


Coulomb Damping:

Viscous damping is convenient mathematically but not realistic and is not the only type of dissipative

mechanism presentin modern structural systems.
One such mechanism is sliding friction known as Coulomb Damping. Coulomb damping is a force used to model

dry friction that takes place between two surfaces in contact and moving relative to each other.

‘W Direction *W Direction
of motion of motion
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ku u>0 KU u <0

mu mu
LN Fa=uN N
|N u=Fy/k |N

Any initial displacement greater than the locking one, u; = F, /k, can put the system in free vibration regime.

The Eq. of motion depends on its direction: MU +Ku =—F, or, mu +ku = +F,

Both forms can be written as: U+ C()ZU = —(sign(u'))(Fd /'m ), where 0)2 =k /'m
The complete solution of this ODE, is: u(t)=Acos(wt)+B sin(wt) —(sign(u'))u,

The constants Aand B, are determined according to the initial conditions (ICs). One possible scenario is to

displace the mass to the right by u; > u,, and let free it to vibrate.
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Direction

Uy of motion

u(t) =Acos(mt)+B sin(wt)—(sign(u))u,
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First half cycle starts at t = 0: u(0) = uy, > w;,or : kuy, > Fj,.
So motion is to left and velocity at =0, is null. Solution (displacement

& velocity) has the form: U (t) = A coS(wt )+ B sin(awt) +U,
U(t)=—Awsin(wt)+ B wcos(wt)
with u(0)=0,B =0, & with u(0)=u,, A =u,-U,
So the displacement and velocity functions are:
u(t)=(u,—u,)cos(mt) +u,, & u(t)=-w(u,—u, )sin(wt)
The motion continues to the left until:
Ut)=0=sin(wt)=0, when t=7x/w
Where the displacement reaches the value:

u (7 / w)=(u,—u, )cos(z) +u, =—u,+2u,
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% ‘ —" u(t) =Acos(wt)+B sin(wt) —(sign(u))u,
y7]
7 L If Ju(r/ w)|>u,, the motion restarts to right with:
. o u(t) = A cos(wt)+B sin(mt ) —u,

_____ u(t) =—Awsin(wt)+ B wcos(wt)

I
t=
| VWWWWWWIWWWIA - 0 with U(z/)=0, B =0,

o Yo—2U & with u(r/w)=—-u,+2u,, A=u,—3,
t= /o - : So the displacement and velocity functions are:
' u(t)=(u,—3u, )cos(wt)-u,,

Up—4U | &U(t) =-w(u, —3u, )sin(awt).

g—MAMMW\',_ t=2n/e The motion continues to the right until:

Ut)=0=sin(wt)=0, when t=27/w
Where the displacement reaches the value:

FUgl ot oo A TN
””””””” Lmeardecay u(27z/a))=(u0—3u,)cos(27z)—u, =U,—4U, o,
+U, /\ 3n/coA Sn/mA /\ t Final Result:
i wo| | e sn/mv \/ ™ For every half-cycle of motion the amplitude loss is 2u,=2F,/k, and for a
v \/ Locklng zone  complete cycle the loss is 4u,.
\/ So for n cycle (2n half-cycles) this loss is 4nu, .
tor "”:f = When the amplitude becomes less than u,, the motion stops and the mass is

trapped in the locking zone.
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EX. 1. Ablock of massm = 10kg is restrained by a spring of stiffness k = 5000 N /m and rests on a rough

surface with coefficient of friction u = 0.10.

Calculate the number of half-cycles requwed for the mass to come to rest if a dlsplacement of 25mm is |mposed
U
on the block and released with zero velocity. U b
T2n'/03 L2

= o o 671:/0)\/ \/
v \_/ Locklng zone
—Up | 7= 27r/(o

SOLhUTI'OI':‘; | Fa _pgm _01x981x10 _ .

