

( )( ) cos sin 

=
= + + n nn

n n
L Lf x a a x b x0 1
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/ / / /

cos , sin
in x L in x L in x L in x Ln e e n e e

x x
L L i

    − −+ −
= =

2 2
/ / / /

( )
in x L in x L in x L in x L

n k
n

e e e e
f x a a b

i

    − −

=

 + −
= + + 

 
0
1

2 2

/ /( ) ( ) ( )in x L in x L
n n n n

n

f x a a ib e a ib e 


−

=

 = + − + + 
 

0
1

1 1
2 2

/ /( ) in x L in x L
n n

n n

f x c c e c e 
 

−
−

= =

= + + 0
1 1

where

( )
L

L
c a f x dx

L −
= = 0 0

1

2
/ /( ) ( ) , ( ) ( ) −

−− −
= − = = + = 

L Lin x L in x L
n n n n n nL LL Lc a ib f x e dx c a ib f x e dx1 1 1 1

2 22 2
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▪ Definition: The complex Fourier series (CFS) of a function f defined on the 

interval (−L, L) is given by:

where

/( ) 

=−
= 

in x L
nn

f x c e

/( ) , , , ,−

−
= =  

L in x L
n LLc f x e dx n1

2 0 1 2

▪ Note: When the function f is real, cn and c−n are complex conjugates:

▪ Note: The functions eimπx/L and e−inπx/L are orthogonal over the interval [−L, L].

n nc c− =

/ /
,

,

L im x L in x L

L

m n
e e dx

L m n
 −

−


= 

=


0

2

[ ( ) ( )]f x f x+ −+1
2

▪ If f satisfies the hypotheses of Theorem 2, a CFS converges to f(x) at a point 

of continuity and to the average                           at a point of discontinuity.
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▪ Example 12: Complex Fourier Series

Expand f(x) = e−x, −  x  , (a) in a complex Fourier series.

( ) ( ) ( )

( )

x inx in x in in
nc e e dx e dx e e

in

   

   

− − − + − + +

− −
 = = = −
 + 

1 1 11 1 1

2 2 2 1

sinh( )
( ) ( )

( )

n n
n

e e ni
c

in n

  

 

−− −
= − = −

+ +2
1

1 1
2 1 1

sinh
( ) ( )n inx

n

ni
f x e

n







=−

−
= −

+
 2

1
1

1
The series converges to the 

2-periodic extension of f.

Fundamental Frequency

▪ The Fourier series define a periodic function and the fundamental period of 

that function (that is, the periodic extension of f) is T = 2L.
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where number  = 2/T is called the fundamental angular frequency.

Frequency Spectrum

▪ If f is periodic and has fundamental period T, the plot of the points (n, |cn|), 

where  is the fundamental angular frequency and the cn are the Fourier 

coefficients, is called the frequency spectrum of f.

( )cos sin  
 

= =−
+ + 

in x
n k nn n

a a n x b n x c e0 1
and

▪ Example 13: Frequency Spectrum

sinh
nc

n




=

+2

1

1

From example 12:
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▪ Example 14: Frequency Spectrum

Find the frequency spectrum of the periodic square wave or periodic pulse. 

The wave is the periodic extension of the function y = f(x):

,

( ) ,

,

x
f x x

x

 −   −


= −  
  

1 1
2 4
1 1
4 4

1 1
4 2

0
1
0

/
/

/
/

/ /

sin




 





 

−
−

−
−

−


=  = − 



−
= =


in x

in x
n

in in

e
c e dx

in

e e n

n i n

1 421 4 2

1 4
1 4

2 2

1
2

1 1

2 2

sin



=n

n
c

n

1

2
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4. Sturm – Liouville Problem

Linear equations General solutions

,

, cos sin

, or
,

cosh sinh



 



   

 
 

