
AVL Tree 

In this lecture, you will learn what an avl tree is. Also, you will find working 

examples of various operations performed on an avl tree in C, C++, Java and Python. 

AVL tree is a self-balancing binary search tree in which each node maintains extra 

information called a balance factor whose value is either -1, 0 or +1. 

AVL tree got its name after its inventor Georgy Adelson-Velsky and Landis. 

 

Balance Factor 

Balance factor of a node in an AVL tree is the difference between the height of the 

left subtree and that of the right subtree of that node. 

Balance Factor = (Height of Left Subtree - Height of Right Subtree) or (Height of 

Right Subtree - Height of Left Subtree) 

The self balancing property of an avl tree is maintained by the balance factor. The 

value of balance factor should always be -1, 0 or +1. 

An example of a balanced avl tree is: 

Avl tree 

 

Operations on an AVL tree 

Various operations that can be performed on an AVL tree are: 

Rotating the subtrees in an AVL Tree 



In rotation operation, the positions of the nodes of a subtree are interchanged. 

There are two types of rotations: 

 

Left Rotate 

In left-rotation, the arrangement of the nodes on the right is transformed into the 

arrangements on the left node. 

Algorithm 

1. Let the initial tree be: Left rotate 

2. If y has a left subtree, assign x as the parent of the left subtree of y. 

Assign x as the parent of the left subtree of 

y 

3. If the parent of x is NULL, make y as the root of the tree. 

4. Else if x is the left child of p, make y as the left child of p. 

5. Else assign y as the right child of p. Change the 

parent of x to that of y 



6. Make y as the parent of x. Assign y as the 

parent of x. 

 

Right Rotate 

In left-rotation, the arrangement of the nodes on the left is transformed into the 

arrangements on the right node. 

1. Let the initial tree be: Initial tree 

2. If x has a right subtree, assign y as the parent of the right subtree of x. 

Assign y as the parent of the right subtree 

of x 

3. If the parent of y is NULL, make x as the root of the tree. 

4. Else if y is the right child of its parent p, make x as the right child of p. 



5. Else assign x as the left child of p. Assign the 

parent of y as the parent of x. 

6. Make x as the parent of y. Assign x as the 

parent of y 

 

Left-Right and Right-Left Rotate 

In left-right rotation, the arrangements are first shifted to the left and then to the right. 

1. Do left rotation on x-y. 

Left 

rotate x-y 



2. Do right rotation on y-z. 

Right 

rotate z-y 

In right-left rotation, the arrangements are first shifted to the right and then to the left. 

1. Do right rotation on x-y. 

Right 

rotate x-y 

2. Do left rotation on z-y. 

Left 

rotate z-y 

 



Algorithm to insert a newNode 

A newNode is always inserted as a leaf node with balance factor equal to 0. 

1. Let the initial tree be: 

Initial 

tree for insertion 

Let the node to be inserted be: New node 

2. Go to the appropriate leaf node to insert a newNode using the following 

recursive steps. Compare newKey with rootKey of the current tree.  

a. If newKey < rootKey, call insertion algorithm on the left subtree of the 

current node until the leaf node is reached. 

b. Else if newKey > rootKey, call insertion algorithm on the right subtree 

of current node until the leaf node is reached. 



c. Else, return leafNode. 

Finding the location to insert newNode 

3. Compare leafKey obtained from the above steps with newKey:  

a. If newKey < leafKey, make newNode as the leftChild of leafNode. 

b. Else, make newNode as rightChild of leafNode. 

Inserting the new node 



4. Update balanceFactor of the nodes. 

Updating the 

balance factor after insertion 

5. If the nodes are unbalanced, then rebalance the node.  

a. If balanceFactor > 1, it means the height of the left subtree is greater 

than that of the right subtree. So, do a right rotation or left-right 

rotation  

i. If newNodeKey < leftChildKey do right rotation. 

ii. Else, do left-right rotation. 

Balancing the tree with rotation

Balancing the tree with rotation 



b. If balanceFactor < -1, it means the height of the right subtree is greater 

than that of the left subtree. So, do right rotation or right-left rotation  

i. If newNodeKey > rightChildKey do left rotation. 

ii. Else, do right-left rotation 

6. The final tree is: 

Final balanced 

tree 

 

Algorithm to Delete a node 

A node is always deleted as a leaf node. After deleting a node, the balance factors of 

the nodes get changed. In order to rebalance the balance factor, suitable rotations are 

performed. 

1. Locate nodeToBeDeleted (recursion is used to find nodeToBeDeleted in the 

code used below). 



Locating the 

node to be deleted 

2. There are three cases for deleting a node:  

a. If nodeToBeDeleted is the leaf node (ie. does not have any child), then 

remove nodeToBeDeleted. 

b. If nodeToBeDeleted has one child, then substitute the contents of 

nodeToBeDeleted with that of the child. Remove the child. 

c. If nodeToBeDeleted has two children, find the inorder successor w of 

nodeToBeDeleted (ie. node with a minimum value of key in the right 

subtree). 

Finding 

the successor 



i. Substitute the contents of nodeToBeDeleted with that of w. 

Substitute the node to be deleted 

ii. Remove the leaf node w. 

Remove w 



3. Update balanceFactor of the nodes. 

Update bf 

4. Rebalance the tree if the balance factor of any of the nodes is not equal to -1, 0 

or 1.  

a. If balanceFactor of currentNode > 1,  

i. If balanceFactor of leftChild >= 0, do right rotation. 

