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Planar Kinetic Equations of Motion

In the following analysis we will limit our study of planar kinetics to F\ 1
rigid bodies which, along with their loadings, are considered to be
symmetrical with respect to a fixed reference plane. Since the
motion of the body can be viewed within the reference plane, all
the forces (and couple moments) acting on the body can then be Qiz
projected onto the plane. An example of an arbitrary body of this

type is shown. Here the inertial frame of reference x, y, z has its
origin coincident with the arbitrary point P in the body. /4
F
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Equation of Translational Motion. The external forces

acting on the body represent the effect of gravitational, electrical,
magnetic, or contact forces between adjacent bodies.

2F = mag

This equation is referred to as the translational equation of motion for the
mass center of a rigid body. It states that the sum of all the external forces
acting on the body is equal to the body’s mass times the acceleration of its
mass center G.

For motion of the body in the x—y plane, the translational equation of
motion may be written in the form of two independent scalar equations,

namely, 2F, = m(ag),

E‘F}' — m{ﬂﬁ}}'
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Equation of Rotational Motion. We will now determine the
effects caused by the moments of the external force system computed
about an axis perpendicular to the plane of motion (the z axis) and
passing through point P. As shown on the free-body diagram of the ith
particle, F; represents the resultant external force acting on the particle,
and f; 1s the resultant of the internal forces caused by interactions with
adjacent particles. If the particle has a mass m; and its acceleration Is a;,

then its kinetic diagram is shown. Summing moments about point P,
we require

r X F, +r Xf, =r X ma;

or
(Mp); = 1 X m;a;

1 j—
=

Particle frec-body diagram
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The moments about P can also be expressed in terms of the acceleration

of point P. If the body has an angular acceleration e and angular
velocity @, then we have

(Mp); = m;r X (ap + @ X r — wr)

Zm,-[rl‘:{ap-l—r}{[ﬂxr}—mlfr::{r]]

The last term 1s zero, since r X r = (. Expressing the vectors with

Cartesian components and carrying out the cross-product operations
yields

(Mp);k = mi{(xi + yj) X [(@p),i + (ap),jl
+ (i + yj) X [ak X (xi + yj)]}
(Mp);k = m[—y(ap), + x(ap), + ax” + ay’IK

G (Mp); = mil—y(ap), + x(ap), + ar’]
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Letting m; — dm and integrating with respect to the entire mass m of the
body, we obtain the resultant moment equation

CIMp = —( / y dm){a;:}x + ( fm x dm){ay)} + ( / r,r-%:::nr.a)a;

Here 2 M, represents only the moment of the external forces acting on the
body about point P. The resultant moment of the internal forces is zero,
since for the entire body these forces occur in equal and opposite collinear
pairs and thus the moment of each pair of forces about P cancels. The
integrals in the first and second terms on the right are used to locate the
body’s center of mass G with respect to P, since ym = f}-‘ dm and
xm = f.:-: dm . Also, the last integral represents the body’s moment of
mertia about the z axis, 1.e., Ip = frzdm. Thus,

G XMp = —ym(ap), + xm(ap), + Ipc
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It 1s possible to reduce this equation to a simpler form if point P coincides
with the mass center & for the body. If this is the case, thenx = y = 0,

and therefore®

EMG — IGL'I:'

This rotational equation of motion states that the sum of the moments of
all the external forces about the body’s mass center G is equal to the
product of the moment of inertia of the body about an axis passing through G
and the body’s angular acceleration.

If point G 1s located at (X, ¥),then by the parallel-axis theorem,
Ip = I + m(¥ + V).

CIMp = Fml—(ap), + Yal + Iml(ap), + Tal + Ioa
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ag —ap+ € Xr —wr
(ag)i + (aglyj = (ap)i + (ap),j + ak X (Fi + ¥j) — @i + ¥j)
Carrying out the cross product and equating the respective 1 and ]
components yields the two scalar equations

(ag), = (ap), — Yo — Xa®

(agly = (ap), + Ta — Yo'
From these equations, [—(ap), + Ya] = [—Aag), — ¥w’] and

[(ap), + ¥a] = [(ag), + Yo,
CEMp = —vmlag), + Tmlag), + Ige
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This important result indicates that when moments of the external forces

shown on the free-body diagram are summed about point P, they are
equivalent to the sum of the “kinetic moments” of the components of mag

about P plus the “kinetic moment” of I;a.