−

−

 + = =

 + =  = +

 = +
 − =  

= +

x

x x

y y y c e

y y y c x c x

y c e c e
y y

y c x c x

1
2

1 2

2 1 2

1 2

0

0 0

0 0

Cauchy–Euler equation General solutions, x  0

, 0
,

ln , 0

  
 



− = + 
 + − =  

= + 

y c e c e
x y xy y

y c c x
2 2 1 2

1 2

0 0

Parametric Bessel equation (  0) General solutions, x  0

 + − =x y y xy2 2 0 ( ) ( ) = +y c J x cY x1 0 2 0
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    Solve:    [p(x)y’]’ + [q(x) + r(x)]y = 0 (1)

Subject to: k1y + k2yr = 0 at x = a (2.a)

l1y + l2yr = 0 at x = b (2.b)

 is a parameter, and k1, k2, l1, l2, are real constants and independent of . 

Furthermore, at least one of each constant in each condition must be different 

from zero.

▪ Can we replace the trigonometric system by other orthogonal systems? The 

answer is “yes” and will lead to generalized Fourier series, including the 

Fourier–Legendre series and the Fourier–Bessel series. To prepare for this 

generalization, we first have to introduce the Sturm – Liouville Problem.

▪ Let p, q, r, and r’ be real-valued functions continuous on an interval [a, b], and 

let r(x)  0 and p(x)  0 for every x in the interval. Then

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis 46/752024-2025

▪ Equation (1) is known as a Sturm–Liouville equation. Together with conditions 

(2) it is know as the Sturm–Liouville problem. It is an example of a boundary 

value problem (BVP).

Eigenvalues, Eigenfunctions

▪ Orthogonal functions arise in the solution of DE. More to the point, an 

orthogonal set of functions can be generated by solving a two-point boundary-

value problem involving a linear second-order DE containing a parameter .

▪ Clearly, y = 0 is a solution—the “trivial solution”—of the problem (1), (2) for any 

 because (1) is homogeneous. We want to find eigenfunctions y(x), that is, 

solutions of (1) satisfying (2) without being identically zero. 

▪ We call a number  for which an eigenfunction exists an eigenvalue of the 

Sturm–Liouville problem (1), (2).
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▪ Theorem 5 (Properties of the Problem Sturm–Liouville Problems):

(a) There exist an infinite number of real eigenvalues that can be arranged in 

increasing order 1  2  3  …  n  … such that n → ∞ as n → ∞.

(b) For each eigenvalue there is only one eigenfunction (except for nonzero 

constant multiples).

(c) Eigenfunctions corresponding to different eigenvalues are linearly 

independent.

(d) The set of eigenfunctions corresponding to the set of eigenvalues is 

orthogonal with respect to the weight function p(x) on the interval [a, b].

▪ Example 15: Nontrivial Solutions of a BVP: Vibrating String

Solve the homogeneous boundary-value problem: y” + y = 0, y(0) = y(L) = 0.
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Case I: For  = 0, the solution of the DE y” = 0 is y = c1x + c2. y(0) = y(L) = 0 

⇒ c1 = c2 = 0. Hence, the only solution of the BVP is the trivial solution y = 0.

Case II: For   0, it is convenient to write  = −2, where   0. The 

general solution of y” − 2y = 0 is y = c1cosh x + c2sinh x. y(0) = y(L) = 0 ⇒ 

c1 = c2 = 0. Once again the only solution of the BVP is the trivial solution y = 0.

Case III: For   0, it is convenient to write  = 2, where   0. The general 

solution of y” + 2y = 0 is y = c1cos x + c2sin x. y(0) = 0 ⇒ c1 = 0 and so 

y = c2sin x. y(L) = 0 ⇒ c2sin L = 0. If c2 = 0, then necessarily y = 0 . But 

this time we can require c2 ≠ 0, sin L = 0 ⇒ L = n or  = n/L or:

( ) , , , , n
n n L

n = = =
22 1 2 3

Therefore for any real nonzero c2, yn = c2 sin(nx/L) is a nontrivial solution of 

the original problem.
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▪ The numbers n = n22/L2, n = 1, 2,... for which the BVP 

possesses nontrivial solutions are the eigenvalues. 

