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Time Domain Analysis of First-Order System
a,y" +ay"P+..+a ,y+ay=bx"™ +bx"Y + . ..+b__

* Where x is the input of the system and y is the output of the system.

Laplace Transformation L|f (t)]=F(s) = _[ f (t)e 'dt
0]
S {output
Transfer function = G(s) = — '99.9“ J
J[l nPUt] zero imitial conditions
L[output] Y(s) Dbys"+bs™ +.....+b, ;s+b,

G(s) =

L[input] X(s) as"+as"*+....+a ,s+a
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a

dx
°© + bx. = cXx (t
dt ° (0)

(as+b) X,(s) =cX,(s)

X, C

G(8) = (8)= as+b

>y
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K steady-state gain constant

T: time constant (seconds)
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Steady-state gain
The steady-state of a TF can be used to calculate the steady-state change in an output due to a steady-state change in the
input. For example, suppose we know two steady states for an input, &, and an output, y. Then we can calculate the steady-

state gain, /C from:

K: y2_y1
u, —u;

Time constant
In brief, the time constant relates to the analytical solution for the unit step response of a first order differential equation,

and is the time taken for the output to reach 63% of the steady-state value
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Examples of First-Order Systems
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Step Response of First-Order System
Xis)=08/s > K > X, (S
1+Ts
BK i Time funcrion f(1) Laplace transform 1 f(1)]
Xo(9) = sd+Ts) o Tl | —e ™ -
s(s+ =) N 5 + a)
¢ T
x (t)=BK(l—e T)
B=1(unit step)
K=1(unity gain) t

x,(t)=1—e T
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The system time constant is the intersection of the slope at t=0 with the final value line

t t 1.2
dXo:O_(_i)eTzieT S B |
dt T T ! Pe—
dx, 1 08 ]
dt o T <o / V7
/
0al 1
0.2
a
0 0.5 1 1.5 2 25 3
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clf) |
I
0.632
= =2 = =
e ok =2 > i
) = W) [ =] an
W o ==} [ am
0 T 2T AT AT 5T t

In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value. At = 37.4T,
and 57, the response reaches 95%. 98.2%. and 99.3%. respectively. of the final value. Thus,
for t = 4T, the response remains within 2% of the final value.
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Time Domain Analysis of Second-Order System

2
d );" +Db dx, + CX, = ex; (t)
dt dt

(as® +bs+c)X,(s) =eX.(s)

X e
G(s)=—=>(s) =
(s) Xi() as’ +bs+c
e
c K Kw,_*
G(s) = = G(s) =— 5 G(s)=— 2
A2 Do <24 25 o1 S® + 24W.S + W,
C C an W

K: steady-state gain constant
w : undamped natural frequency(rad/s)

: damping ratio
¢: damping
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IL__'

- 2
I—D* = J mdf+c£+kx:f
" dt dt
2
-}-—9—1 i 199, .99 ko7
T ’. i’ adr

R L

ANA il @ 2
éjP A LC i{: + RC jv—r+v:vs

Yo RA d1+pg(i’?1—hz):R‘?v
'{ = N e Rt Py pohy ~ )+ peh, = 0
P e dt
T, || T Ry Ry
G dl’
(o R\R,C, ~+ (R, + R,)T, = R,T + R]T,
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Roots of the Characteristic Equation

The time response of any system has two components:

(a) Transientresponse

(b) Steady-state response

(as® +bs+c)X,(s)=0

Discriminant Rooits Transient response t(ype
(aSZ + bS + C) — O b* > 4ac 51 and s> real Overdamped
and unequal Transient
Characteristic Equation Response
b° = 4ac 51 and s2 real Criucally
and equal Damped Transient
2 Response
— b ++/b? — 4ac . =
Sl, 52 — b= < dac 5 and s> complex Underdamped
2a conjugate of the Transient
form: 51, 2 = ~o %+ jw Response
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X,(t)

Underdamping (s;and sz complex)

Critical damping
(5, and s: real and equal)

Owverdamping
(s, and s, real and unegual)
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Critical Damping and Damping Ratio
Critical damping

When the damping coefficient C of a second-order system has its critical value C. the system, when disturbed, will reach its

steady-state value in the minimum time without overshoot. This is when the roots of the Characteristic Equation have equal
negative real roots.

Damping ratio

The ratio of the damping coefficient C in a second-order system compared with the value of the damping coefficient C,

required for critical damping is called the Damping Ratio C

( =0 No damping
é, . C ¢ <1 Underdamping
o . =1 Critical damping
CC § . ping
( > 1 Overdamping
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EXAMPLE

Find the value of the critical damping coefficient C.: in terms of K and m for the
spring-mass-damper system shown in Figure

N
N

C
\ E
N

m Lumped Parameter Diagram
(a)
K
Ft) —»
N
— XD(”
Cx, «—
m —— F({t) Free-Body Diagram

(b)
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From Newton’s second law

From the free-body diagram
F(1) — Kxo(1) — Cxo(1) = mx,(7)
Taking Laplace transforms, zero initial conditions
F(s) — KXy(s) — CsXo(s) = mszXo(s)
or

(ms® + Cs + K)X(s) = F(s)

Characteristic Equation is ms2 +Cs+ K =0

) C K
ie. P4 —+—0
nt n
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and the roots are

For critical damping. the discriminant is zero, hence the roots become

C.
S = & = — Y
Also, for critical damping
C: 4K
mZ  m
2 - 4Km?
m

giving

C. = 2v Km
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Generalized Second-Order System Response to a unit Step Input

