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Coulomb Damping:
Viscous damping is convenient mathematically but not realistic and is not the only type of dissipative 
mechanism present in modern structural systems.
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( )( )2 2( ) / , /si ergn wh edu u u F m k m + = − =

( )( ) cos( ) sin( ) ( )sign lu t A t B t u u = + −

Any initial displacement greater than the locking one, 𝑢𝑙 
= 𝐹𝑑 

/𝑘, can put the system in free vibration regime.

The Eq. of motion depends on its direction: or,

Both forms can be written as:

The complete solution of this ODE, is :

The constants A and B, are determined according to the initial conditions (ICs). One possible scenario is to 
displace the mass to the right by 𝑢0 > 𝑢𝑙, and let free it to vibrate. 

One such mechanism is sliding friction known as Coulomb Damping. Coulomb damping is a force used to model 
dry friction that takes place between two surfaces in contact and moving relative to each other.
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First half cycle starts at 𝑡 = 0:  𝑢 0 = 𝑢0 > 𝑢𝑙 
, 𝑜𝑟 ∶  𝑘𝑢0 > 𝐹𝑑.

So motion is to left and velocity at t =0, is null. Solution (displacement 
& velocity) has the form: ( ) cos( ) sin( ) lu t A t B t u = + +

( )( ) cos( ) sin( ) ( )sign lu t A t B t u u = + −

( ) sin( ) cos( )u t A t B t   = − +

0 0(0) 0, 0, & (0) ,with  with lu B u u A u u= = = = −

( ) ( )0 0( ) cos( ) , & ( ) sin( )l l lu t u u t u u t u u t  = − + = − −

So the displacement and velocity functions are: 

( ) 0 sin( ) 0, /when  u t t t p =  = =

The motion continues to the left until: 

Where the displacement reaches the value: 

( )0 0( / ) cos( ) 2l l lu u u u u up  p= − + = − +
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( )( ) cos( ) sin( ) ( )sign lu t A t B t u u = + −

If |u(p/)|>ul , the motion restarts to right with: 

( ) cos( ) sin( ) lu t A t B t u = + −

( ) sin( ) cos( )u t A t B t   = − +

0 0

( / ) 0, 0,

& ( / ) 2 , 3

with

 with l l

u B

u u u A u u

p 

p 

= =

= − + = −

So the displacement and velocity functions are: 

( )

( )
0

0

( ) 3 cos( ) ,

& ( ) 3 sin( ).

l l

l

u t u u t u

u t u u t



 

= − −

= − −

( ) 0 sin( ) 0, 2 /when  u t t t p =  = =

The motion continues to the right until: 

Where the displacement reaches the value: 

( )0 0(2 / ) 3 cos(2 ) 4l l lu u u u u up  p= − − = −

Final Result:

For every half-cycle of motion the amplitude loss is 2ul =2Fd /k, and for a 

complete cycle the loss is 4ul .

So for n cycle (2n half-cycles) this loss is 4nul .

When the amplitude becomes less than ul , the motion stops and the mass is 

trapped in the locking zone. 
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EX. 1. A block of mass 𝑚 =  10𝑘𝑔 is restrained by a spring of stiffness 𝑘 =  5000 𝑁/𝑚 and rests on a rough 
surface with coefficient of friction 𝜇 = 0.10.

Calculate the number of half-cycles required for the mass to come to rest if a displacement of 25𝑚𝑚 is imposed 
on the block and released with zero velocity.

SOLUTION:
1. The lock displacement 𝑢𝑙 is:

u
m

m
k

2. The number of half-period of motion 𝑛, is given by
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Linear decay

𝑢𝑙 =
𝐹𝑑

𝑘
=

𝜇𝑔𝑚

𝑘
=

0.1 × 9.81 × 10

5000
= 1.96 × 10−3 m

−𝑢𝑙 ≤ 𝑢0 − 2𝑛𝑢𝑙 ≤ 𝑢𝑙
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EX. 2. A block of mass 𝑚 = 200𝑘𝑔 is restrained by a spring 
of stiffness 𝑘 = 6000 𝑁/𝑚 and rests on a rough surface 
with coefficient of friction 𝜇 = 0.15.

