Bending of Beams OInzdl Sllasi)

1 Introduction dadll 1

Beams are among the most important elements in structural engineering.

A beam is straight bar with the dimensions of its cross-sectional area 4 are much smaller than its |ength L.

However, in contrast to the members of a truss it is loaded by forces which are perpendicular to its axis. Then, the

originally straight beam deforms (Fig.a). This is referred to as the bending of the beam.
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2 Basic Equations of Ordinary Bending Theory (Simple Beam Theory)

Equations enabling the determination of the stresses and deformations due to the bending of a
beam, will now be derived . In the following we restrict ourselves to ordinary (uniaxial) bending, i.e.,
we assume that the axis zis an axis of symmetry of the cross section & the loads act in the z-xplane.

dV dM d*M Vv Y !
= | L=V | S =@ _u{? ERRRE M +dM | i

dx A
Vo EE =l |

V=deA N=j gdA =0 szzadA +dV —Y-“
A A A z [e— dz — 2 '-
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In addition to the previous statics equations, 2 b
Hooke’s law and the geometrical (kinematic) e ,|

. . d
relations will be used. z )
Assuming that the normal stresses 0, & 0, in - dr » ;
the beam are neglected compared with o,. ; I—r‘””_
z — —

Then Hooke's law is given by — - C
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14 =jA TdA || N =]A odA =0 M =jA zodA j—z = —q(x) C;—A;I =V(x) lex]\j = —q(x)
additional assumptions
a) The displacement wis independent of z: _U;:’ ERER! lr\_lf_F(]jf |

w = w(x) \| v/ T \ r 4.,’? +'.E-
This implies that the height of the beam does V+dV - +T o
not change due to bending: <, = dw/dz = 0. i i‘_ o _.L'j—d:{f ) ’
b) Plane cross sections of the beam remain o
plane during the bending. In addition to the d» [j zi {j -
displacement v/, a cross section undergoes a L . J o
rotation. The angle of rotation 1) = 1/(x) is F.Tﬂ,— : 5{
a small angle; it is counted as positive if the dz | L, — S I ;
rotation is counterclockwise. Thus, Hﬁl _ -

¢ Tz d =

The displacement 12 of a point P which is located at a distance Z from the X-axis is given by 1.(x, z) = 1)(x) 7 .
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Kinematic relations into Hooke’'s Law Vv ‘ |,
M ! M4+dM
E E ou = F ap E (‘
—Fe=F—=F 'y =
0= ax dx 4=z \s |

i} T | i . :
du Ow l V4+dV \ T o |
T=G(az+ax>=6(¢(x)+w’) z ~— dz — -

{, =
/ T
T r+dr )
a b
where d()/dx = ()" and W' represents |
O/dx = () and w'rep _duze
the slope of the deformed axis of the beam. . ’. _—
z T
} | op |
- - | > j{
which implies that the y-axis has to be a dz |\ — \_a-"\
| | d e - -— ) :
centroidal axis: C is the centroid of the section. i "; P
C _ d | __________ = </
Where I, = [, z°dAis the second moment of area about y
" 5/19/2025
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3 Normal Stresses in Bending Beams ozl Sllaail 3 @bl sl 4.3

| r-mmen ;
— Bending formula- - Compare with -

Z

—

= = = -

o max

It shows that the normal stresses, which are referred to as the flexural or bending stresses (3lai¥| sl >1), are

Iinearly distributed in z -direction as shown in Fig. If the bending moment M is positive, the stresses are positive

(tensile stresses) for z> 0 and they are negative (compressive stresses) for z<0. For z=0 (i.e., in the x, y-plane) we

have 0 = 0. Since € = 0/ the strain € is also zero in the x y plane: the fibers in this plane do not undergo any

elongation or contraction. Therefore, this plane is called the newtral surface of the beam. The intersection of a cross

section of the beam with the neutral surface (i.e., the y-axis) is called the newrral axis (s ludl js=Lll) . The bending

stresses (tensile or compressive) attain their maximum values at the extreme fibers. With the notation z__ for the

M M m

maximum value of z(often also denoted by ¢) and: 05,4, = —Zmax = ;-
I y
Where W = —2—  is[L%] (often also denoted by 5) and called the seczion modulus (tfa.s.l\ Jelas).

max
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If the state of stress in a beam is investigated, it often suffices to determine only the normal stresses
since the shear stresses are usually negligibly small (slender beams!).