Consider a second-order system whose steady-state gain 1s K, undamped natural

frequency is w, and whose damping ratio is ¢, where < 1. For a unit step input, the
block diagram is as shown in Figure

- — 'E XD[S}
. Ke? x@=ve ) ki >
ol5) = ."i'l:."i'z + 2Cn s + i-ua} S +2Cw,S + W
A Bs + C | ; .
Xo($) =+ 12 T 200ns T 02 multiply by s(s* + 2¢was + w;)

Kw: = A(s* +2¢wns + ) + Bs” + Cs
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Equating coefficients
(s°): 0=A+ B
(s"): 0=2@w.A+C
(s") : Kuﬁ — wﬁfl

A=K, B=-K and C = —2@w.K

1 s + 2Cwy
Xo(s) = K [; - {S: S }]

Completing the square

Xo(s) = K [l - { s H =K
s (s + Cwn)” + wZ — 2w -

s + 2(wn

(s + Cwn)* + (u.:n\/ I — Cz)z

https://manara.edu.sy/
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The terms in the brackets { } can be written in the standard forms

Term (1) = — .
(s + Cwn) + (u;n v 1 — {3)
Yo w1 — 2
Tcrm{Z}zw{ ZCWn _,} VA 2
eVl = | (s + n)+ (wa/T— Q)
e 'sinot "*"} .
(s+a) +w
e "cosmt >ra
Inverse transform (s+a) +o

o) = K [1 _ e_‘:“““’{cns (cas/T—C)e + ( ﬁ) in (w \/fgz)f}]
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When ¢ =0
xXo(t) = K[l — en{cosmnf + 0}]
= K[l — cos wy!]
From equation it can be seen that when there i1s no damping, a step input will
cause the system to oscillate continuously at w, (rad/s).
Damped natural frequency wy

wg =waV 1 — ¢

where wy 1s called the damped natural frequency.

xo() =K|1 — c““’“’{coswdt -+ (\/]C—C{) sinwdl}]

=Gt JI=&
= 2% 11— ’sm(w'dt+<z>) tan ¢ =
T V1= ] 3
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Definitions of Transient-Response Specifications

The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of
a control system to a unit-step input, it is common to specify the following:

1. Delay time, 1,

2. Rise time, 1,

3. Peak time, 1,

4. Maximum overshoot, M,
S. Settling time, 7,

These specifications are defined in what follows and are shown graphically in Figure

https://manara.edu.sy/
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c(r) A

Allowable tolerance
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1. Delay time, 7,;: The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, 7,: The rise time is the time required for the response to rise from 10%
to 90%, or 0% to 100% of its final value.

3. Peak time, 7,:'The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, M ,: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum

percent overshoot. It is defined by
) C(tp) — ¢(o0)
Maximum percent overshoot =
c(o0)

5. Settling time, 7,: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the

largest time constant of the control system.

=< 100%
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Second-Order System and Transient-Response Specifications

Peak time t,,: Referring to Equation , we may obtain the peak time by differen-
tiating c(#) with respect to time and letting this derivative equal zero. Since

dc Lot
I = {w, € """ | COSwyl +

v,lg—‘:zsin mdr)

— . g
+ e *3'“'"’(md Sin w,f — 5

N COS mdr)
— ¢

and the cosine terms in this last equation cancel each other, dc/dt, evaluated att = iy,
can be simplified to

E
dt

e
= (sinwgt,) - e tutp = ()
d®p 7
t=t,, 1 — ¢

https://manara.edu.sy/
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This last equation yields the following equation:

sin wyt, = 0
or

wyt, = 0, 7, 27, 37, ...

Since the peak time corresponds to the first peak overshoot, w,f, = 7. Hence

https://manara.edu.sy/
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Maximum overshoot M,: The maximum overshoot occurs at the peak time or at
t =1, = m/w,.Assuming that the final value of the output is unity, M , is obtained from
Equation as

M, = c(t,) — 1

P

- _.e".(wn(?-'/wd)( COSm + ¢ sin 77')

V1 — 72

< o= gmn
ol . /N 1= . .
e loledm = o o where o is called the attenuation

The maximum percent overshoot is e */ *a)" % 100%.
If the final value c¢(oc) of the output is not unity, then we need to use the following

equation: c(t,) — c(o0)

My = c(oc)

P

https://manara.edu.sy/
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Settling time t,:  For convenience in comparing the responses of systems, we commonly

define the settling time 7, to be

4 4 L
= —=— (2% criterion)
l a gmﬂ'
or
3 3 L
[, = — = (5% criterion)
or L,

https://manara.edu.sy/
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EXAMPLE

Consider the system shown in Figure ,where { = 0.6 and ®,, = 5 rad/sec. Let us obtain the

peak time 7,, maximum overshoot M, and settling time 7, when the system is subjected
to a unit-step input.

R(s) i " C(s)

2 ..
S +2(w,S + w

From the given values of { and w,,. we obtain w; = @,V1 — ¢ = 4and o = {w, = 3.

Peak time t,: The peak timeis 1, = — = —— = 0.785 sec

https://manara.edu.sy/
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Maximum overshoot M,: The maximum overshoot is
M, = e lo/@dm = ¢~(3/4)314 — 0,095
The maximum percent overshoot is thus 9.5%.

Settling time t:

4 4
For the 29 criterion, the settling time is 1, = — = = 1.33 sec
o
—— 3 3
For the 5% criterion, [, = e 1 sec

https://manara.edu.sy/
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