Right-rotate for balancing the tree 

ii. Else do left-right rotation. 

b. If balanceFactor of currentNode < -1,  

i. If balanceFactor of rightChild <= 0, do left rotation. 

ii. Else do right-left rotation. 

5. The final tree is: Avl tree final 



 

 

// AVL tree implementation in C++ 

 

#include <iostream> 

using namespace std; 

 

class Node { 

   public: 

  int key; 

  Node *left; 

  Node *right; 

  int height; 

}; 

 

int max(int a, int b); 

 

// Calculate height 

int height(Node *N) { 

  if (N == NULL) 

    return 0; 

  return N->height; 

} 

 

int max(int a, int b) { 

  return (a > b) ? a : b; 

} 

 

// New node creation 

Node *newNode(int key) { 

  Node *node = new Node(); 

  node->key = key; 

  node->left = NULL; 

  node->right = NULL; 

  node->height = 1; 

  return (node); 

} 

 

// Rotate right 

Node *rightRotate(Node *y) { 

  Node *x = y->left; 

  Node *T2 = x->right; 

  x->right = y; 

  y->left = T2; 

  y->height = max(height(y->left), 

          height(y->right)) + 

        1; 

  x->height = max(height(x->left), 

          height(x->right)) + 

        1; 

  return x; 

} 

 

// Rotate left 

Node *leftRotate(Node *x) { 

  Node *y = x->right; 

  Node *T2 = y->left; 

  y->left = x; 

  x->right = T2; 



  x->height = max(height(x->left), 

          height(x->right)) + 

        1; 

  y->height = max(height(y->left), 

          height(y->right)) + 

        1; 

  return y; 

} 

 

// Get the balance factor of each node 

int getBalanceFactor(Node *N) { 

  if (N == NULL) 

    return 0; 

  return height(N->left) - 

       height(N->right); 

} 

 

// Insert a node 

Node *insertNode(Node *node, int key) { 

  // Find the correct postion and insert the node 

  if (node == NULL) 

    return (newNode(key)); 

  if (key < node->key) 

    node->left = insertNode(node->left, key); 

  else if (key > node->key) 

    node->right = insertNode(node->right, key); 

  else 

    return node; 

 

  // Update the balance factor of each node and 

  // balance the tree 

  node->height = 1 + max(height(node->left), 

               height(node->right)); 

  int balanceFactor = getBalanceFactor(node); 

  if (balanceFactor > 1) { 

    if (key < node->left->key) { 

      return rightRotate(node); 

    } else if (key > node->left->key) { 

      node->left = leftRotate(node->left); 

      return rightRotate(node); 

    } 

  } 

  if (balanceFactor < -1) { 

    if (key > node->right->key) { 

      return leftRotate(node); 

    } else if (key < node->right->key) { 

      node->right = rightRotate(node->right); 

      return leftRotate(node); 

    } 

  } 

  return node; 

} 

 

// Node with minimum value 

Node *nodeWithMimumValue(Node *node) { 

  Node *current = node; 

  while (current->left != NULL) 

    current = current->left; 

  return current; 

} 

 



// Delete a node 

Node *deleteNode(Node *root, int key) { 

  // Find the node and delete it 

  if (root == NULL) 

    return root; 

  if (key < root->key) 

    root->left = deleteNode(root->left, key); 

  else if (key > root->key) 

    root->right = deleteNode(root->right, key); 

  else { 

    if ((root->left == NULL) || 

      (root->right == NULL)) { 

      Node *temp = root->left ? root->left : root->right; 

      if (temp == NULL) { 

        temp = root; 

        root = NULL; 

      } else 

        *root = *temp; 

      free(temp); 

    } else { 

      Node *temp = nodeWithMimumValue(root->right); 

      root->key = temp->key; 

      root->right = deleteNode(root->right, 

                   temp->key); 

    } 

  } 

 

  if (root == NULL) 

    return root; 

 

  // Update the balance factor of each node and 

  // balance the tree 

  root->height = 1 + max(height(root->left), 

               height(root->right)); 

  int balanceFactor = getBalanceFactor(root); 

  if (balanceFactor > 1) { 

    if (getBalanceFactor(root->left) >= 0) { 

      return rightRotate(root); 

    } else { 

      root->left = leftRotate(root->left); 

      return rightRotate(root); 

    } 

  } 

  if (balanceFactor < -1) { 

    if (getBalanceFactor(root->right) <= 0) { 

      return leftRotate(root); 

    } else { 

      root->right = rightRotate(root->right); 

      return leftRotate(root); 

    } 

  } 

  return root; 

} 

 

// Print the tree 

void printTree(Node *root, string indent, bool last) { 

  if (root != nullptr) { 

    cout << indent; 

    if (last) { 

      cout << "R----"; 

      indent += "   "; 



    } else { 

      cout << "L----"; 

      indent += "|  "; 

    } 

    cout << root->key << endl; 

    printTree(root->left, indent, false); 

    printTree(root->right, indent, true); 

  } 

} 

 

int main() { 

  Node *root = NULL; 

  root = insertNode(root, 33); 

  root = insertNode(root, 13); 

  root = insertNode(root, 53); 

  root = insertNode(root, 9); 

  root = insertNode(root, 21); 

  root = insertNode(root, 61); 

  root = insertNode(root, 8); 

  root = insertNode(root, 11); 

  printTree(root, "", true); 

  root = deleteNode(root, 13); 

  cout << "After deleting " << endl; 

  printTree(root, "", true); 

} 

 