Calculate the number of half-cycles required for the mass to 
come to rest if a displacement of 20𝑚𝑚 is imposed on the 
block and released with zero velocity.
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Ex. 3. For the system  shown in figure, 𝑚 = 500 kg, 𝑘 = 400 ΤkN m , 𝜇 = 0.15 and the initial 
conditions are:  𝑢0 = 16 cm, ሶ𝑢0 = 0. Determine the amplitude after 8 half-cycles and the number 
of half-cycles of motion completed before the mass comes to rest 
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Response to Harmonic Excitation

An harmonic excitation can be described either by means of a sine function: p (t )=p0sint , or 

by means of a cosine function: p (t )=p0cost. 
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Equation of Motion (E.o.M.):

0

0

cos
( )

sin

p t
mu cu ku p t

p t


+ + = = 



The complete response (solution) will be the sum of the transient 

(homogenous) and steady-state (particular)components.

steady statetransient

( ) ( cos sin ) cos sint

D Du t e A t B t C t D t  −= + +  + 

Find C & D, for the cosine and sin functions of harmonic excitation
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Response to Harmonic Excitation

Undamped harmonic vibrations

0 cosmu ku p t+ = 
2

0( / )cosnu u p m t+ = 

A steady-state response (A particular solution) can be

( ) cospu t C t=  2( ) cospu t C t= −   2 2 2( )cos t cosn n stC C u t −  +  = 

2 2 2( )n n stC u − =

2 2 cosn n stu u u t + = 

2

2 2( )
n st

n

u
C




=

− 
2

where
(1 )

st

n

u
C r

r 


= =

−

The transient response (The homogeneous solution) is

( ) cos sinh n nu t A t B t = +

The complete solution is(A homogeneous solution) is
2

2 2
( ) cos sin cos t

( )
n st

n n

n

u
u t A t B t


 


= + + 

− 
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Response to Harmonic Excitation

Undamped harmonic vibrations
2

2 2
( ) cos sin cos t

( )
n st

n n

n

u
u t A t B t


 


= + + 

− 

By means of the initial conditions given by , 0 0(0) & (0)u u u u= =

the constants A and B can be calculated as follows:

2

0
0 2 2

&
( )

n st

n n

u u
A u B



 
= − =

− 

2 2

0
0 2 2 2 2

( ) cos sin cos t
( ) ( )

n st n st
n n

n n n

u u u
u t u t t

 
 

  

   
= − + +    

− −   

For two null initial conditions the complete solution is, 

( )
2

2 2
( ) cos t cos

( )
n st

n

n

u
u t t





=  −

− 
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Response to Harmonic Excitation

Undamped harmonic vibrations

( )
2

2 2
( ) cos t cos

( )
n st

n

n

u
u t t





=  −

− 

Using the trigonometric identity cos cos 2sin sin
2 2

   
 

− +
− = −

2

2 2

2
( ) sin sin

( ) 2 2
n st n n

n

u
u t t t

  



 −  +   
=    

 −    
Case 1: Natural frequency SDoF 0.2 Hz, excitation frequency 0.4 Hz.  /n=2
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Response to Harmonic Excitation

Case 2: Natural frequency SDoF 2.0 Hz, excitation frequency 2.2 Hz.  /n=1.1

Undamped harmonic vibrations

2

2 2

2
( ) sin sin

( ) 2 2
n st n n

n

u
u t t t

  



 −  +   
=    

 −    

A beat is always present, but is more evident when the natural frequency of the SDoF 

system and the excitation frequency are close
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Response to Harmonic Excitation

Undamped harmonic vibrations

 /n=1.025

 /n=1.0125

 /n=1.00625

/n=1

Resonance
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Response to Harmonic Excitation

Undamped harmonic vibrations

Resonant excitation ( = ωn)
2 2 cosn n stu u u t + =  2 2 cosn n st nu u u t  + =

A steady-state response (A particular solution) could not be ( ) cosp nu t C t=

Another possible choice is ( ) sinp nu t Ct t=

( ) sin cosp n n nu t C t Ct t  = +

2( ) 2 cos sinp n n n nu t C t Ct t   = −

Substituting into the E. o. M.

2 2 22 cos sin sin cosn n n n n n n st nC t Ct t Ct t u t       − + = 2 n stC u=

So the particular solution is ( ) sin
2

n st
p n

u
u t t t




 
=  

 
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Response to Harmonic Excitation

Undamped harmonic vibrations

The transient response (The homogeneous solution) is

( ) cos sinh n nu t A t B t = +

The complete solution is(A homogeneous solution) is

( ) cos sin sin
2

n st
n n n

u
u t A t B t t t


  

 
= + + 

 

By means of the initial conditions given by , 
0 0(0) & (0)u u u u= =

the constants A and B can be calculated as follows: 0 0& / nA u B u = =

0
0( ) cos sin sin

2
n st

n n n

n

u u
u t u t t t t


  



   
= + +   

  
For two null initial conditions the homogeneous part of the solution falls away and the complete 

solution reduces to the particular solution, 

( ) sin
2

n st
n

u
u t t t




 
=  

 
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Response to Harmonic Excitation

Undamped harmonic vibrations

( ) sin
2

n st
n

u
u t t t




 
=  

 

This is a sinusoidal vibration with increasing amplitude: C =(nust/2)t.