Free-body diagram

Kinetic diagram
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summarize this analysis, three independent scalar equations can be written
to describe the general plane motion of a symmetrical rigid body.

3F, = mlag),
2F, = mlag)y
SM; = I

or 2Mp = Z(Mpp

When applying these equations, one should always draw a free-body
diagram, in order to account for the terms involved in 2F, ,XF,, M,
or M. In some problems it may also be helpful to draw the kinetic
diagram for the body. This diagram graphically accounts for the terms
m(ag),. m(ag),, and I;a. It 1s especially convenient when used to

determine the components of ma; and the moment of these
components in 2, (A,)p.

Kinetic diagram
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Equations of Motion: Translation

When the rigid body undergoes a franslation, all the particles of the body
have the same acceleration. Furthermore, &« = 0. in which case the
rotational equation of motion applied at point & reduces to a simplified

form, namely, 2M; = 0. Application of this and the force equations of
motion will now be discussed for each of the two types of translation.

Rectilinear Translation. When a body is subjected to rectilinear

translation, all the particles of the body (slab) travel along parallel straight-
line paths. The free-body and kinetic diagrams are shown .

Since Iz = 0, only mag 1s shown on the kinetic diagram. Hence, the
equations of motion which apply in this case become

> F,. = mlag),
LF, = mlag)y
E-MG =0

iy
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[t is also possible to sum moments about other points on or off the body,
in which case the moment of mag; must be taken into account. For example,
if point A 1s chosen, which lies at a perpendicular distance d from the line
of action of mag, the following moment equation applies:

(;+EMA — E(.-{"l.ﬁ}_q: EMA — {mﬂﬂ}d

Here the sum of moments of the external forces and couple moments
about A (2M,, free-body diagram) equals the moment of mag about A
(Z (M) 4, kinetic diagram ).
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Curvilinear Translation. When arigid body is subjected to curvilinear
translation, all the particles of the body have the same accelerations as
they travel along curved paths as noted . For analysis, it 1s often convenient
to use an inertial coordinate system having an origin which coincides with

the body’s mass center at the instant considered, and axes which are
oriented in the normal and tangential directions to the path of motion.

The three scalar equations of motion are then

2F, = mlag),
2F, = mlag),
EM{; =0

https://manara.edu.sy/
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[f moments are summed about the arbitrary point B, then it i1s necessary
to account for the moments, (M), of the two components mia,), and

mlag), about this point. From the kinetic diagram, & and e represent the
perpendicular distances (or “moment arms™) from B to the lines of action

of the components. The required moment equation therefore becomes

G +2ZMp = (Mg My = e[mlag)] — him(ag),)
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Procedure for Analysis

Kinetic problems involving rigid-body translation can be solved
using the following procedure.

Free-Body Diagram.

Establish the x, y or n, f inertial coordinate system and draw the
free-body diagram in order to account for all the external forces
and couple moments that act on the body.

The direction and sense of the acceleration of the body’s mass
center ag; should be established.

Identify the unknowns in the problem.

If it is decided that the rotational equation of motion
IM, = 3(M)p is to be used in the solution, then consider
drawing the kinetic diagram, since it graphically accounts for the
components m(ag),. mlag), or m(ag),, m(ag), and is therefore
convenient for “visualizing” the terms needed in the moment
sum X (Ap)p.
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Equations of Motion.

e Apply the three equations of motion in accordance with the
established sign convention.

¢ To simplify the analysis, the moment equation ZM; = 0 can be
replaced by the more general equation 2Mp = X(M;)p, where
point P is usually located at the intersection of the lines of action
of as many unknown forces as possible.

e [f the body is in contact with a rough surface and slipping occurs,
use the friction equation F = pN. Remember, F always acts on
the body so as to oppose the motion of the body relative to the
surface it contacts.

https://manara.edu.sy/
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Kinematics.
¢ Use kinematics to determine the velocity and position of the body.

¢ For rectilinear translation with variable acceleration
ag = dvg/dt agdsg = vedvg

e For rectilinear translation with constant acceleration
vg = (vl + agt vg = (Wgk + 2aglsg — (56l
s¢ = (5g)y + @t + 3act

¢ For curvilinear translation
@, = vg/p
(ag) = dvg/dt l(aghdsg = vedvg
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The free-body and kinetic diagrams for
this boat and trailer are drawn first in
order to apply the equations of motion.

