[

g doola
g 8)LioJi
: Structural Mechanics (2)
Lecture No-06
https://manara.edu.sy/ Slide 1


https://manara.edu.sy/

26/05/2025

B. Ha

(2)

Structural Mechanics

Displacements Methods Py

Indeterminate Structures
(Slope Deflection Method)

Indeterminate Structures
(Moment Distributed Method)

https://manara.edu.sy/ Slide 2


https://manara.edu.sy/

Slope-Deflection for Beams and Frames
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SIope-Deerction Method for Beams and Frames

:
o

* Analysis of Frames without Sidesway.

* Analysis of Frames with Sidesway.
s
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Basic Concept of the Slope-Deflection Method and Slope-Deflection PA
Equations. doola
i bt
When a continuous beam or a frame is subjected to external loads, internal moments generally developed at
the ends of its individual members.
The slope-deflection equations relate the moments at the ends of a member to the rotations and
displacements of its ends and the external loads applied to the member.
To derive the slope-deflection equations, let us focus our attention on an arbitrary member AB of the

continuous beam shown in foIIowing figure>

P Undeformed position

| L | Deformed position
(elastic curve)
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Basic Concept of the Slope-Deflection Method and Slope-Deflection PAD

[Fp]
(o] *
8 Equations. doola
S 0)liadl
3 ;
W
When the beam is subjected to external loads and support settlements, MMQ F‘TT“T‘T—T'W1>MM
: : . A B
member AB deforms, as shown in the figure, and internal moments are ! L .
| El = constant |
_ induced at its ends. : T
(1]
. . |
E The free-body diagram and the elastic curve for member AB are shown | Tangent at A <
) . | Undeformed A
using an exaggerated scale. : 24
. . . . . . . . AE============ _===:==::==:4B
As indicated in this figure, double-subscript notation is used for
member end moments, with the first subscript identifying the member il
end at which the moment acts and the second subscript indicating the A
< other end of the member. Thus, M, denotes the moment at end A of BUSEES e e —
S_-E member AB, whereas M, represents the moment at end B of member
[J)
2 AB. Also, as shown in figure, GA and GB denote, respectively, the s
é . . Tangent at B
5 rotations of ends A and B of the member with respect to the
& : .
undeformed (horizontal) position of the member. 1 (b)
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Basic Concept of the Slope-Deflection Method and Slope-Deflection PAY/
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A denotes the relative translation between the two ends of the MMQV‘WW1>MM
: o . . A B
member in the direction perpendicular to the undeformed axis of the ! L i
| El = constant
. member; and the angle \J denotes the rotation of the member’s chord :
(1}
. . . . .. |
E (i.e., the straight line connecting the deformed positions of the member | Tangent at A <
. |
=3 . . ) . Undeformed
ends) due to the relative translation A. Since the deformations are | B
. AE============ _===:==::==:4ﬂ'
assumed to be small, the chord rotation can be expressed as
A E" —_
V= I A
S e 4
§ The sign convention used in this chapter is as follows:
L
3
% . Aag
5 The member end moments, end rofations, and Tangent at B
= chord rotation are positive when counterclockwise.
I (b)
https://manara.edu.sy/ Slide 6


https://manara.edu.sy/

26/05/2025

B. Haidar

Structural Mechanics (2)

Basic Concept of the Slope-Deflection Method and Slope-Deflection PA

Equations. doola
8)li_all

Tangential Deviations Due to External Loading
Mga r@
o (d)

3E!

SO S et

FEMyz 8y=0p=w=0

Tangential Deviations Due to Mg,
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The slope-deflection method is a displacement method: Primary unknowns are rotations (slopes) & [Av

deflections that determine the deviation of the deformed position from the undeformed one. &)Lial

Positive end rotations & relative deflection

Positive end moments & shear forces

End Moments & forces are external not internal!!
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Degrees of Kinematic Indeterminacy in Beams & Frames LZ\V
The degree of kinematic indeterminacy (DKI) is the number of unknown kinematic (displacement) boundary ﬁ
values for every considered segment in the structure, respecting the nature of supports & connections, and
neglecting axial deformation.

While the degree of static indeterminacy (DSI) is the number of unknown static (force) boundary values

exceeding the available number of equilibrium equations and conditions in the entire structure.

A propped cantilever is statically indeterminate beam to degree

one. Also it has one kinematic unknown 95 Axial deformation

is neglected so there is no translation at B

This continuous beam is statically indeterminate to degree one.

however it has three kinematic unknowns GA, 63' and GC

This continuous beam is statically indeterminate to degree two.