The amplitude grows linearly with time and when: t → , C → .

After infinite time the amplitude of the vibration is infinite as well. 
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Response to Harmonic Excitation

Damped harmonic vibrations

0 cosmu cu ku p t+ + =  2

02 ( / )cosn nu u u p m t + + = 
2 22 cosn n n stu u u u t  + + = 

( ) cos sin tpu t C t D=  + 

( ) sin t cospu t C D t= −   +  
2 2( ) cos t sinpu t C D t= −   −  

u

k

c
p0cost

mm

mg

mg
ku

cu
.

p0cost

( )2 2 2 2cos t sin 2 sin t cos cosn n n stC D t C D t u u t  −   −   + −   +   + = 

Canonical E. o. M.

Sub. Into E. o. M.

Particular solution

( )( ) ( )( )2 2 2 2 22 cos t 2 sin cosn n n n n stC D C D t u t    −  +   + −  + −   = 

( )

( )

2 2 2

2 2

This is true at any time , So

2

2 0

n n n st

n n

t

C D u

C D

  

 





−  +  = 


−  + −  = 

( )

( ) ( )

( ) ( )

2 2

2

2 22 2

2

2 22 2

2

2

2

n

n st

n n

n
n st

n n

C u

D u




 




 

 − 
=

 −  + 


 =


−  + 
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Response to Harmonic Excitation

Damped harmonic vibrations

2 22 cosn n n stu u u u t  + + = 

( ) cos sin tpu t C t D=  + 

u

k

c
p0cost

mm

mg

mg
ku

cu
.

p0cost

Canonical E. o. M.

Particular solution

( )

( ) ( ) ( ) ( )

2 2

2 2

2 22 22 2 2 2
an

2
d

2

2

n n
n st n st

n n n n

C u D u
 

 
   

−  
= =

−  +  −  + 

2( ) ( cos withsin ) 1nt

h D D D nu t e A t B t     −= + = −

By means of the initial conditions the constants A and B, can be determined 

Denominations:

- Homogeneous part of the solution: “transient”

- Particular part of the solution: “steady-state”

Visualization of the solution is illustrated in the next example
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Response to Harmonic Excitation

Damped harmonic vibrations

u
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c
p0cost

mm

mg

mg
ku

cu
.

p0cost

Example 1: n = 2p [rad/sec],  = 0.4p [rad/sec],   = 5%, ust=25mm, u0=0, 0 st nu u =
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Response to Harmonic Excitation

Damped harmonic vibrations

u

k

c
p0cost

mm

mg

mg
ku

cu
.

p0cost

Resonant excitation ( = ωn)

( ) cos sin tpu t C t D=  + 

( )

( ) ( ) ( ) ( )

2 2

2 2

2 22 22 2 2 2
an

2
d

2

2

n n
n st n st

n n n n

C u D u
 

 
   

−  
= =

−  +  −  + 

2 22 cosn n n stu u u u t  + + = Canonical E. o. M.

By substituting ( = ωn) in thee two expressions constants C  and D, becomes:

an0
2

d stu
C D


= =

This means that if damping is present, the resonant excitation is not a special case any 

more, and the complete solution of the differential equation is:

( ) ( cos sin ) sin
2

nt st
D D n

u
u t e A t B t t   



−= + +
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Response to Harmonic Excitation

Damped harmonic vibrations
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Resonant excitation ( = ωn)

( ) cos sin tpu t C t D=  + 

( )

( ) ( ) ( ) ( )

2 2

2 2

2 22 22 2 2 2
an

2
d

2

2

n n
n st n st

n n n n

C u D u
 

 
   

−  
= =

−  +  −  + 

2 22 cosn n n stu u u u t  + + = Canonical E. o. M.