Here the forces on the free-body diagram
cause the effect shown on the kinetic

diagram. If moments are summed about
the mass center, G, then 2M; = 0.

However. if moments are summed about
point B then { +2My = ma.(d).

LILEE PSS et
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The car shown has a mass of 2 Mg and a center of mass at G.
Determine the acceleration if the rear “driving” wheels are always
slipping, whereas the front wheels are free to rotate. Neglect the mass
of the wheels. The coefficient of kinetic friction between the wheels and

the road 1s p; = 0.25.
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SOLUTION |

Free-Body Diagram. As shown, the rear-wheelfrictional force
Fy pushes the car forward, and since slipping occurs, Fy = 0.25N,.
There are three unknowns in the problem, N,, N, and a;.

Here we will sum moments about the mass center.

The car (point &) accelerates to the left, i.e., in the negative x direction

https://manara.edu.sy/
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Equations of Motion.
&+ 2F, = miag)y: —0.25Ng = —(2000 kglag (1)
+1XF, = mlag),; N, + Ny — 200009.81) N =0 (2)
QC+EM;=0. —N,(1.25m) — 0.25N4(0.3 m) + Ng(0.75m) = 0 (3)
Solving,

aG = 1.539 m/s* « Ans.

N, = 6.B8 kN

Ng = 12.TkN

https://manara.edu.sy/
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SOLUTION I

Free-Body and Kinetic Diagrams. If the “moment” equation is
applied about point A, then the unknown N, will be eliminated from
the equation. To “visualize” the moment of mag; about A, we will include
the kinetic diagram as part of the analysis,

Equation of Motion.

C+3IM, = (M), Ng2m) — [200009.81) N](1.25 m) =
(2000 kg)ac(0.3 m)

Solving this and Eq. 1 for a; leads to a simpler solution than that
obtained from Eqgs. 1 to 3.

2000 (9.81) N
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The 100-kg beam BD shown is supported by two rods having negligible
mass. Determine the force developed in each rod if at the instant
f# = 30°,w = 6rad/s.
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SOLUTION

Free-Body and Kinetic Diagrams. The beam moves with curvilinear
translation since all points on the beam move along circular paths,
each path having the same radius of 0.5 m, but different centers of
curvature. Using normal and tangential coordinates, the free-body and
kinetic diagrams for the beam are shown. Because of the franslation,

(5 has the same motion as the pin at B, which i1s connected to both the
rod and the beam. Note that the tangential component of acceleration
acts downward to the left due to the clockwise direction of a.
Furthermore, the normal component of acceleration is always directed
toward the center of curvature (toward point A for rod AB).
Since the angular velocity of AB is 6rad/s when # = 30°, then

(ag), = *r = (6rad/s)*(0.5m) = 18 m/s?

The three unknowns are Ty, Tp. and (ag);.
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https://manara.edu.sy/

981 N

100 kg(ag),

100 kg(ag),

o
w = 6rad/s
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Equations of Motion.
+N2F, = m(ag),: Tg + Tp — 981 cos 30°N = 100 kg(18 m/s?) (1)
+XF, = m(ag),. 981 sin 30° = 100 kg(ag), (2)
G+3IM; = 0; —(Tgcos 30°)(0.4 m) + (Tpcos 30°)(0.4m) = 0 (3)
Simultaneous solution of these three equations gives
Tg = Tp = 1.32kN Ans.
(ag), = 4.905 m/s’
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Equations of Motion: Rotation about a Fixed Axis

Consider the rigid body (or slab), which is constrained to rotate in the vertical plane about a fixed axis
perpendicular to the page and passing through the pin at O. The angular velocity and angular acceleration
are caused by the external force and couple moment system acting on the body. Because the body’s center
of mass G moves around a circular path, the acceleration of this point is best represented by its tangential
and normal components. The tangential component of accelerationhas a magnitude of (ag), = arg

and must act in a directionwhich is consistentwith the body’s angular acceleration a.

2

The magnitude of the normal component of accelerationis (ag), = wrg

This component is a/lways directedfrom point Gto O, regardless of the rotational sense of w.
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The free-body and kinetic diagrams for the body are shown .