. 1 1 o U, = —= = = . m
1. The lock displacement U, is l 2 I 5000

2. The number of half-period of motion 7, is given by —U; < U — 2nu; S Y
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EX. 2. A block of massm = 200kg is restrained by a spring At
of stiffness k = 6000 N/m and rests on a rough surface gy gy Faaid

Llnear decay

37:/(9A Sn/oo/\ /\ | t

with coefficient of friction u = 0.15.

Calculate the number of half-cycles required for the mass to

+U|
. . .. =y ) : >
come to rest if a displacement of 20mm is imposed on the | ET 4“/"’\/6“/(”\/ \/ //F
block and released with zero velocity. Locking zone
—Uo iZU| 1=/ |
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Ex. 3. For the system shown in figure, m = 500 kg, k = 400 kN/m, 4 = 0.15 and the initial
conditions are: Ug = 16 cm, 4y = 0. Determine the amplitude after 8 half-cycles and the number

of half-cycles of motion completed before the mass comes to rest

+Uo e T 21/® 5

Lmear decay

©] 375/0)A Sn/w/\ /\ l
~T oo 4/o 675/0)\/ \/ /
v \/ Locking zone

I RV .
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Response to Harmonic Excitation
u

c LI V7 R i
e PY S e S e R
K ! !

T | Foe 1
An harmonic excitation can be described either by means of a sine function: p(t)=p,sinQt, or
by means of a cosine function: p(t)=p,cosCt.

Equation of Motion (E.0.M.):
P, COSCt

P, SIN Ot

The complete response (solution) will be the sum of the transient
(homogenous) and steady-state (particular)components.

MU +cu + ku = p(t)={

u(t)=e (A cos apt +B sin wpt) +C cosOt +D sin Ot

steady state

tran3|ent

Find C & D, for the cosine and sin functions of harmonic excitation
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Response to Harmonic Excitation
Undamped harmonic vibrations

mu +Kku = p, cosQt U +awu =(p, / m)cosOt U -+@’U = wu, cosOt

A steady-state response (A particular solution) can be

u,(t)=C cost U, (t) =-C Q% cost (-CY¥ +C @) cosQt = a'u,, cosOt
2
(0 — ¥ )C = U C = CZO”USt - C =" —~ Where r _£
(a)n - ) (1_r ) @,

The transient response (The homogeneous solution) is

u,(t)=Acosaot+Bsinat

The complete solution is(A homogeneous solution) is ,

u(t):Acosa)nt+Bsina)nt+( ?”uztzz cosQat
a, —
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Response to Harmonic Excitation

Undamped harmonic vibrations

U
ut)=Acosaot+Bsinot +—"=-—cosQt

(0 — Q)
By means of the initial conditions given by , u(0)=u, & u(0)=u,
the constants A and B can be calculated as follows:
2 .
A =u, - —ntls B=—0
’ (a)r? _QZ) @,
2
U u, ). ou
ut)=|u,——"—< [cosa,t +| —= [sinat + —"—-—cosQt
(a)n — €2 ) @, (a)n — €2 )
For two null initial conditions the complete solution is,
2
w.u
ut) =-—"——(cosQt—cosm,t)
(a)n — (2 )
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Response to Harmonic Excitation
Undamped harmonic vibrations ,

a)nus
ut)=-——=
a) —

(cosQt—cosam,t )

2
(@]
Using the trigonometric identity COS¢x —C0s B =-2sin a;’B sin anr,B
20U . (Q-w . (Q+w
u(t)=-—="—5-sin| ———t |sin| ——t
(Q°—w)) 2 2

Case 1: Natural frequency SDoF 0.2 Hz, excitation frequency 0.4 Hz. Q /@,=2

200

—Total response =-=-Emvelope

400 F
‘I

300 v
200 F
1000 f
0
=100

Displacement

=200
=300
400

=500

0 2 4 i d 10 12 14 16 13 20
Time [s]
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Response to Harmonic Excitation
Undamped harmonic vibrations

ut)= “)“ 3 sin(Q_w” jsin(Q+w t)
(@ —af) | 2 2

Case 2: Natural frequency SDoF 2.0 Hz, excitation frequency 2.2 Hz. Q /@,=1.1

a0

—Total response ==-Envelope

60
420} /

P
20 }

]