The nontrivial solutions that depend on these values of 

n, yn = c2sin(nx/L) are the eigenfunctions.

▪ Example 16: Sturm – Liouville Problem

Solve the homogeneous BVP: y” + y = 0, y(0) =  y(1) + y’(1) = 0.

For  = 0 and for  = −2  0, where   0, the BVP possesses only the 

trivial solution y = 0. For  = 2  0, where   0, the general solution of 

y” + 2y = 0 is y = c1cos x + c2sin x. y(0) = 0 ⇒ c1 = 0 and so y = c2sin x.

y(1) + y’(1) = 0 ⇒ c2 sin  + c2 cos  = 0. Choosing c2 ≠ 0, the eigenvalues 

are then  , n = 1, 2, 3,... , are the consecutive positive roots 1, 2,… of 

tan  = −.
 =n n

2
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y(1) + y’(1) = 0 ⇒ c2 sin  + c2 cos  = 0. Choosing c2 ≠ 0, the eigenvalues 

are then  , n = 1, 2, 3,..., are the consecutive positive roots 1, 2,… of 

tan  = −.

 =n n
2

The eigenfunctions are {sin nx}, n = 1, 2, 3,….

Thus {sin nx}, n = 1, 2, 3,… is an orthogonal set with 

respect to the weight function r(x) = 1 on the interval 

[0, 1].

, ( ) ( ) ( ) 0,
b

m n m na
y y r x y x y x dx m n  = = 

▪ If p(a) = 0, then (2a) can be dropped from the problem. If p(b) = 0, then (2b) 

can be dropped. It is then required that y and y’ remain bounded at such a 

point, and the problem is called singular.
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If p(a) = p(b), then (2) can be replaced by the “periodic boundary conditions”

y(a) = y(b), y’(a) = y’(b) (3)

The BVP consisting of the Sturm–Liouville equation (1) and the periodic 

boundary conditions (3) is called a periodic Sturm–Liouville problem.

Orthogonal Series - Generalized Fourier Series

▪ Let y0, y1, y2, … be orthogonal with respect to a weight function r(x) on an 

interval a  x  b, and let f(x) be a function that can be represented by a 

convergent series

0 0 1 10
( ) ( ) ( ) ( )



=
= = + + n nn

f x a y x a y x a y x

,
( ) ( ) ( )

bn
n na

n n

f y
a r x f x y x dx

y y

 
= = 2 2

1
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This is called an orthogonal series, orthogonal expansion, or generalized 

Fourier series.

▪ Example 16: Fourier–Legendre expansion of the function:  ,
( )

,

x
f x

x
−  

=
 

0 1 0
1 0 1

( ) ( ) ( )


=
= = + + n nn

f x a P x a a P x0 1 10

, , , ,= = = = −a a a a0 1 2 3
71 3

2 4 160

( ) ( )= + − − +f x x x x371 3
2 4 16 5 3

( ) ( )
−

+= n n
na f x P x dx

1

1

2 1
2For Legendre’s equation

( ) ( ) ( )

( )

= + − − + − +

− − + −

S x x x x x x x

x x x x

3 5 3
5

7 5 3

71 3 11
2 4 16 256
65
4096

5 3 63 70 15

429 693 315 35
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5. Boundary-Value Problems in Rectangular Coordinates

Separable Partial Differential Equations PDEs

▪ A PDE is an equation that contains one or more partial derivatives of an 

unknown function, call it u, that depends on at least two variables. Usually one 

of these deals with time t and the remaining with space (spatial variable(s)). 

▪ The most important PDEs are the wave equations that can model the vibrating 

string and the vibrating membrane, the heat equation for temperature in a bar 

or wire, and the Laplace equation for electrostatic potentials.

▪ PDEs are very important in dynamics, elasticity, heat transfer, electromagnetic 

theory, and quantum mechanics.