There are several different types of problems arising in this context.

If, for example, the bending moment M, the section modulus W and the allowable stress g ;;,,,, are

known, one has to verify that the maximum stress 0., satisfies the requirement

o _<ag this is called stress check. &lal =¥ §.d=s

max — “allow allow

M
—> —< 0
w

On the other hand, if M and o are given, the required section modulus can be calculated from

allow
W = — T refeted e degimnala bea, sl ;
req T 5 — is is referred to as the designof abeam. 3il=)l s casas
Finally, if W and o, are given, the allowable load can be calculated from the condition that the
maximum bending moment M_ .. must not exceed the allowable moment M ;;;,,, = Wa ;..
Mmax S W O-allow

go.]é_c&z’\ fﬁ"'”
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Ex. 1 As afirst example we consider a rectangular area (width b, height h).
The coordinate system with the origin at the centroid C is given; (Fig. ).
In order to determine Iy, we select an infinitesimal area dA = bdz
according to (Fig. b) Then every point of the element has the same distance
zfrom the y~axis. Thus, we obtain

+h 3
I T LY L

Ly

Ex. 2 In asecond example we calculate the moments of inertia of a circular
area (radius R)

1 1 (R s
=1, = —frsz = —f r?(2nrdr) = —R*
0

I
e/ 2 2 4

Ex. 3 In athird example we calculate the moments of inertia of a ring area

(inner radius R; and outer radius R ;)

/A
I, =1,=—R&-

T
i —R} = ntR,, (R3, + 3t?)

4

For the thinring: t < R,

I, = I, = ntR3,

y

q-_—oC h

)
Y= =
a A
R

Y

a Yz

Y @
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Example 1 The cross section of a cantilever beam ([ =3 m) lF
consists of a circularring (R, = 4cm,Ra = 5 cm) The s [
allowable stress is given by 7 ,;;,,, = 150 MPa.Determine

the allowable value of the load F . 1z
Solution: T 4 4
’ I 1 (Rqg — R; (5% — 44
W =—2 =4( - ‘)= ( ) _ 57.96 cm? = 57960 mm®
Zmax Ra 4(5)
M, =Wo, =57960 % 150 = 8694000 N - mm = 8.694 kN - m

Mmax — Fl S MCLUOW —_ 8.694 kN m

FallOWl — Mallow —_ 8.694‘ kN m

Mallow
Fallow — 3 — 29 kN
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Example 2 The simply supported beam (length [ = 10 m) F {
carries the force F = 200 kN. Find the required side length Y ==
C of the thin-walled quadratic cross section such that the 757 % Y h {
allowable stress 0 ,;;,, = 200 MPa is not exceeded. The “ £ ~ 13 j
thickness t = 15 mm of the profile is given (21) (l) L
: 3)\3 21
Solution:  From the bending moment diagram: Mpqx = fF = (3) F = 4444 kN -m = 444.4 X 10°N - mm
6
The value of required section modulusis: W, = Umax _ 2243X10° _ 2222 x 106 mm?®
Oallo 200
I 21
From the shape given in the figure, the section modulus as function of Cis: W = /3’2 = —2 But for the hollow square section
c c
L c*—(c—20)* [c?—(c—2t)%][c* + (c—2t)*] (2t)(2c —2t)(2c* —4ct +4t?) 2t(c —t)(c* — 2ct + 2t%)
2 12 - 12 a 12 - 3
2t(c3 — 3c?t + 4ct? — 2t3) 4t(c3 — 3c%t + 4ct? — 2t3)  60(c3 — 45¢% + 900c — 6750) .
L, = >W = = =2.222 X 10
3 3c 3c
2.222 x 10°

= ¢3 — 45¢? + 900c — 6750 = < )C = ¢3 —45¢? —110211c — 6750 = 0

20
= C1 = —310, Cyr = 335, C3 = —0.061 = ¢ = 335mm
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Example 2 The simply supported beam (length [ = 10 m) F i C
carries the force F = 200 kN. Find the required side length Y =™