The two components m(ag), and m(a;),. shown on the kinetic diagram,
are associated with the tangential and normal components of acceleration
of the body’s mass center. The I;a vector acts in the same direction as «
and has a magnitude of I,a, where I; 1s the body’s moment of inertia
calculated about an axis which 1s perpendicular to the page and passes
through G. From the derivation, the equations of motion which apply
to the body can be written in the form

SF, = mlag), = merg
EE = mlag), = marg
EMG — fﬂ-ﬂr

https://manara.edu.sy/
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any arbitrary point P on or off the body provided one accounts for the
moments X (My)p produced by I @, m(ag),, and m(ag), about the point.

Moment Equation About Point O. Often it is convenient to
sum moments about the pin at @ in order to eliminate the unknown
force F. From the kinetic diagram, this requires

(; +3My = Z(MY)e: XMy = rgm(ag), + Iga

Note that the moment of m(a;), 1s not included here since the line of
action of this vector passes through O. Substituting (a;), = rsa, we may
rewrite the above equation as C +2M, = (I + mrz)a. From the parallel-
axis theorem, I, = I, + md", and therefore the term in parentheses
represents the moment of inertia of the body about the fixed axis of
rotation passing through . Consequently, we can write the three
equations of motion for the body as

https://manara.edu.sy/
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SF, = mlag), = mw’rg

SF, = m(ag), = marg
EMD — Iﬂﬂ!’

When using these equations, remember that “I,a” accounts for the
“moment” of both m(ag), and I« about point O. In other words,

EM{) — E(u‘t‘tk),,r_] — ID[I

https://manara.edu.sy/
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Procedure for Analysis

Kinetic problems which involve the rotation of a body about a fixed
axis can be solved using the following procedure.

Free-Body Diagram.

e Establish the inertial n, t coordinate system and specify the
direction and sense of the accelerations (a;), and (a;), and the
angular acceleration e of the body. Recall that (a;), must act in a
direction which is in accordance with the rotational sense of e,
whereas (a;), always acts toward the axis of rotation, point O.

¢ Draw the free-body diagram to account for all the external forces
and couple moments that act on the body.

e Determine the moment of inertia /; or I,.

¢ Identify the unknowns in the problem.

https://manara.edu.sy/
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e If it 1s decided that the rotational equation of motion
2Mp = 2(AMp)p is to be used, i.e., P is a point other than G or O,
then consider drawing the kinetic diagram in order to help
“visualize” the “moments” developed by the components m(a;),.
m(ag),, and I;a when writing the terms for the moment sum

2 (Mpp-

Equations of Motion.

e Apply the three equations of motion in accordance with the
established sign convention.

¢ If moments are summed about the body’s mass center, G, then
2M,; = I;a, since (mag), and (mag), create no moment about G.

® If moments are summed about the pin support O on the axis of
rotation, then (mag), creates no moment about O, and it can be
shown that M, = Ia.

https://manara.edu.sy/
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Kinematics.

e Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

e [f the angular acceleration is variable. use

dw sl
= — dd = wd = —
I 0 Cx w dw W "

o [f the angular acceleration is constant, use

( Wy T af
0 =0, + wt + 3a.t

w* = wi + 2a0 — 6,)

https://manara.edu.sy/
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At the instant shown, the 20-kg slender rod has an angular velocity
of @ = 5rad/s. Determine the angular acceleration and the horizontal
and vertical components of reaction of the pin on the rod at this
instant.

60N -m
)é )w—-Srad/s

7
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SOLUTION

Free-Bodv and Kinetic Diagrams. As shown on the kinetic
diagram, point G moves around a circular path and so it has two
components of acceleration. It 1s important that the tangential
component a, = arg act downward since 1t must be 1n accordance with
the rotational sense of @. The three unknowns are O, ., O,, and «.

Equation of Motion.

4 3F, = mw’rg: 0, = (20 kg)(5 rad/s)*(1.5 m)

+|3F, = marg: —0, + 20(9.81)N = (20 ke)(a)(1.5 m)
C+3M; = Ia; 0(1.5m) + 60N-m = [5(20 kg)(3 m)* |a

60N -m

DJ‘]
5 ¥ n )
0, 1.5m
20(9.81) N

Maw r,_r_-,\l )
D

marc
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Solving
Q,=T7T50N O,=1905N a =590 r'.aud,fs2 Ans.