Also there is two kinematic unknowns 95, and QC
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Degrees of Kinematic Indeterminacy in Beams & Frames [Z

I

Z

The frame is statically indeterminate to degree six! However, there is only

one kinematic unknown, O 5. Since members cannot e|ongate or contract,

point B cannot move up or down, right or left.

) ) ) ) 0jlioaJl
The frame is statically indeterminate to degree one. However, there are 3

kinematic unknowns, 95,, ecand A, the horizontal displacement of B and C. Since
we do not assume axial deformations to take place in the beams or columns: B
and C must have the same horizontal displacement, and the vertical displacement

at B is zero.
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Fixed End Moments LZ\

6El 4
2

| Ma

L? * ) *?(Za—b)

wa

2
~(6L* —8La+3a%) |

12L * * 1212
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S

I
Illrll-

o)lioJl

M . —ZE(ZH +6, —3y)+FEM 4,

A Slope-deflection equations

Y= )
M., :2%(6;\ +26, —3w)+FEM,, L or 1, 2, 3 equations

FEM: fixed end moment due to external loads while the other end values are zero
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Ex.1: Compute the reactions then draw the SF & BM diagrams PAY/

daols
HA — HD — O ~_0c EI = constant ?Jh_ﬂ-”
A ===== D E=200GPa
& A=0 I=210 x 106 mm4
0, #0& 6. #0 Jf“-Sm——*
2
\Y/ [ :£(29A+6?B —3y)+FEM 4, :E(O-I—QB —O)+WL _El 0, + 66
2|E_I 2EIT 152 23EI
M, == (0, + 26, —3p)+FEM,, =20 (0426, —0)— = == 9 66
L L 12 3
M e :2%(265 +6. —3y)+FEM ¢, :Z—EI(ZQB +6.-0)+ F;L = 2? (26, +6.)+101.25
M . :2%(9B +26, —3y)+FEM, =2%(9B +26, —0) - F;L - 25' (6, +26,)—101.25
Mcp :Z—EI(ZHC+6’D—3W)+FEMCD :Z—EI(26’C+O—O)+0:8%6’C
M ¢ :Z—EI(HC+26’D—31//)+FEMCD 22—?(0C+0—0)—O=4—5IQC
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Ex.1: Compute the reactions then draw the SF & BM diagrams

l J 22 kN/m‘ ‘MBA MBA(I 1) 1351kN CB( ) oor
\ y 1 B
<TA Bu> =4 <TB > MCD< DT>
Mg T Mpgc MCD
M o = -0 + 66 Mgy + Mg =0 & Mg, + M, =0
v -2y e 1.336, +0.336, = —35.25/ El
o 0.336, +1.566, =101.25/ El
\V/ =—(29 +0 )+10l 25
2EI O=-44.41/E1 & 6. =74.34/EI
Mop =50 (0 +20.) 10025\ gy v geoei
Mo, =8%90 M ge =95.75KN.m M., = ——66KN.m
AE| M, —66kN.m M, =32.71kN.m
Mpc =—6

a

o)liaJl
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Ex.1: Compute the reactions then draw the SF & BM diagrams

Vi

n
8 73.4 72.46 62.54 21.94 ..
o
8 22 KN/m l 1 135 kN 1 1 3271 “—“’-ﬂu'l
o)liaJ
S TR (ist) 1 (ict) S)tizo)
~ 1A 31 05.75 == “95.75 tB CT 66 == 66 TC Dl
51.34
Sun = 58.6 Spa =734 Spc = 7246 Sp = 6254 Bon =210 Spe=EL94
e B, =145.86 C,= 84.48
135kN

o 51.34 KN-m 22 kN/m 1 32.71 kKN-m
3 AEIIIREINAEY a D
s e B e
: ' T T

58.6 KN 145.86 kN 84.48 kN 21.94 kKN

58.6 72.46

l\ 21.94
F B

A E __C .,
S 268 mAI\
g _734 —62.54
g 121.63
T 27.18 3271
g 1. B # |
£ l/ F \/ E \/ D
(7]