=20 F

Displacement

40 }

60 §F

g0

Time [s]

A beat is always present, but is more evident when the natural frequency of the SDoF
system and the excitation frequency are close
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Response to Harmonic Excitation
Undamped harmonic vibrations

Q /w,=1.025

Displacement

Q /@,=1.0125

Displacement
) N
(-]

Displacement

8883888 .8 8

i Qlw=1
g o Resonance
& -500 F
8 1000 f
-2000 E
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Response to Harmonic Excitation
Undamped harmonic vibrations

Resonant excitation (Q = w,,)
U +@’U = wu, cosOt U +@’U =a'U, cosmt
A steady-state response (A particular solution) could notbe U | (t) =C cosam t
Another possible choiceis U (t) =Ctsinet
u,(t)=Csinagt +Cta, cosa,t
U, (t) =2C @, cosmt —Cte; sinat
Substituting into the E. 0. M.

2C @, cosat —Ctar sinat +Cta’ sinat = o, cosm t 2C =wu

n—" st

So the particular solution is u (t) ( > jt sino t
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Response to Harmonic Excitation

Undamped harmonic vibrations
The transient response (The homogeneous solution) is

u,(t)=Acosmt+Bsinaot
The complete solution is(A homogeneous solution) is

u()= Acosa)t+Bsma)t+( ; jtsma)t

By means of the initial conditions given by , u(0)=u, & u(0)=u,

the constants A and B can be calculated as follows: A=u, & B =U,/w,

u()=u,cosmt +(u—°jsin .t +(a)“u5t jt Sinw t
a)n

For two null initial conditions the homogeneous part of the solution falls away and the complete
solution reduces to the particular solution,

u(t)= ( ; jsma)t
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Response to Harmonic Excitation
Undamped harmonic vibrations

ut)= ( ”ZS‘jtsma)t

This is a sinusoidal vibration with increasing amplitude: C =(a,Ug/2)t.

The amplitude grows linearly with time and when: t — o0, C — 0.
After infinite time the amplitude of the vibration is infinite as well.

2000 ¢
500 E

0 e
500 E
-1000 E
-2000 E

Displacement
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Response to Harmonic Excitation

v
m

cu’

Damped harmonic vibrations +

PoCOSCAt
»

s |
mU +cuU +Ku = p, cosOt U+ 2L U +o'u = (pO/m)coth

Canonical E.o. M. U +2&m U +@'U = @fu, cosOt

Particular solution u,(t)=C cosxt +DsinQt
u, (t)=-CQsinQt+DQcost

U, (t) =-CQ°cosQt—DQ’*sinOt  Sub. Into E. 0. M.
~C ¥ cosQt—DO’sinQt + 28w, (-CQsinQt+ DOQCcosOt )+ wiu = wil, cosOt
((a)f -o’)C +2§a)nQD)coth+(—2§a)nQC +( ] —QZ)D)sin Ot = wu, cosOt

n=—" st

- - . (a)Z—QZ)
This is true at any time t, So C = o : 2
n= st 2 2 2
(a),f _QZ)C +20,0D = Uy r = - 5 Q2)§+(2(§wng)
— o @, €2
20,00 +(0) ~07)D =0 e (02 -9%) + (260,92
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Response to Harmonic Excitation

N i
Damped harmonic vibrations k: mo
$mg )
Canonical E.o. M. U +2&m U +@U = w'u, cosOt
Particular solution u,(t)=C cosxt +DsinQt

(o -)
(@2 %) +(260,Q2)

2, Q)

C =wu, and D =,

(o -02) +(220,9)
u, t)=e~"(Acosapt +Bsinapt) with @, =@, 1-&°
By means of the initial conditions the constants A and B, can be determined