A more direct solution to this problem would be to sum moments
about point O to eliminate O, and O, and obtain a direct solution for «.
Here,

C+3M, = Sy, 60N-m + 20(9.81) N(1.5 m) =
[ 520 kg)3 m)? ] + [20 kg(e)(1.5 m)](1.5 m)
a = 5.90 rad/s” Ans.

Also, since I, = +ml* for a slender rod. we can apply

C+3IMy = Ipa; 60N-m + 20(9.81) N(1.5 m) = [3(20 kg)(3 m)* |«
a = 5.90 rad/s’ Ans.

https://manara.edu.sy/


https://manara.edu.sy/

Py

R, T

The drum shown has a mass of 60 kg and a radius of gyration

ko = 0.25 m. A cord of negligible mass 1s wrapped around
the periphery of the drum and attached to a block having a mass of 20 kg.
If the block 1s released, determine the drum’s angular acceleration.

SOLUTION |

Free-Body Diagram. Here we will consider the drum and block

separately, Assuming the block accelerates downward at a,
It creates a counterclockwise angular acceleration e of the drum.

The moment of mmertia of the drum 1s
I, = mk}; = (60 kg)(0.25 m)* = 3.75 kg - m?

There are five unknowns, namely O, O,, T.a, and «.

https://manara.edu.sy/
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Equations of Motion. Applying the translational equations of
motion XF, = m(a;), and XF, = m(ag), to the drum is of no
consequence to the solution, since these equations involve the
unknowns O, and O;. Thus, for the drum and block, respectively,

C+3IM, = Ipa; 7(0.4m) = (3.75kg* m )« (1)
+13F, = m(ag),, —20(9.81)N + T = —(20 kg)a (2)

Kinematics. Since the point of contact A between the cord and
drum has a tangential component of acceleration a, then

G +a = ar; a = «(0.4 m) (3)

Solving the above equations,
T=106N a = 452 m/s’

a = 11.3rad/s*d Ans.

60 (9.81) N

1D

20 (9.81) N

https://manara.edu.sy/
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Free-Body and Kinetic Diagrams. The cable tension T can be
eliminated from the analysis by considering the drum and block as a

single system.The kinetic diagram is shown since moments will be
summed about point O.

Equations of Motion. Using Eq. 3 and applying the moment
equation about O to eliminate the unknowns O, and O,. we have
C+IMy = (Mo [20(9.81) N] (0.4 m) =
(3.75 kg - mP)a + [20 kg(a 0.4 m)](0.4 m)
a = 11.3 rad/s’ Ans.

60 (9.81) N

20(9.81) N

(20 kg)a

https://manara.edu.sy/
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Equations of Motion: General Plane Motion

The rigid body (or slab) is subjected to general plane motion caused by the

externally applied force and couple-moment system.
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https://manara.edu.sy/

Py

degl o
6jliall
pot ,
The free-body and kinetic diagrams for the body are shown. If an x and y B _/
. . . . . * r
inertial coordinate system is established as shown, the three equations of // \
. s G
motion are EFA = m(dag), \
2Fy, = m(ag)y /QE A
ZMG — I,,_jf_]:' e
In some problems it may be convenient to sum moments about a point P S |

other than G /in order to eliminate as many unknown forces as possib/e

from the moment summation. When used in this more general case, the /m(a) i
(/v

2F, = m(ag), \ m(aflr |
/

>l — mia)

: v Ifa:
EMP S E-{»"I"!J;;}p \ /

three equations of motion are
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Moment Equation About the IC. There is a particular type of
problem that involves a uniform disk, or body of circular shape, that rolls
on a rough surface without slipping. If we sum the moments about the
instantaneous center of zero velocity, then X(Jl,);- becomes [;-a. so that

EMIC = fjca

This result compares with2 M, = Iya, which is used for a body pinned at

point O
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As the soil compactor, or “sheep’s foot roller”
moves forward, the roller has general plane
motion. The forces shown on its free-body
diagram cause the effects shown on the kinetic
diagram. If moments are summed about the
mass center, G, then M, = [,a. However, if
moments are summed about point A (the IC)
then Q +2XM, = Ioa + (mag)d = L.
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Procedure for Analysis
Kinetic problems involving general plane motion of a rigid body can
be solved using the following procedure.
Free-Body Diagram.