C of the thin-walled quadratic cross section such that the 757 %

allowable stress 0 ,;;,, = 200 MPa is not exceeded. The L £ a Uﬁ:!

thickness t = 15 mm of the profile is given

Solution: (2_1) (L) .
From the bending moment diagram: M, = #F = (?) F444.4 x 10°N - mm

) ) ) M 444.4%10°
The value of required section modulusis: W, = am“x =——o— = 2.222 X 10® mm3
allo
N . . , , I, 21
From the shape given in the figure, the section modulus as function of C is: W = 5 =

_2t(c® = 3¢t + 4ct? = 2t7)

But the inertia moment for the thin-walled section can be simplified as: L, -
2
tc? c— 2t tc? tc®  4tcd 2tc? 3
I, =2—+2t + ~—+— = = 2t(c )
y T2 C( 2 > 6 2 6 3 I, = >
2I, Atc®  4tc? A
>W = e = 2.222 % 10° mm Take t = 15 mm o get: 20c¢? = 2.222 x 106
= ¢ =+/0.1111 X 106 = 333 mm =~ 335 mm
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Example 3 The simply supported beam (length [ = 9 m) lF , ¢
carries the force F = 210 kN. Find the required side length

2 31 ||
C of the thin-walled quadratic cross section such that the 1/3 7777 Y
allowable stress 0 ,;;,, = 200 MPa is not exceeded. The ] \
Y2
thickness t = 12 mm of the profile is given
m 5/19/2025 https://manara.edu.sy/ 12




4.Second Moments of Area

4.2.1 Definitions: The shown coordinate system is arbitrary

The coordinates of the centroid C of an area may be obtained from:

1 yanze [ y
First moments of area (Static moments of area)
Sy = j zdA S, = j ydA
4 4 V2
Second moments of area (Inertia moments of area)
Iy=j z%dA Iz=j ydA Iyz:Izy:_f yzdA IP:J (y2+Z2)dA=IJ/+IZ
A A A A

Radii of gyration (Radii plural of radius)

Tgy = > Tyz = 'z Typ = i

\ A gz A gP A
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Frequently, an area A is composed of several parts 4; the moments of

inertia of which are known (Fig.). In this case, the moment of inertia

about the y-axis, for example, is obtained as the sum of the moments of

inertia Iy,. of the individual parts about the same axis:

L, =j z%2dA =j zsz+j z%dA +-=ZIyi I, =lei
A A A,

1

£= Dl

4.2.2 Parallel-Axis Theorem y=y+Yyc

_|_

13—,=Jz‘2dA=j(z+z'C)2dA=jzsz+ZZ'CJ zdA + Z j

13—,=jzsz+Zz_C(0)+zA—I + ZZA
137_1 + 2z A IZ=Iz+yCA I)‘/Z_=Iyz_3_’CZ_CA

Ex. Determine the moment of inertia with respect to the ¥ axis
for the shown rectangle.

__br® (h ‘ oy = 2P
7 =12 T\2 !
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Rectangle
b
b it h it bbh 4 -_; bt
= ol |} —_ —_— 0 —(h" + b —
V i 12 12 AR 3
71
S are
° o o . o o
T ol |a 1 12 = 5
FERT
Triangle
il
T bh* bl o o b h* bbh 4 % % bh*
C ¢ — —_—h =1 — —f =2 —_— ™ =h —_—
Nz | \ 4 36 15 a+a’) 7y (b—2a) | 2= (A" + ata’) | =
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Circle
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Ex. 2 Determine the moments of inertia for the |-profile shown in Fig. a. Simplify the results for d, t < b, h.

Solution We consider the area to be composed of three rectangles (Fig. b). ’,b;2+* b/2 ,l
1
dh® _[be3 [t R\ dh® bt® bt*  _ h?bt Al
Iy=E+2 E-I_(E-I_E) bt| = 17 + 6 + > + bht“ + 5 —*‘-— hifz
Y htfz
dh3 2bt3 , h?bt  dh® h%pt _dh® S |(" Zb | I 4
b=ttt s+t~ " <5>t .oae ]
ht®> _tb® th3
IZ=E+212z c e
EO=v=—3 -
ol (h—tt];’i‘
v | ;
Ca (h+t)/2
o — -4
vt

17
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