Denominations:
- Homogeneous part of the solution: “transient”
- Particular part of the solution: “steady-state”

Visualization of the solution is illustrated in the next example
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Response to Harmonic Excitation
v
Damped harmonic vibrations <] M

e

PoCOSQt
*

&0

- =-Steady-state response

40 . . . . | -~ =—Total response

ha
=

Displacement
=

5/27/2025 https://manara.edu.sy/  Structural Dynamics & Earthquake Engineering



Response to Harmonic Excitation

Al
Damped harmonic vibrations [T g
. ol
Resonant excitation (Q2 = w,) Fmg

Canonical E.o. M. U +2&m U + U = ofu, cosOt
u,(t)=C cosxt +DsinQt
2

C=wu ( r? 2)
=
e (a)r? —Q2)2 +(2§a)n§2)2

26w, Q2

and D =,

(02 %) + (260, Q)
By substituting (€2 = w,) in thee two expressions constants C and D, becomes:
C=0 and D=ot
25

This means that if damping is present, the resonant excitation is not a special case any
more, and the complete solution of the differential equation is:

ut)=e~"'(Acosamyt +B sinw,t) +;—S;Ksin @t

5/27/2025 https://manara.edu.sy/  Structural Dynamics & Earthquake Engineering



Response to Harmonic Excitation

A
Damped harmonic vibrations o B oo
L K
Resonant excitation (Q2 = w,) g 1

Canonical E.o. M. U +2&m U +@U = wu, cosOt
u,(t)=C cosxt +DsinQt
2

_a)

25w, Q)

and D =wuu

n= st

(02 %) +(260,Q2)
By substituting (2 = w,) In thee two expressions constants C and D, becomes:
C=0 and D=——t
28

This means that if damping is present, the resonant excitation is not a special case any
more, and the complete solution of the differential equation is:

ut)=e~"'(Acosm,t +Bsinw,t) +;—Ztsin @t
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Response to Harmonic Excitation

A
Damped harmonic vibrations o B oo
. K
Resonant excitation (Q2 = w,) g 1

ut)=e ="' (Acosam,t +B sinw,t) +;—zsin .t

By means of the initial conditions the constants A and B, can be determined.

For example in the special case, u, =0 & U, =0, A & B, are

A=0 and B=——s

251 &

—Sapt

«/1— 52
After a certain time, the homogeneous part of the solution vanishes and what remains is
a sinusoidal oscillation of the maximum limited amplitude: (u,,,,=Uy/2¢)

ut) =‘;—St sinw t — sin @, t

For small damping ratios (£<0.2), w~w and (1- £)Y2~ 1, hence u(t) becomes:

U(t) =,y (1-e " )sinat
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor
The steady-state displacement of a system due to harmonic excitation is the dominant
part of its response. This steady-state response is given by

u,(t)=C cosQt +DsinQt
(er =)
(02 ~0%) +(260,)°
By means of the trigonometric identity:

2l Q)

and D =, 2 -
(02 -9 +(20,Q)

Where C =oU

n>- st

a cosa +b sina =(a 2+b )2cos(a—p) with tanB=b/a
The steady-state response can be transformed as follows
u, () =Uu,, cos(Cxt — )
It is a cosine vibration with the maximum dynamic amplitude u,,,, given by
umax:(C 2+D 2)1/2

and the phase angle ¢ obtained from:
tanp=D /C
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor
Substitution of C and D, in u,.,, expression gives

(a)f (0% ) 2, Q)

Himex = wﬁuSt 2 T wrfust 2 2
\{ (o -cv) +<szna>2} { o er) +<zf:wna>}

(@ -©) 260,0

umax = a)r?ust 2 + 2
\{(wﬁ—ﬁz) +(2§a)nQ)2} La)ﬁ—ﬁz) +(2§a)nQ)2}
U a)U\/ [ (f ) +(250,2)

o (02 -2 +(2§an)2}

2

umax:a)r?ust 21
1 \/(“’5_92) +(260,0) 1
max st DAF = Smax _
- \/(1_(9/ o,f) +(2¢(0la,)) a \/(1—(Q/a)n)2)2+(2§(Q/a)n))2
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Response to Harmonic Excitation
Damped harmonic vibrations

