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Bending of Beams                                                            إنعطاف الجيزان
1 Introduction 1المقدمة  

Beams are among the most important elements in structural engineering.
A beam is straight bar with the dimensions of its cross-sectional area A are much smaller than its length L.

However, in contrast to the members of a truss it is loaded by forces which are perpendicular to its axis. Then, the 
originally straight beam deforms (Fig.a). This is referred to as the bending of the beam. 
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، من أهم العناصر Lصغيرة أمام طولها Aتعد جيزان الإنعطاف وهي عناصر مستقيمة نحيلة أبعاد مقطعها العرض ي 
.  فة نقاطهاالإنشائية، فهي وعلى خلاف عناصر الجيزان الشبكية تتلقى حمولات عمودية أو مائلة على محورها و في كا

 منحنية ذات أنصاف قطر انحناء كبيرة لذل
ً
 أشكالا

ً
ك يقال بأنها في تتشوه هذه الجيزان المستقيمة عند تحميلها آخذة

. (Fig.a)انظر الشكل . bendingحالة انعطاف 
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d𝑥
= −𝑞(𝑥)

d𝑀

d𝑥
= 𝑉(𝑥)

𝑑2𝑀

𝑑𝑥2
= −𝑞(𝑥)𝑉 = න

𝐴

𝜏𝑑𝐴 𝑁 = න
𝐴

𝜎𝑑𝐴 = 0 𝑀 = න
𝐴

𝑧𝜎𝑑𝐴

Bending of Beams                                                            إنعطاف الجيزان
 في ميكانيك المواد 

ً
صلات ، أن مقاومة الجائز لهذه الحمولات ونقل تأثيرها إلى مسانده تكون عبر مح1رأينا سابقا

التي سنعتبرها هنا غائبة N ، والقوة الناظمية V، وقوة القص Mإجهاد تسمى قوى داخلية هي عزم الانعطاف 
.  في بحثنا السابق لأننا درسنا الإجهادات والتشوهات الناتجة عنها

ما سنرى في ينشأ عزم الانعطاف في مقطع ما كمحصلة لإجهاد ناظمي يتوزع على كامل نقاط هذا المقطع بشكل خطي ك
 بينما تنشأ قوة القص عن إجهاد مماس ي للمقطع يتوزع على نقاطه بشكل غير خطي سيُدر. درسنا اليوم

ً
.س لاحقا

.Beam bending theoryتشكل دراسة توزع هذين الإجهادين جزءً مما يعرف بنظرية إنعطاف الجيزان 

z 
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2 Basic Equations of Ordinary Bending Theory (Simple Beam Theory) 
Equations enabling the determination of the stresses and deformations due to the bending of a 
beam, will now be derived . In the following we restrict ourselves to ordinary (uniaxial) bending, i.e., 
we assume that the axis z is an axis of symmetry of the cross section & the loads act in the z-x plane.

In addition to the previous statics equations, 
Hooke’s law  and the geometrical (kinematic) 
relations will be used.
Assuming that the normal stresses 𝜎𝑦 & 𝜎𝑧 in 
the beam are neglected compared with 𝜎𝑥. 
Then Hooke’s law is given by 

𝑉 = න
𝐴

𝜏𝑑𝐴 𝑁 = න
𝐴

𝜎𝑑𝐴 = 0 𝑀 = න
𝐴

𝑧𝜎𝑑𝐴

d𝑉

d𝑥
= −𝑞(𝑥)

d𝑀

d𝑥
= 𝑉(𝑥)

𝑑2𝑀

𝑑𝑥2
= −𝑞(𝑥)

𝜎𝑥 = 𝜎 = 𝐸 𝜀𝑥 = 𝐸𝜀 & 𝜏𝑧𝑥 = 𝜏 = 𝐺𝛾𝑧𝑥 = 𝐺 𝛾 
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d𝑉

d𝑥
= −𝑞(𝑥)

d𝑀

d𝑥
= 𝑉(𝑥)