▪ PDEs, like ordinary differential equations (ODEs), are classified as either 

linear or nonlinear.
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▪ The dependent variable u and its partial derivatives in a linear PDE are only to 

the first power. We shall be interested in linear second-order PDEs.

▪ Example 17: Important Second-Order PDEs

u u
c

t x
u u
c

t x

 
=

 

 
=

 

2 2
2

2 2

2
2

2

One-dimensional wave equation

One-dimensional heat equation

u u

x y

u u u
c

t x y

 
+ =

 

   
= + 

   

2 2

2 2

2 2 2
2

2 2 2

0 Two-dimensional Laplace equation

Two-dimensional wave equation
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▪ the general form of a linear second-order PDE is given by:

u u u u u
A B C D E Fu G

x y x yx y

    
+ + + + + =

    

2 2 2

2 2

where the coefficients A, B, C, ..., G are functions of x and y. When G(x, y) = 0, 

the equation is said to be homogeneous; otherwise, it is nonhomogeneous.

▪ A solution of a linear PDE is a function u(x, y) of two independent variables 

that possesses all partial derivatives occurring in the equation and that 

satisfies the equation in some region of the xy-plane.

▪ It is often difficult to obtain a general solution of a linear second-order PDE. In 

general, the totality of solutions of a PDE is very large. For example, the 

functions:                                                                                                 which are 

entirely different from each other, are solutions of 2D Laplace equation.

, cos , sin cosh , ln( )xu x y u e y u x y u x y= − = = = +2 2 2 2
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▪ There are several methods that can be tried to find particular solutions of a 

linear PDE, the one we are interested is called the method of separation of 

variables. In this method we seek a particular solution of the form of a product 

of a function of x and a function of y: ( , ) ( ) ( )u x y X x Y y=

, , ,
u u u u
XY XY X Y XY

x y x y

   
   = = = =

   

2 2

2 2

▪ Example 18: Separation of Variables

Find product solutions of
u u

yx

 
=



2

2 4

( , ) ( ) ( )u x y X x Y y=Substituting                                into the partial differential equation

X Y
X Y XY

X Y
 

 =  =4
4
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Since the left-hand side of the last equation is independent of y and is 

equal to the right-hand side, which is independent of x, we conclude that 

both sides of the equation are independent of x and y.

X Y
X Y


 

= = −
4

  + = + =X X Y Y4 0 0and

Case I If  = 0, then the two ODEs are: andX Y = =0 0

andX c c x Y c u XY A B x= + =  = = +1 2 1 1 1

Case II If  = −2  0, then the two ODEs are:

  − = − =X X Y Y2 24 0 0and

cosh sinh

cosh sinh



 

 

 

= + =

 = = +

y

y y

X c x c x Y c e

u XY Ae x B e x

2

2 2
4 5 6

2 2

2 2

2 2

and
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Case III If  = 2  0, then the two ODEs are:

  + = + =X X Y Y2 24 0 0and

cos sin

cos sin



 

 

 

−

− −

= + =

 = = +

y

y y

X c x c x Y c e

u XY Ae x B e x

2

2 2

7 8 9

3 2

2 2

2 2

and

▪ Theorem 6 (Superposition principle): If u1, u2, ..., uk are solutions of a 

homogeneous linear PDE, then the linear combination u = c1u1 + c2u2 + … +

ckuk, where the ci, i = 1, 2, ..., k, are constants, is also a solution.

▪ Definition: classification of equations

The linear second-order partial differential equation

u u u u u
A B C D E Fu G

x y x yx y

    
+ + + + + =

    

2 2 2

2 2
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where the coefficients A, B, C, ..., G are real constants, is said to be

hyperbolic if B2 − 4AC  0,

parabolic if B2 − 4AC = 0,

elliptic if B2 − 4AC  0.

