iz

A]! R EHER]

oatll (e yelall Jul=al logistic regression pgis Gudat
dodde

(P9 Sldes Bus Gulaty psdiw udxllsda &

® Extract features
® Implement logistic regression form secratch
® Apply logistic regression on an NLP task

® Testusing Iogistic regression

dLudzll (§ Lalialad (alg daud | dxdlall ool gudaty gall preprocessing asldly olLasll ¢ le il an fug It
Aa Ll
import re
import string
import numpy as np
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import TweetTokenizer
def process_tweet(tweet):
"""Process tweet function.
Input: tweet: a string containing a tweet
Output: tweets_clean: a list of words containing the processed tweet """
stemmer = PorterStemmer()
stopwords_english = stopwords.words('english')
remove stock market tickers like SGE
tweet = re.sub(r'\S\w*', ", tweet)

remove old style retweet text "RT"

https://manara.edu.sy/

https://manara.edu.sy/

iz

8)Lial
tweet = re.sub(r'*RT[\s]+', "', tweet)
remove hyperlinks
tweet = re.sub(r'https?:\/\/. *[\r\n]*', ", tweet)
remove hashtags # only removing the hash # sign from the word

tweet = re.sub(r'#', ", tweet)
tokenize tweets

tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True)
tweet_tokens = tokenizer.tokenize(tweet)

tweets_clean =[]

for word in tweet_tokens:

if (word not in stopwords_english and # remove stopwords word
not in string.punctuation): # remove punctuation

tweets_clean.append(word)

stem_word = stemmer.stem(word) # stemming word

tweets_clean.append(stem_word)
return tweets_clean

G e s s nal) 53 JAl il el 038 et alll g il sual 2l 5A50Y Al (ad Asaal) Aalladl dles 3as
logistic regression il ilee) Jadll aill dapk

Aole o Al dles 8 a5 SN Jiad 255l (5 sing (e 5l 8 Gaill (e Ol el) A0GY deddiuin gd) il £ A
Gl e JieS

O e Al Alan 55 50 20 4l Ales 8 &) Si bad 4alS)l La 3 saial {(bad,1):2,(bad,0):20}

b Gyl U 5 Ui 8) (8 aadiel) olill U s Lo dles 8 eliall Jdad sl (e bad 4l e aldie) xie

def build_fregs(tweets, ys):
"""Build frequencies.

Input: tweets: a list of tweets ys: an m x 1 array with the sentiment label of each tweet (either 0 or 1)
Output: fregs: a dictionary mapping each (word, sentiment) pair to its frequency """

Convert np array to list since zip needs an iterable.

The squeeze is necessary or the list ends up with one element.

https://manara.edu.sy/

https://manara.edu.sy/

iz

Also note that this is just a NOP if ys is already a list.
yslist = np.squeeze(ys).tolist()

Start with an empty dictionary and populate it by looping over all tweets # and over all processed
words in each tweet.

freqs = {}

fory, tweet in zip(yslist, tweets):
for word in process_tweet(tweet):
pair = (word, y)

if pair in fregs:

fregs[pair] +=1

else: freqs[pair] =1

return freqgs

dl el o diny g;i selad) =i logistic regression gadas (pe ¥ LiKay ondslad! sl (pe 3olazudLy
2y casiatll ey 1 90 (s 4o ys s gag sigmoid camls ciyad 1 &Ly s Ll U Ay Blny|
L aiall oyl Adae Jiay ‘;5..:\.”3 Gradient descent
Adld) dudedl 3 LS cliled) de gazme (2 L Aeseiad | Sliled! Ae gozme
def sigmoid(z):
""Input: z: is the input (can be a scalar or an array)
Output: h: the sigmoid of z"
#it# START CODE HERE (REPLACE INSTANCES OF 'None' with your code)
#it# # calculate the sigmoid of z
h=1/(1+np.exp(-z))

return h

https://manara.edu.sy/

https://manara.edu.sy/

iz

def gradientDescent(x, y, theta, alpha, num_iters):

""Input: x: matrix of features which is (m,n+1)

y: corresponding labels of the input matrix x, dimensions (m,1)
theta: weight vector of dimension (n+1,1)

alpha: learning rate

num_iters: number of iterations you want to train your model for

Output: J: the final cost theta: your final weight vector Hint: you might want to print the cost to
make sure that it is going down. "

START CODE HERE (REPLACE INSTANCES OF 'None' with your code)
Hi## # get 'm’, the number of rows in matrix x

m = len(x)

foriin range(0, num_iters):

get z, the dot product of x and theta

z = np.dot(x, theta)

get the sigmoid of z

h = sigmoid(z)

calculate the cost function

J=(-1/m) * (np.dot(y.T, np.log(h)) + np.dot((1 - y).T, np.log(1 - h)))
update the weights theta

theta = theta - (alpha / m) * (np.dot(x.T, (h - y)))

END CODE HERE

J = float(J)

return J, theta

predict &) b e Aiae dlea 8 el dilas ol (e A8l a5l (e 3alEYT V) Al

https://manara.edu.sy/

https://manara.edu.sy/

iz

def predict_tweet(tweet, freqs, theta):

"' Input: tweet: a string freqs: a dictionary corresponding to the frequencies of each tuple (word,
label)

theta: (3,1) vector of weights

Output: y_pred: the probability of a tweet being positive or negative '
START CODE HERE (REPLACE INSTANCES OF 'None' with your code)
extract the features of the tweet and store it into x

x = extract_features(tweet, freqs)

make the prediction using x and theta

y_pred = sigmoid(np.dot(x, theta))

END CODE HERE

returny_pred

Run this cell to test your function

for tweet in ['l am happy', 'l am bad', 'this movie should have been great.', 'great’, 'great great',
'great great great’,

print('%s -> %f' % (tweet, predict_tweet(tweet, fregs, theta)))
I am happy -> 0.518562

| am bad -> 0.494329

this movie should have been great. ->0.515312

great ->0.515449

great great -> 0.530868

https://manara.edu.sy/

https://manara.edu.sy/