𝑑2𝑀

𝑑𝑥2
= −𝑞(𝑥)𝑉 = න

𝐴

𝜏𝑑𝐴 𝑁 = න
𝐴

𝜎𝑑𝐴 = 0 𝑀 = න
𝐴

𝑧𝜎𝑑𝐴

additional assumptions 
a) The displacement w is independent of z : 

𝑤 = 𝑤(𝑥)

This implies that the height of the beam does
not change due to bending:  𝜀𝑧 = 𝜕𝑤/𝜕𝑧 =  0. 

b) Plane cross sections of the beam remain 
plane during the bending. In addition to the 
displacement 𝑤, a cross section undergoes a 

rotation. The angle of rotation 𝜓 =  𝜓(𝑥) is 
a small angle; it is counted as positive if the 

rotation is counterclockwise. Thus, 

The displacement 𝑢 of a point 𝑃 which is located at a distance 𝑧 from the 𝑥-axis is given by 𝑢(𝑥, 𝑧) = 𝜓(𝑥) 𝑧 . 

𝜎𝑥 = 𝜎 = 𝐸 𝜀𝑥 = 𝐸𝜀 & 𝜏𝑧𝑥 = 𝜏 = 𝐺𝛾𝑧𝑥 = 𝐺 𝛾 
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d𝑉

d𝑥
= −𝑞(𝑥)

d𝑀

d𝑥
= 𝑉(𝑥)

𝑑2𝑀

𝑑𝑥2
= −𝑞(𝑥)𝑉 = න

𝐴

𝜏𝑑𝐴 𝑁 = න
𝐴

𝜎𝑑𝐴 = 0 𝑀 = න
𝐴

𝑧𝜎𝑑𝐴

𝜎𝑥 = 𝜎 = 𝐸 𝜀𝑥 = 𝐸𝜀 & 𝜏𝑧𝑥 = 𝜏 = 𝐺𝛾𝑧𝑥 = 𝐺 𝛾 𝑢(𝑥, 𝑧) = 𝜓(𝑥) 𝑧 

𝜎 = 𝐸𝜀 = 𝐸
𝜕𝑢

𝜕𝑥
= 𝐸

𝑑𝜓

𝑑𝑥
𝑧 = 𝐸𝜓′𝑧

𝜏 = 𝐺
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 𝐺(𝜓 𝑥 + 𝑤′)

𝑤 = 𝑤(𝑥)

where 𝑑( )/𝑑𝑥 = ( )′ and 𝑤′ represents 
the slope of the deformed axis of the beam. 

𝑁 = න
𝐴

𝜎𝑑𝐴 = 0 = 𝐸𝜓′ න
𝐴

𝑧𝑑𝐴 = 0

which implies that the 𝑦-axis has to be a 
centroidal axis: C is the centroid of the section. 

𝑀 = න
𝐴

𝑧𝜎𝑑𝐴 = 𝐸𝜓′ න
𝐴

𝑧2𝑑𝐴 = 𝐸𝐼𝑦𝜓′
Where 𝐼𝑦 = 𝐴׬

𝑧2𝑑𝐴 is the second moment of area about 𝑦. 

Kinematic relations into Hooke’s Law 
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3 Normal Stresses in Bending Beams 

𝜎 =
𝑀

𝐼𝑦
𝑧

𝑀 = න
𝐴

𝑧𝜎𝑑𝐴 = 𝐸𝜓′ න
𝐴

𝑧2𝑑𝐴 = 𝐸𝐼𝑦𝜓′  𝐸𝜓′ =
𝑀

𝐼𝑦
𝜎 = 𝐸𝜓′𝑧

Bending formula

It shows that the normal stresses, which are referred to as the flexural or bending stresses (الانعطافإجهاد) , are 
linearly distributed in z -direction as shown in Fig. If the bending moment 𝑀 is positive, the stresses are positive 
(tensile stresses) for z > 0 and they are negative (compressive stresses) for z < 0. For z = 0 (i.e., in the x, y -plane) we 

have σ = 0. Since ε = σ/E, the strain ε is also zero in the x, y plane: the fibers in this plane do not undergo any 
elongation or contraction. Therefore, this plane is called the neutral surface of the beam. The intersection of a cross 
section of the beam with the neutral surface (i.e., the y-axis) is called the neutral axis (السليمالمحور ) . The bending 
stresses (tensile or compressive) attain their maximum values at the extreme fibers. With the notation zmax for the 
maximum value of z (often also denoted by c) and : 𝜎𝑚𝑎𝑥 =