Dynamic Amplification Factor

Substitution of C and D, in tang expression gives

tang =2 = 22;@)”92 = 2§(Qla)n)2
C for-0] - (ar

Defining the ratio r = /@, , the two expressions simplify to

DAF = Jmax — =
Us \/(1—r2) +(2¢r)’

2&r

tan¢:1—§r2
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Dynamic Amplification factor
[ I L - -

Frequency ratio Q/m,
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0.00
0.0 0.20 0.50
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©
2 a0
CG |
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(Vp]
@®
e
al
n i
[} 0.5 1 15 2z

Frequency ratio Q/o,
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Ex. 1. An undamped oscillator is driven by an harmonic loading. If the
static displacement is u,= 0.05m, determine the displacement response
amplitude for the following frequency ratios: r =0.2,0.9, 1.1, 1.8 & 3.0.
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Ex. 2 An undamped system consisting of a 10 kg mass and a spring of
stiffness k =4 kN/m Is acted upon by a harmonic force of magnitude
P,=0.5kN. The displacement amplitude of the steady-state response was
observed to be 11 cm. Determine the frequency of the excitation force.
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Ex. 3. An undamped system having a mass of 50 kg is excited by a
harmonic force with magnitude P,=100 N and an operating frequency of
10 Hz. The displacement amplitude of the steady-state response was
observed to be 3.2 mm. Determine the spring constant k of the system.
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Ex. 4. An undamped system having a mass of 10 kg and a spring of
constant of k =8 N/mm Is excited by a harmonic force with magnitude
F,=200 N and an operating frequency of 35 rad/sec. If the initial
displacement is 21 mm and the initial velocity is 175mm/sec, determine
the total displacement, velocity and acceleration of the mass at (a) t =2

sec, (b) t =4 sec and (c) t =6 sec.

5/27/2025 https://manara.edu.sy/  Structural Dynamics & Earthquake Engineering



EX. 5. A portable eccentric mass shaker is sometimes used to evaluate the
In situ dynamic properties of a structure, using two different frequencies
and measuring the displacement amplitudes as well as the phase angles.
Such a test was carried out on a single story building and the following
responses were recorded:

(1) at 2,=18.30 rad/s, P,;=837 kN, U..,= 1.39mm & ¢,=8°;

(2) at ©2,=60.99 rad/s, P,,= 9300 kN, u...,= 3.32mm & ¢,=174.29°.
Compute the natural frequency w, & the damping ratio ¢ for the structure

1 281 u(t
DAF:“umax _ 2 _ tang= 1_§r2 e — f g
. \/(1—r2) +(27)

_ uSt 1
(L-r?) \/1+[(2§r)/(1—r2)]2

. _uU,Cosp Ugw:cosgp P cose
A=) (@) m(e-Q)

u

max
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EX.6. An undamped spring-mass system having a mass of 4.5 kg and a
spring of constant of k =3.5 N/mm is excited by a harmonic force with
magnitude F,=100 N and an operating frequency of 18 rad/sec. If the
Initial displacement is 15 mm and the initial velocity is 150 mm/sec,
determine

(a) The frequency ratio

(b) The amplitude o the forced response

(c) The displacement of the mass at t =2 sec

Ex.7. A Structure having a mass of 100 kg and a translational stiffness of
40000 N/m is excited by a harmonic force with magnitude F,=500 N and
an operating frequency of 2.5 Hz. The damping ratio for the structure Is
0.10. For the steady-state vibration determine

(a) The amplitude of the steady-state displacement

(b) Its phase with respect to the exciting force, and

(c) The maximum velocity of the response
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