By substituting ( = ωn) in thee two expressions constants C  and D, becomes:

an0
2

d stu
C D


= =

This means that if damping is present, the resonant excitation is not a special case any 

more, and the complete solution of the differential equation is:

( ) ( cos sin ) sin
2

nt st
D D n

u
u t e A t B t t   



−= + +
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Response to Harmonic Excitation

Damped harmonic vibrations

u
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c
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Resonant excitation ( = ωn)

( ) ( cos sin ) sin
2

nt st
D D n

u
u t e A t B t t   



−= + +

By means of the initial conditions the constants A and B, can be determined. 

For example in the special case,                            , A & B, are
0 00 & 0u u= =

2
an0

2
d

1

stu
A B

 
= = −

−

2
( ) sin sin

2 1

n

st
n

t

D

u
u t t

e
t









− 
= − 


 − 

After a certain time, the homogeneous part of the solution vanishes and what remains is 

a sinusoidal oscillation of the maximum limited amplitude: (umax=ust /2)

For small damping ratios ( < 0.2 ), nD and  (1−  )1/2  1, hence u (t ) becomes:

( )max( ) 1 sinnt

nu t u e t −= −
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor
The steady-state displacement of a system due to harmonic excitation is the dominant 

part of its response. This steady-state response is given by 

( ) cos sin tpu t C t D=  + 

( )

( ) ( ) ( ) ( )

2 2

2 2

2 22 22 2 2 2

2

2
Wh

2
ere and

n n
n st n st

n n n n

C u D u
 

 
   

−  
= =

−  +  −  + 

By means of the trigonometric identity: 

a cos +b sin =(a 2+b 2)1/2cos( −)   with   tan =b/a 

The steady-state response can be transformed as follows

max( ) cos( )pu t u t =  −

It is a cosine vibration with the maximum dynamic amplitude umax, given by

umax=(C 2+D 2)1/2

and the phase angle  obtained from:

tan =D /C 
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor
Substitution of C and D, in umax expression gives

( )

( ) ( ) ( ) ( )

2 2
2 2
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor

Substitution of C and D, in tan expression gives
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Defining the ratio r = /n , the two expressions simplify to
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Ex. 1. An undamped oscillator is driven by an harmonic loading. If the 

static displacement is ust= 0.05m, determine the displacement response 

amplitude for the following frequency ratios: r = 0.2, 0.9, 1.1, 1.8 & 3.0.
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Ex. 2 An undamped system consisting of a 10 kg mass and a spring of 

stiffness k =4 kN/m is acted upon by a harmonic force of magnitude 

P0=0.5kN. The displacement amplitude of the steady-state response was 

observed to be 11 cm. Determine the frequency of the excitation force.
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Ex. 3. An undamped system having a mass of 50 kg is excited by a 

harmonic force with magnitude P0=100 N and an operating frequency of 

10 Hz. The displacement amplitude of the steady-state response was 

observed to be 3.2 mm. Determine the spring constant k of the system.
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Ex. 4. An undamped system having a mass of 10 kg and a spring of 

constant of k =8 N/mm is excited by a harmonic force with magnitude 

F0=200 N and an operating frequency of  35 rad/sec. If the initial 

displacement is 21 mm and the initial velocity is 175mm/sec, determine 

the total displacement, velocity and acceleration of the mass at (a) t =2 

sec, (b) t =4 sec and (c) t =6 sec.
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Ex. 5. A portable eccentric mass shaker is sometimes used to evaluate the 

in situ dynamic properties of a structure, using two different frequencies 

and measuring the displacement amplitudes as well as the phase angles. 

Such a test was carried out on a single story building and the following 

responses were recorded: 

(1) at 1=18.30 rad/s, Po1=837 kN, umax1= 1.39mm & 1=8°; 

(2) at 2=60.99 rad/s, Po2= 9300 kN, umax2= 3.32mm & 2=174.29°.

Compute the natural frequency ωn & the damping ratio ξ for the structure
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Ex.6. An undamped spring-mass system having a mass of 4.5 kg and a 

spring of constant of k =3.5 N/mm is excited by a harmonic force with 

magnitude F0=100 N and an operating frequency of  18 rad/sec. If the 

initial displacement is 15 mm and the initial velocity is 150 mm/sec, 

determine  

(a) The frequency ratio

(b) The amplitude o the forced response

(c) The displacement of the mass at t =2 sec

Ex.7. A Structure having a mass of 100 kg and a translational  stiffness of 

40000 N/m is excited by a harmonic force with magnitude F0=500 N and 

an operating frequency of  2.5 Hz. The damping ratio for the structure is 

0.10. For the steady-state vibration determine  

(a) The amplitude of the steady-state displacement

(b) Its phase with respect to the exciting force, and

(c) The maximum velocity of the response
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