𝑀

𝐼𝑦
𝑧 𝑚𝑎𝑥 =

𝑀

𝑊
  .

Compare with 𝜎 =
𝑁

𝐴

Where  𝑊 =
𝐼𝑦

𝑧𝑚𝑎𝑥
,  is [L3] (often also denoted by S ) and called the section modulus (معامل المقطع) . 

𝐼𝑦  is [L4] 

:الإجهاد الناظمي في انعطاف الجيزان4.3

Sub. into


𝐳 𝒎𝒂𝒙

𝐳 𝒎𝒊𝒏

𝝈 𝒎𝒂𝒙

𝒙

𝒛

𝑀
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If the state of stress in a beam is investigated, it often suffices to determine only the normal stresses 
since the shear stresses are usually negligibly small (slender beams!).
There are several different types of problems arising in this context. 
If, for example, the bending moment 𝑀, the section modulus 𝑊 and the allowable stress 𝜎𝑎𝑙𝑙𝑜𝑤 are 
known, one has to verify that the maximum stress 𝜎max  satisfies the requirement 

𝜎max ≤ 𝜎𝑎𝑙𝑙𝑜𝑤
 →

𝑀

𝑊
≤ 𝜎𝑎𝑙𝑙𝑜𝑤 this is called stress check. تحقيق الإجهادات

On the other hand, if 𝑀 and 𝜎𝑎𝑙𝑙𝑜𝑤 are given, the required section modulus can be calculated from 

𝑊𝑟𝑒𝑞 =
𝑀

𝜎𝑎𝑙𝑙𝑜𝑤
  This is referred to as the design of a beam. تصميم الجائز 

Finally, if 𝑊 and 𝜎𝑎𝑙𝑙𝑜𝑤 are given, the allowable load can be calculated from the condition that the 
maximum bending moment 𝑀𝑚𝑎𝑥 must not exceed the allowable moment 𝑀𝑎𝑙𝑙𝑜𝑤 =  𝑊𝜎𝑎𝑙𝑙𝑜𝑤: 

𝑀𝑚𝑎𝑥 ≤ 𝑊 𝜎𝑎𝑙𝑙𝑜𝑤 

العزم الأعظمي
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Ex. 1 As a first example we consider a rectangular area (width 𝑏, height ℎ). 
The coordinate system with the origin at the centroid 𝐶 is given; (Fig. a).
In order to determine 𝐼𝑦, we select an infinitesimal area  𝑑𝐴 = 𝑏𝑑𝑧 

according to (Fig. b) Then every point of the element has the same distance 
z from the y-axis. Thus, we obtain 

𝐼𝑦 = න 𝑧2𝑑𝐴 = න
− ൗℎ

2

+ ൗℎ
2
𝑧2(𝑏𝑑𝑧) =

𝑏

3
𝑧3

− Τℎ 2
+ Τℎ 2 =

𝑏ℎ3

12

Ex. 2 In a second example we calculate the moments of inertia of a circular 

area (radius 𝑅) 

Ex. 3 In a third example we calculate the moments of inertia of a ring area 

(inner radius 𝑅𝑖  and outer radius 𝑅𝑎) 

𝐼𝑦 = 𝐼𝑧 =
1

2
න 𝑟2𝑑𝐴 =

1

2
න

0

𝑅

𝑟2(2𝜋𝑟𝑑𝑟) =
𝜋

4
𝑅4

𝐼𝑦 = 𝐼𝑧 =
𝜋

4
𝑅𝑎

4 −
𝜋

4
𝑅𝑖

4 = 𝜋𝑡𝑅𝑚(𝑅𝑚
2 + 1

4𝑡2)