e Establish the x, y inertial coordinate system and draw the free-
body diagram for the body.

e Specify the direction and sense of the acceleration of the mass
center, a;, and the angular acceleration a of the body.

e Determine the moment of inertia /.
¢ Identify the unknowns in the problem.

e If it is decided that the rotational equation of motion
SMp, = X(M,)p is to be used, then consider drawing the kinetic
diagram in order to help “visualize” the “moments” developed by
the components m(ag),, m(ag),, and I;a when writing the terms
in the moment sum 3(My)p.
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Equations of Motion.

e Apply the three equations of motion in accordance with the
established sign convention.

e When friction is present, there is the possibility for motion with
no slipping or tipping. Each possibility for motion should be
considered.

Kinematics.

¢ Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

e [f the body’s motion is constrained due to its supports, additional
equations may be obtained by using ag = a, + agy,, which
relates the accelerations of any two points A and B on the body.

* When a wheel, disk, cylinder, or ball rolls without slipping, then
d; — ar.
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Determine the angular acceleration of the spool. The spool has a
mass of 8 kg and a radius of gyration of kg = 0.35 m. The cords of
negligible mass are wrapped around its inner hub and outer rim.
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SOLUTION |

Free-Body and Kinetic Diagrams. The 100-N force causes ag to

act upward. Also, e acts clockwise, since the spool winds around the
cord at A.

There are three unknowns 7, a5, and a. The moment of inertia of
the spool about its mass center is

I; = mk% = 8 kg(0.35 m)*> = 0.980 kg - m?
Equations of Motion.
+13F, = m(ag),, T+ 100N — 7848 N = (8 kg)ag (1)
C+2XIMg = Iga: 100N(0.2m) — T(0.5 m) = (0.980 kg - mz}u: (2)

100N
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Kinematics. A complete solution is obtained if kinematics is used to
relate ag to a. In this case the spool “rolls without slipping” on the cord
at A. Hence

(C+)ag = ar; ac = a (0.5 m) (3)
Solving Eqgs. 1 to 3, we have
a = 103 rad /s’ Ans.
a; = 5.16 m/s?
I'= 198N
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SOLUTION 1I

Equations of Motion. We can eliminate the unknown 7 by summing
moments about point A. From the free-body and kinetic diagrams

CH+IM, = 2(My)y: 100 N(0.7m) — 78.48 N(0.5 m)

= (0.980 kg * m*)a + [(8 kg)ag](0.5 m)
Using Eq. (3).

a = 103 rad/s’ Ans.
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SOLUTION I

Equations of Motion. The simplest way to solve this problem is to
realize that point A 1s the IC for the spool.

C+2EM, = Lia; (100 N)(0.7 m) — (78.48 N)(0.5 m)

= [0.980 kg - m? + (8 kg)(0.5 m)*]a
a = 10.3 rad/s’
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The uniform 50-kg bar is held in the equilibrium position by cords
AC and BD. Determine the tension in BD and the angular
acceleration of the bar immediately after AC is cut.
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SOLUTION

Free-Body and Kinetic Diagrams. There are four
unknowns, T, (ag)y. (ag)y. and a.

Equations of Motion.

£ 3F, = m(ag), 0 = 50 kg (ag)y,
(IHG).I =0
+TEF}, = m(a,;}}.; Tp — S0(9.81)N = —50 kg (aG}},

C+2IM; = Ia;  Ty(l.5m) = |:ll—2(50 ke)(3 m)2:|cu

50(9.81) N T,

G

—1.5m

(50 kg)(ag),

(50 kg)(ag),

(1)
(2)
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Kinematics. Since the bar is at rest just after the cable is cut, then its
angular velocity and the velocity of point B at this instant are equal to
zero. Thus (ag), = vg/pep = 0. Therefore, ag only has a tangential
component, which is directed along the x axis. Applying the relative

acceleration equation to points G and B,

agc = agp +~ @ X rgp — &JZI'G;B (ag)y

—(aG))J = agi + (ak) X (—1.51) — 0

_(ac)_“j = aBi — l5a*j
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Equating the i and j components of both sides of this equation,

0 = ag
(ag)y = l.Ja (3)
Solving Egs. (1) through (3) yields
a = 4.905 rad /s” Ans.

Tg = 123N Ans.
(ag)y = 7.36 m/s*
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