Example

 $F \rightarrow R = hv$

من أجل السيارة المبينة في الشكل:

m=100 k=50

- 1- أوجد تابع التحويل بين قوة الدفع و السرعة مع حساب ثابت كسب الحالة المستقرة K و الثابت الزمني T و استفد من تابع التحويل لإيجاد الاستجابة الخطوية للسيارة
 - 2- صمم نموذج محاكاة باستخدام Simulink للتأكد من أن ثابت الكسب الحالة المستقرة يحقق العلاقة التالية:

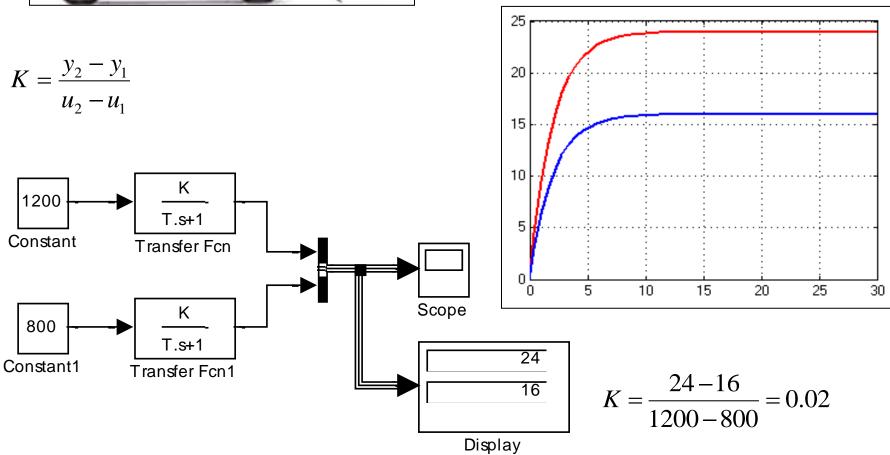
$$K = \frac{y_2 - y_1}{u_2 - u_1}$$

- 3- صمم نماذج محاكاة برمجية لتحليل تأثير تغير كل من قوة الدفع F و كتلة السيارة m و ثابت الإعاقة k على سرعة السيارة v
- 4- صمم نموذج محاكاة باستخدام Simulink لسرعتي عربتين بكتلتين مختلفتين مع ثبات باقي المتغيرات و حلل النتائج من خلال محاكاة المسافات المقطوعة

$$m\frac{dv}{dt} + kv = F$$

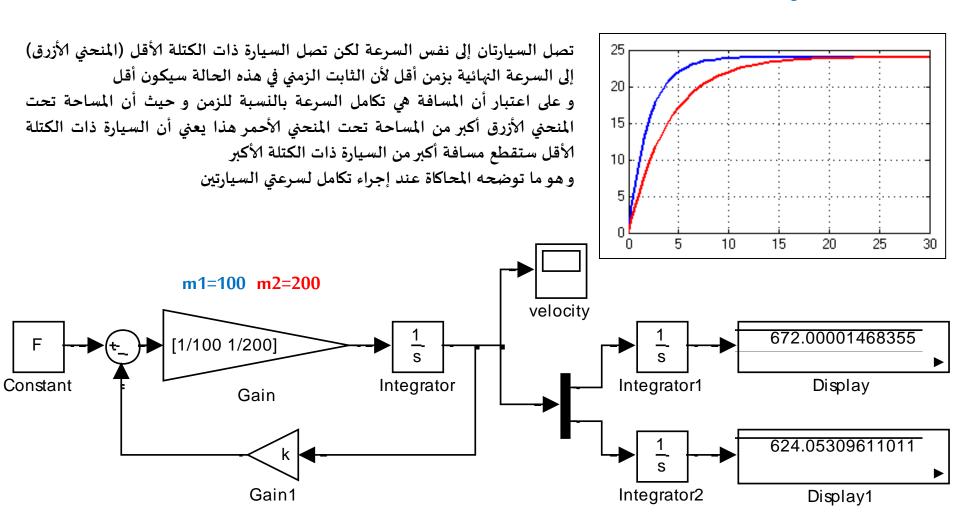
$$a\frac{dx_o}{dt} + bx_o = cx_i(t) \qquad a=m \quad b=k \quad c=1$$