For the thin ring: 𝑡 ≪ 𝑅𝑚

𝐼𝑦 = 𝐼𝑧 = 𝜋𝑡𝑅𝑚
3
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Example 1 The cross section of a cantilever beam (𝑙 = 3 𝑚) 

consists of a circular ring 𝑅𝑖 =  4 𝑐𝑚, 𝑅𝑎 =  5 𝑐𝑚  The 
allowable stress is given by 𝜎𝑎𝑙𝑙𝑜𝑤 = 150 𝑀𝑃𝑎. Determine 
the allowable value of the load 𝐹. 

Solution:
𝑊 =

𝐼𝑦

𝑧𝑚𝑎𝑥
=

𝜋
4

𝑅𝑎
4 − 𝑅𝑖

4

𝑅𝑎
=

𝜋 54 − 44

4(5)
= 57.96 𝑐𝑚3 = 57960 𝑚𝑚3

𝑀𝑎𝑙𝑙𝑜𝑤 = 𝑊𝜎𝑎𝑙𝑙𝑜𝑤 = 57960 × 150 = 8694000 𝑁 ∙ 𝑚𝑚 = 8.694 𝑘𝑁 ∙ 𝑚

𝑀𝑚𝑎𝑥 = 𝐹𝑙 ≤ 𝑀𝑎𝑙𝑙𝑜𝑤 = 8.694 𝑘𝑁 ∙ 𝑚

𝐹𝑎𝑙𝑙𝑜𝑤𝑙 = 𝑀𝑎𝑙𝑙𝑜𝑤 = 8.694 𝑘𝑁 ∙ 𝑚

𝐹𝑎𝑙𝑙𝑜𝑤 =
𝑀𝑎𝑙𝑙𝑜𝑤

3
= 2.9 𝑘𝑁
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Example 2 The simply supported beam (length 𝑙 = 10 𝑚) 
carries the force 𝐹 = 200 𝑘𝑁. Find the required side length 
𝑐 of the thin-walled quadratic cross section such that the 
allowable stress 𝜎𝑎𝑙𝑙𝑜 = 200 𝑀𝑃𝑎 is not exceeded. The 
thickness 𝑡 = 15 𝑚𝑚 of the profile is given 

Solution: From the bending moment diagram: 𝑀𝑚𝑎𝑥 =

2𝑙
3

𝑙
3

𝑙
𝐹 =

2𝑙

9
𝐹 = 444.4 𝑘𝑁 ∙ 𝑚 = 444.4 × 106𝑁 ∙ 𝑚𝑚

The value of required section modulus is: 𝑊𝑟𝑒𝑞 =
𝑀𝑚𝑎𝑥

𝜎𝑎𝑙𝑙𝑜
=

444.4×106

200
= 2.222 × 106 𝑚𝑚3 

From the shape given in the figure, the section modulus as function of 𝑐 is: 𝑊 =
𝐼𝑦

Τ𝑐 2
=

2𝐼𝑦

𝑐
But for the hollow square section

𝐼𝑦 =
𝑐4 − 𝑐 − 2𝑡 4

12
=

𝑐2 − 𝑐 − 2𝑡 2 𝑐2 + 𝑐 − 2𝑡 2

12
=

 (2𝑡)(2𝑐 − 2𝑡)(2𝑐2 − 4𝑐𝑡 + 4𝑡2)

12
=

2𝑡(𝑐 − 𝑡)(𝑐2 − 2𝑐𝑡 + 2𝑡2)

3

𝐼𝑦 =
2𝑡(𝑐3 − 3𝑐2𝑡 + 4𝑐𝑡2 − 2𝑡3)

3
 ⇒𝑊 =

4𝑡(𝑐3 − 3𝑐2𝑡 + 4𝑐𝑡2 − 2𝑡3)