Heat Equation: Solution by Fourier Series

, ,

( , ) , ( , ) ,

( , ) ( ),

u u
c x L t

t x
u t u L t t

u x f x x L

 
=   

 

= = 

=  

2
2

2 0 0

0 0 0 0

0 0

boundary conditions

initial condition

( , ) ( ) ( )
X T

u x t X x T t
X c T


 

=  = = −2
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andX X T c T  + = + =20 0

( , ) ( ) ( ) and ( , ) ( ) ( )u t X T t u L t X L T t= = = =0 0 0 0

T(t)  0 for all t ⇒ X(0) = 0 and X(L) = 0

, ( ) ( ),X X X X L + = = =0 0 0 0

( ) ,

( ) cosh sinh ,

( ) cos sin ,

X x c c x

X x c x c x

X x c x c x



   

   

= + =

= + = − 

= + = 

1 2
2

1 2
2

1 2

0

0

0

▪ When the boundary conditions X(0) = 0 and X(L) = 0 are applied to the first 

and 2nd equations, these solutions yield only X(x) = 0, so u = 0.

▪ But when X(0) = 0 is applied to the 3rd equation, we find that c1 = 0 and X(x) = 

c2 sin x. The second boundary condition then implies that X(L) = c2 sin L = 0.
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▪ To obtain a nontrivial solution, we must have c2  0 and sin L = 0. So L = n 

or  = n/L. 

▪ Hence X’’ + X = 0 possesses nontrivial solutions when:

/ , , ,  ,n n n L n  = ==2 2 2 2 1 2 3

▪ These values of  are the eigenvalues of the problem; the eigenfunctions are:

( ) sinn
n

X x c x
L


= 2

( / )( ) c n L t
nT c T T t c e  − + =  =

2 2 2 22
30

( / ) ( / )( , ) ( ) ( ) sin sinc n L t c n L t
n n n n

n n
u x t X x T t c x c e A e x

L L
  − −= = =

2 2 2 2 2 2 2 2

2 3

▪ Each of the product functions un(x,t) is a particular solution of the PDE, and 

each un(x,t) satisfies both boundary conditions as well.
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▪ The solution of the entire problem: by the superposition principle

( / )( , ) ( , ) sin   −

= =
= = 

c n L t
n nn n

n
Lu x t u x t A e x

2 2 2 2

1 1

▪ To satisfy the initial condition, we would have to choose the coefficient An in 

such a manner that:
( , ) ( ) sin 

=
= =  nn

n
Lu x f x A x

1
0

▪ Hence An must be the coefficients of the Fourier sine series (half-range 

expansion of f in a sine series), thus

( ) sin = 
L

n
n

L LA f x x dx
0

2

( ) ( / )( , ) ( )sin sin  −

=
=  

L c n L t
n

n n
L L Lu x t f x x dx e x

2 2 2 2

1 0

2

In the special case when the initial temperature is u(x, 0) = 100, L = , and c2
 = 1,
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( )n

nA n

 − −
=  

 

200 1 1

( )
( , ) sin

n
n t

n

u x t e nx
n


−

=

 − −
=  

 


2

1

200 1 1

u(x, t) graphed as a function of x u(x, t) graphed as a function of t
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6. Fourier transform (FT)

▪ Fourier series are powerful tools for problems involving functions that are 

periodic or defined over a finite interval −L ≤ x ≤ L.

▪ If a nonperiodic function f(x) is to be represented over an arbitrarily large 

interval, some generalization of a Fourier series is required.

▪ Letting L → ∞ in a FS leads to the introduction of a diff. type of representation 

called a Fourier integral representation, where the function f is defined for all x 

and need not be periodic. This representation forms the basis of so called FT.

Fourier Transform and Its Inverse

( ) { ( )} ( ) 
 −

−
= = F i xF f x f x e dx

( ) { ( )} ( ) 


  

−

−
= = F i xf x F F e d1 1

2

Fourier transform

Inverse Fourier transform
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▪ Theorem 7 (Existence of the Fourier Transform): If f(x) is absolutely integrable 

on the x-axis and piecewise continuous on every finite interval, then the 

Fourier transform F() exists.