$$G(s) = \frac{\frac{c}{b}}{1 + \frac{a}{b}s} \qquad G(s) = \frac{K}{1 + Ts} \qquad K = \frac{1}{k} = \frac{1}{50} = 0.02 \quad T = \frac{m}{k} = \frac{100}{50} = 2$$


$$x_o(t) = BK(1 - e^{-\frac{t}{T}})$$
 $x_i(t) = B = F$

$$v = \frac{F}{k}(1 - e^{-\frac{\kappa}{m}t})$$
 $v = 0.02F(1 - e^{-0.5t})$

حل الطلب الثاني



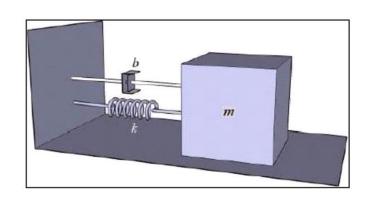
m=100 k=50

		حل الطلب الثالث
% v1=F1.K1(1-exp(-t/T1))	% v1=F1.K1(1-exp(-t/T1))	% v1=F1.K1(1-exp(-t/T1))
m1=100;	m1=100;	m1=100;
k1=50;	k1=50;	k1=50;
F1=1000;	F1=1000;	F1=1000;
K1=1/k1;	K1=1/k1;	K1=1/k1;
T1=m1/k1;	T1=m1/k1;	T1=m1/k1;
Num1 = [F1*K1];	Num1 = [F1*K1];	Num1 = [F1*K1];
Den1=[T1 1];	Den1=[T1 1];	Den1=[T1 1];
step (Num1, Den1)	step (Num1, Den1)	step (Num1, Den1)
grid	grid	grid
title('original case')	title('original case')	title('original case')
% v2=F2.K2(1-exp(-t/T2))	% v2=F2.K2(1-exp(-t/T2))	% v2=F2.K2(1-exp(-t/T2))
m2=100;	m2=200;	m2=100;
k2=50;	k2=50;	k2=60;
F2=1200;	F2=1000;	F2=1000;
K2=1/k2;	K2=1/k2;	K2=1/k2;
T2=m2/k2;	T2=m2/k2;	T2=m2/k2;
Num2 = [F2*K2];	Num2 = [F2*K2];	Num2 = [F2*K2];
Den2=[T2 1];	Den2=[T2 1];	Den2=[T2 1];
figure	figure	figure
step (Num2, Den2)	step (Num2, Den2)	step (Num2, Den2)
grid	grid	grid
title('modified case')	title('modified case')	title('modified case')

حل الطلب الرابع

السيارة ذات الكتلة الأقل قطعت مسافة أكبر رغم أن السيارتين وصلتا إلى السرعة النهائية ذاتها

Example

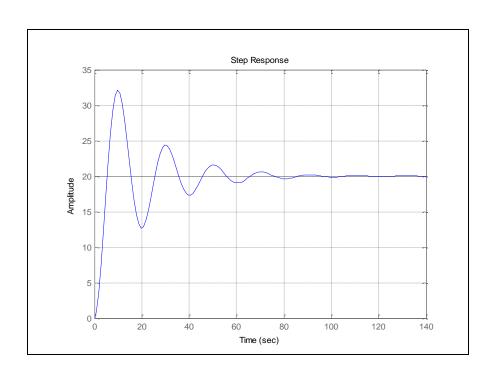

في منظومة كتلة نابض مخمد معطى ما يلى:

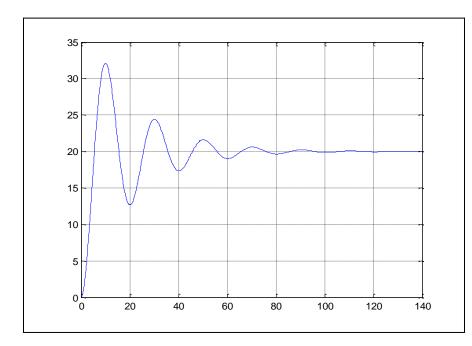
m=1;

b=0.1;

k=0.1;