3𝑐
=

60(𝑐3 − 45𝑐2 + 900𝑐 − 6750)

3𝑐
= 2.222 × 106

⇒ 𝑐3 − 45𝑐2 + 900𝑐 − 6750 =
2.222 × 106 

20
𝑐 ⇒  𝑐3 − 45𝑐2 − 110211𝑐 − 6750 = 0

⇒ 𝑐1 = −310, 𝑐2 = 335, 𝑐3 = −0.061 ⇒ 𝑐 = 335 𝑚𝑚



5/19/2025 https://manara.edu.sy/ 11

Example 2 The simply supported beam (length 𝑙 = 10 𝑚) 
carries the force 𝐹 = 200 𝑘𝑁. Find the required side length 
𝑐 of the thin-walled quadratic cross section such that the 
allowable stress 𝜎𝑎𝑙𝑙𝑜 = 200 𝑀𝑃𝑎 is not exceeded. The 
thickness 𝑡 = 15 𝑚𝑚 of the profile is given 

Solution:
From the bending moment diagram: 𝑀𝑚𝑎𝑥 =

2𝑙
3

𝑙
3

𝑙
𝐹 =

2𝑙

9
𝐹444.4 × 106𝑁 ∙ 𝑚𝑚

The value of required section modulus is: 𝑊𝑟𝑒𝑞 =
𝑀𝑚𝑎𝑥

𝜎𝑎𝑙𝑙𝑜
=

444.4×106

200
= 2.222 × 106 𝑚𝑚3 

From the shape given in the figure, the section modulus as function of 𝑐 is: 𝑊 =
𝐼𝑦

Τ𝑐 2
=

2𝐼𝑦

𝑐

But the inertia moment for the thin-walled section can be simplified as:

𝐼𝑦 = 2
𝑡𝑐3

12
+ 2𝑡𝑐

𝑐 − 2𝑡

2

2

+ 2
(𝑐 − 2𝑡)𝑡3

12
≈

𝑡𝑐3

6
+

𝑡𝑐3

2
=

4𝑡𝑐3

6
=

2𝑡𝑐3

3

𝑦′

𝑦′

𝐼𝑦 =
2𝑡(𝑐3 − 3𝑐2𝑡 + 4𝑐𝑡2 − 2𝑡3)

3

𝐼𝑦 =
2𝑡(𝑐3 − 3𝑐2𝑡 + 4𝑐𝑡2 − 2𝑡3)

3

⇒ 𝑊 =
2𝐼𝑦

𝑐
=

4𝑡𝑐3

3𝑐
=

4𝑡𝑐2

3
= 2.222 × 106 𝑚𝑚3 Take  𝑡 = 15 𝑚𝑚 to get: 20𝑐2 = 2.222 × 106

⇒ 𝑐 = 0.1111 × 106 = 333 𝑚𝑚 ≈ 335 𝑚𝑚
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𝑙/3

𝐹Example 3 The simply supported beam (length 𝑙 = 9 𝑚) 
carries the force 𝐹 = 210 𝑘𝑁. Find the required side length 
𝑐 of the thin-walled quadratic cross section such that the 
allowable stress 𝜎𝑎𝑙𝑙𝑜 = 200 𝑀𝑃𝑎 is not exceeded. The 
thickness 𝑡 = 12 𝑚𝑚 of the profile is given 
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4. Second Moments of Area 
4.2.1 Definitions: The shown coordinate system is arbitrary
The coordinates of the centroid 𝐶 of an area may be obtained from:

First moments of area (Static moments of area) 

𝑦𝐶 =
1

𝐴
න

𝐴

𝑦𝑑𝐴 , 𝑧𝐶 =
1

𝐴
න

𝐴

𝑧𝑑𝐴

𝑆𝑦 = න
𝐴

𝑧𝑑𝐴 , 𝑆𝑧 = න
𝐴

𝑦𝑑𝐴

Second moments of area (Inertia moments of area)