▪ Example 19: Fourier Transform

Find the Fourier transform of f(x) = 1 if |x|  1 and f(x) = 0 otherwise.

sin
( ) ( ) 2 sinc

i x
i x i ie

F e dx e e
i i


    


   

−
− −

−
−

 =  = = − = =  
− −  

1
1

1
1

1
1 2

▪ Example 20: Fourier Transform

Find the Fourier transform of f(x) = e−ax if x  0 and f(x) = 0 if x  0, a  0

( )

( )
( )

a i x
ax i x e

F e e dx
a i a i




 

− + − −=  = =
− + +0

0

1
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▪ Example 21: Fourier Transform for the Delta Dirac Function

if 0
( ) and ( )

undefined if 0

x
x x dx

x
 



−


= = =


0

1

f(x)(x − a) = f(a)(x − a) ( ) ( ) ( )f x x a dx f a


−
− =

{ ( )} ( )
0
1F i x i x

x
x x e dx e  

 − −

=−
= = =

{ ( )} ( )F i x i x i a

x a
x a x a e dx e e   

 − − −

=−
− = − = =

properties of the Fourier transform

▪ Theorem 8 (Linearity of the Fourier Transform): The FT is a linear operation; 

that is, for any functions f(x) and g(x) whose FT exist and any constants a and 

b, the FT of af + bg exists, and { ( ) ( )} { ( )} { ( )}F F Faf x bg x a f x b g x+ = +
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▪ Theorem 9 (Differentiation in the time domain): Let f(x) be continuous on the x-

axis and f(x) → 0 as |x| → ∞. Furthermore, let f’(x) be absolutely integrable on 

the x-axis. Then
{ ( )} { ( )}F Ff x i f x =

( ){ ( )} ( ) { ( )}F Fn nf x i f x=

▪ Theorem 10 (Differentiation in the frequency domain): Let f(x) be a continuous 

and differentiable function with an n times differentiable Fourier transform 

F(). Then
{ ( )} [ ( )]F d
xf x i F

d



=

{ ( )} [ ( )]F
n

n n
n

d
x f x i F

d



=

for all n such that F(n)() → 0 as || → ∞
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▪ Example 22: Fourier Transform

Find the Fourier transform of , a  0( ) a xf x e−=
2 2

The function f(x) is continuous and differentiable for all x and

a x a x ue dx e dx e du
a a

  − − −

− − −
= = =  

2 2 2 2 21

absolutely integrable over the interval (−∞, ∞). f(x) satisfies the differential 

equation: f’ + 2a2xf = 0.

{ ( )} { ( )} ( ) ( )F Ff x a xf x a F F   + =  + =2 22 0 2 0

ln ( ) ln ( ) aF
d d F A F Ae

F a a




    
−

= −  = − +  = 

2

2
2

4
2 2

1

2 4

( ) ( ) ( ) { ( )}


 


−

−
= = =  = = F aF A f x dx F f x e

a a

2

240
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Fourier transform of a Gaussian

( ) xf x e −=
2 xe dx −

−
=

2

1Normalized Gaussian function

Convolution property

( )( ) ( ) ( ) ( ) ( )f g x f t g x t dt f x t g t dt
 

− −
 = − = − 

( ) { ( )}

( )








 

−

−

= =

=  =

F
f

F f x e

f F f e

2

2

4

2 The Gaussian                    is its own FT( ) xf x e −=
2

▪ Theorem 11 (The convolution theorem for Fourier transforms): Let the 

functions f(x) and g(x) be piecewise continuous, bounded, and absolutely 

integrable over (−∞, ∞) with the respective FT F() and G(). Then

{( )( )} { ( )} { ( )} ( ) ( )F F Ff g x f x g x F G  = =
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( )( ) ( ) ( ) i xf g x F G e d  




−
 = 

1
2

▪ Example 23: Fourier Transform

It was shown in Example 19 that the function f(x) = 1 if |x|  1 and f(x) = 0 

otherwise, has the Fourier transform F() = 2sinc(/), so by the convolution 

theorem it follows that                                                               . 