51.34 66

95.75
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Ex.2: Determine the member end moments and reactions for the PA

following continuous beam. dool A
o)lioJi
10 kN/ e
m
B I A A P 1 Fixed-End Moments:
A om o "D
| |
| o =t FEM,; = FEM,z = 0
EI = constant
) 30 kN 10(9)?
| FEMg, = 17 - 67.5kN.m @< or + 67.5 kN.m
120kN—m< ——==0)
1o FEM 5 = 67.5 kN.m ~ or — 67.5 kN.m
30 kN 30 kN
10 kN/m hlzo kN-m
) ‘ ARERE! éi%
0,=0&A=0
0 £0 & O,# 0
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Ex.2: Determine the member end moments and reactions for the PA

g following continuous beam. d2ol 4
S 8)liall
N 30 kN
10 kN/m
T I T T e | o |
= on D Equilibrium Equations:
| 6 m 9m —4m !
:‘.E EI = constant M, My
T B €
Slope Deflection Equations: C‘Q)M’“‘ (’I—Z‘ Mep
Mgy + Mg =0
Map = == (8p) = 0.333EI 0, &' AE
MCB + 120 = O
2E1
8 Mgy =="(205) = 0.667EI 6 0.111E165 + 0.222E16; = —67.5
§  Mpc =205 +0¢) + 67.5 = 0.444E] 0 + 0.222E] 0 +67.5 0.222E105 + 0.444E10¢ = —52.5
S
= — 2
£ Mep =22 (20¢ + 65) — 67.5 = 0.222E1 65 + 0.444E] 6 —67.5 Uy = — IS
z EI6, = —97.62 kN.m?
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Ex.2: Determine the member end moments and reactions for the PA

EI9, = —97.62 kN.m?

following continuous beam. doola
6)liaJl
30 kN
10 kN/m 1
BY VY ¥ ¥V v ivic 4 Elfg = —41.25 kN.m?
!

A ' on =5
|
|

| 6 m 9m 4m

EI = constant

Member End Moments:

M, = 0.333EI 85 = 0.333(=41.25) = —13.7kN.m (13.7kN.m ~)
Mg, = 0.667EI 05 = 0.667(—41.25) = —27.5kN.m (27.5kN.m ~)
Mge = 0.444E] 05 + 0.222E1 O, + 67.5 = 0.444(—41.25) + 0.222(—97.62) + 67.5 = 27.5kN.m (27.5 kN.m = )

Mg = 0.222E1 05 + 0.444E1 6, — 67.5 = 0.222(—41.25) + 0.444(—97.62) — 67.5 = =120 kN.m (120 kN.m ~)
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Ex.2: Determine the member end moments and reactions for the

[

[Fp]
g following continuous beam. d2ol 4
~ 30 kN
10 kN/m
) VI e |,
b m— 9m —4m
:‘,E EI = constant
(1]
I
o
6.87 34.72 55.27 30
{47 S 1 1 30lkN
( Y (D (o) deb ¢
A BT 275 = 775 TB CT 120 == 120 TC D
6.87 6.87 T 34.72 5599 T 30
- B,=41.59 € =853k
D : ;
8 30 kN
= 8 10 kKN/m l
L .
: ¢ AT T de |
=
| T
= 6.87 41.59 85.27
(7]
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Ex.3: Determine the reactions and draw the shear and bending moment diagrams for [Z

a the continuous beam shown in figure due to a settlement of 20 mm at support B. 5
< deal A
S 8li_al
& A B C D [
O OGN
8 m ! 8 m ! Em—

. E=70GPa  I=800(10% mm?*
w Degrees of freedom: Chord rotations:

04=0&60,=0 A B C D

HB 0 & QC *+ 0 x“m\i%‘? ().OTZm %Q,L/”//

\‘E‘HKL/’//
Br
g Fixed-End Moments: 2???2?
Yap = ——5— = —0.0025
g 0.02
‘_,5‘_’ l/JAB — T = 0.0025
& Yep =0
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Ex.3: Determine the reactions and draw the shear and bending moment diagrams for

v

§ the continuous beam shown in figure due to a settlement of 20 mm at support B. coo
g A B C D &yliall
8 m ! 8 m ! &m
E=70GPa  I=800 (10% mm?*
Slope Deflection Equations: Equilibrium Equations: Member End Moments:
g 2EI
2 Mg =—5 (6 +0.0075) Y Mor Myp = 98 kN.m ©
(E Mpc (E‘)MCD
Mpa + Mpc =0 Mg = —91kN.m (91 kN.m )
My, = 22 26, + 6, — 0.0075) | MestMep =0
Be— g MTB T TC 460, + 6, = 0 Mcg = =56 kN.m (56 kN.m ")
S 2E] _
g Mcg =~ (65 +26c — 0.0075) Op + 46 = 0.0075 Mcp = 56 kN.m ©
§ = A
2 Mqp = %(290) 0z = —0.0005 rad Mpc Rl
: 2B 6. = 0.002 rad
& Mp¢ = e (6¢)
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