𝐼𝑦 = න
𝐴

𝑧2𝑑𝐴 𝐼𝑧 = න
𝐴

𝑦2𝑑𝐴 𝐼𝑦𝑧 = 𝐼𝑧𝑦 = − න
𝐴

𝑦𝑧𝑑𝐴 𝐼𝑃 = න
𝐴

(𝑦2 + 𝑧2)𝑑𝐴 = 𝐼𝑦 + 𝐼𝑧

Radii of gyration (Radii plural of radius) 

𝑟𝑔𝑦 =
𝐼𝑦

𝐴 𝑟𝑔𝑧 =
𝐼𝑧

𝐴
𝑟𝑔𝑃 =

𝐼𝑃

𝐴
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Frequently, an area A is composed of several parts 𝐴𝑖  the moments of 
inertia of which are known (Fig.). In this case, the moment of inertia 
about the 𝑦-axis, for example, is obtained as the sum of the moments of 
inertia 𝐼𝑦𝑖

 of the individual parts about the same axis: 

𝐼𝑦 = න
𝐴

𝑧2𝑑𝐴 = න
𝐴1

𝑧2𝑑𝐴 + න
𝐴2

𝑧2𝑑𝐴 +∙= ෍ 𝐼𝑦𝑖
𝐼𝑧 = ෍ 𝐼𝑧𝑖

𝐼𝑦𝑧 = ෍ 𝐼𝑦𝑧𝑖

4.2.2 Parallel-Axis Theorem ത𝑦 = 𝑦 + ത𝑦𝐶 ҧ𝑧 = 𝑧 + ҧ𝑧𝐶

𝐼ത𝑦 = න ҧ𝑧2𝑑𝐴 = න(𝑧 + ҧ𝑧𝐶)2𝑑𝐴 = න 𝑧2𝑑𝐴 + 2 ҧ𝑧𝐶 න 𝑧𝑑𝐴 + ҧ𝑧𝐶
2 න 𝑑𝐴

𝐼ത𝑦 = න 𝑧2𝑑𝐴 + 2 ҧ𝑧𝐶 0 + ҧ𝑧𝐶
2𝐴 = 𝐼𝑦 + ҧ𝑧𝐶

2𝐴

𝐼ത𝑦 = 𝐼𝑦 + ҧ𝑧𝐶
2𝐴 𝐼 ҧ𝑧 = 𝐼𝑧 + ത𝑦𝐶

2𝐴 𝐼ത𝑦 ҧ𝑧 = 𝐼𝑦𝑧 − ത𝑦𝐶 ҧ𝑧𝐶𝐴

Ex. Determine the moment of inertia with respect to the ത𝑦 axis 
for the shown  rectangle. 

𝐼ത𝑦 =
𝑏ℎ3

12
+

ℎ

2

2

𝑏ℎ =
𝑏ℎ3

3
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Ex. 2 Determine the moments of inertia for the I-profile shown in Fig. a. Simplify the results for 𝑑, 𝑡 ≪ 𝑏, ℎ. 

Solution We consider the area to be composed of three rectangles (Fig. b). 

𝐼𝑦 =
𝑑ℎ3

12
+ 2

𝑏𝑡3

12
+

𝑡

2
+

ℎ

2

2

𝑏𝑡 =
𝑑ℎ3

12
+

𝑏𝑡3

6
+

𝑏𝑡3

2
+ 𝑏ℎ𝑡2 +

ℎ2𝑏𝑡

2

𝐼𝑦 =
𝑑ℎ3

12
+

2𝑏𝑡3

3
+ 𝑏ℎ𝑡2 +

ℎ2𝑏𝑡

2
≈

𝑑ℎ3

12
+

ℎ2𝑏𝑡

2
=

𝑑ℎ3

12
+ 2

ℎ

2

2

𝑏𝑡

𝐼𝑧 =
ℎ𝑡3

12
+ 2

𝑡𝑏3

12
≈

𝑡𝑏3

6
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