Confirm this result by calculating (f ∗ f)(x) and finding its Fourier transform.

{( )( )} ( ) ( ) sinc ( / )F f f x F F    = = 24

 , , ( )
( ) ( )

, otherwise

t x x
f t f x t

−   + −  
− =

1 1 1 2 0
0

 , , ( )
( ) ( )

, otherwise

1 1 1 0 2
0
x t x

f t f x t
−    

− =

and, conversely,
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, ( )
( )( )

, ( )

x

x

dt x x
f f x

dt x x

+

−

−

 = + −  
 = 

= −  





1

1
1

1

2 2 0

2 0 2
and ( )( )  otherwisef f x = 0

{( )( )} ( ) ( )

cos sin
sinc

F i x i xf f x x e dx x e dx 

  

 

− −

−
 = + + −

−  = = =  
 

 
0 2

2 0

2
2

2 2

2 2

1 2
2 4 4

Parseval formula

( ) ( )f x dx F d 


 

− −
= 

2 21
2

▪ Theorem 12 (The Parseval relation for the Fourier transforms): If f(x) has the 

Fourier transforms F(), Then
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▪ Example 24: Using the result of Example 19 and the Parseval relation, show 

that sin
d


 





−
=

2

2

The FT of f(x) = 1 if |x|  1 and f(x) = 0 otherwise is
sin

( )F





= 2
sin sin

dx d d
 

  
  

 

− − −
= =  =  

2 21 2
2 21

1
1 2 4

2

▪ Theorem 13 (Fourier transforms involving scaling x by a, shifting x by a, and 

shifting  by 0): If f(x) has the Fourier transforms F(), Then:

{ ( )} ( / ),

{ ( )} ( )

{ ( )} ( )









 

−

= 

− =

= −

F

F
F

i a

i x

af ax F a a

f x a e F

e f x F0
0

1 0
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Duality property

( ) ( ) ( ) ( ) ( )  


      

  

− − −
=  = =  

i x i x i xf x F e d f x F e d F e d1
2 2

▪ Example 25: Find the Fourier transform of f(x) = 1

( ) ( )  
 − −

− −
= = 

i x i xF f x e dx e dx could not be evaluated

The function f(x) = 1 does not satisfy the existence conditions; it is neither 

absolute integrable nor square integrable. Its FT does not converge. 

F{(t)} = 1 ⇒ F{1} = 2(−) = 2()

( ) ( ) ( ) { ( )}Fi i xf F e d F x e dx F x    
 − −

− −
− = = = 2

{ ( )} ( )F F x f = −2
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▪ Example 26: Fourier transform of the signum function

 ,
( ) sgn( )

,

x
f x x

x
− 

= =


1 0
1 0

( ) ( ) ( )i x i xF e dx e dx 
− −

−
= − + 

0

0
1 1

The two integrals cannot be evaluated. Instead, we will define an 

intermediate signal fa(x) as:

( ) sgn( )f x x=

,
( ) ,  0

,−

− 
= 



ax

a ax

e x
f x a

e x

0

0
where

( ) ( ) ( )at i t at i t
a

i
F e e dt e e dt

a
  




− − −

−
= − + = −

+ 
0

2 20

2

( )af x
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▪ Example 27: Fourier transform of the unit step function

0,
( ) ( )

,

x
f x H x

x


= =


0
1 0

{ ( )} ( )F i x i xH x H x e dx e dx
 −  − 

−
= = 0 could not be evaluated

( ) {sgn( )} limF
a

i
F x

ia




→

 = = − =
  +2 20

2 2

H(x) = ½ + ½ sgn(x) ⇒ F{H(x)} = F{½ + ½ sgn(x)}

{ ( )} ( )F H x i


= +
1
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