F=2;



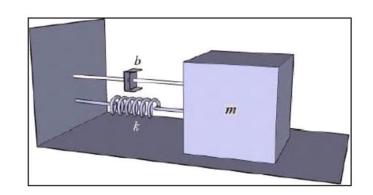

1- ارسم منحني الإزاحة باستخدام تعليمة step

2- أوجد التردد الطبيعي غير المتخامد-نسبة التخامد -ثابت كسب الحالة المستقرة

3- اكتب العلاقة الرياضية للإزاحة بالاستفادة من الطلب 2 و ارسم العلاقة و قارنها مع المنحني في الطلب 1

```
clc
clear
m=1;
b=0.1;
k=0.1;
F=2;
Num=[F];
Den=[1 0.1 0.1];
step(Num,Den)
                              wn =
grid
                                0.3162
% K.wn^2=Num;
% 2.zeta.wn=0.1;
                              zeta =
% wn^2=0.1
                                0.1581
wn=sqrt(0.1)
                              K =
zeta=0.1/(2*wn)
                                10
K=1/wn^2
figure
t=0:0.1:140;
c=K*F*(1-exp(-
zeta*wn*t).*(cos(wn*sqrt(1-
zeta^2)*t)+(zeta/(sqrt(1-
zeta^2))).*sin(wn*sqrt(1-zeta^2)*t)));
plot(t,c)
grid
```

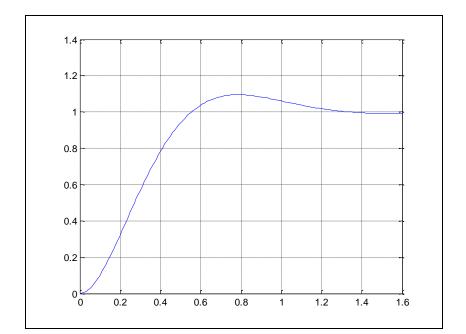

Example

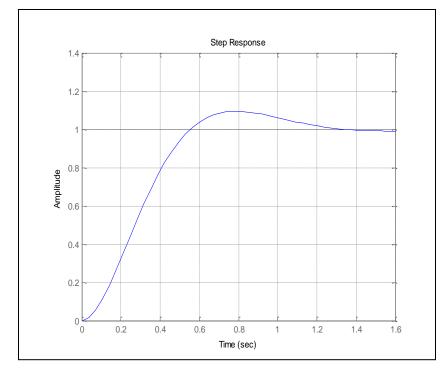

في منظومة كتلة نابض مخمد معطى ما يلي:

wn=5;

ζ=0.6;

K=1;


F=1;



1- اكتب العلاقة الرياضية للإزاحة بالاستفادة من البارامترات المعطاة و ارسمها

2- احسب m k b و ارسم منحني الإزاحة باستخدام تعليمة

```
clc
clear
wn=5;
zeta=0.6;
K=1;
F=1;
t=0:0.01:1.6;
c=K*F*(1-exp(-zeta*wn*t).*(cos(wn*sqrt(1-
zeta^2)*t)+(zeta/(sqrt(1-zeta^2))).*sin(wn*sqrt(1-
zeta^2)*t)));
plot(t,c)
grid
%K.wn^2/(s^2+2.zeta.wn.s+wn^2)
%1/(m.s^2+b.s+k) or (1/m)/(s^2+(b/m)s+(k/m))
% (1/m)=K*wn^2
m=1/(K*wn^2)
% k/m=wn^2
k=m*wn^2
                                      m =
% (b/m)=2.zeta.wn
                                        0.0400
b=2*m*zeta*wn
num=[1];
                                      k =
den=[m b k];
                                        1
figure
step(num,den)
                                      b =
grid
                                        0.2400
```