

https://manara.edu.sy/

 الغاية من الجلسة:

 لتحليل المشاعر ضمن النص. logistic regressionتطبيق مفهوم

 : مقدمة

 الجلسة سنقوم بتطبيق عدة عمليات وهي: في هذه

• Extract features

• Implement logistic regression form secratch

• Apply logistic regression on an NLP task

• Test using logistic regression

المعني بتطبيق أدوات المعالجة المسبقة والتي تعلمناها في الجلسة preprocessingنبدأ مع استدعاء المكتبات والتابع في

 السابقة.

import re

import string

import numpy as np

from nltk.corpus import stopwords

from nltk.stem import PorterStemmer

from nltk.tokenize import TweetTokenizer

def process_tweet(tweet):

 """Process tweet function.

 Input: tweet: a string containing a tweet

Output: tweets_clean: a list of words containing the processed tweet """

 stemmer = PorterStemmer()

stopwords_english = stopwords.words('english')

remove stock market tickers like $GE

tweet = re.sub(r'\$\w*', '', tweet)

remove old style retweet text "RT"

https://manara.edu.sy/

https://manara.edu.sy/

tweet = re.sub(r'^RT[\s]+', '', tweet)

remove hyperlinks

tweet = re.sub(r'https?:\/\/.*[\r\n]*', '', tweet)

 # remove hashtags # only removing the hash # sign from the word

tweet = re.sub(r'#', '', tweet)

 # tokenize tweets

tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True)

tweet_tokens = tokenizer.tokenize(tweet)

tweets_clean = []

for word in tweet_tokens:

 if (word not in stopwords_english and # remove stopwords word

not in string.punctuation): # remove punctuation

tweets_clean.append(word)

 stem_word = stemmer.stem(word) # stemming word

tweets_clean.append(stem_word)

return tweets_clean

بعد عملية المعالجة المسبقة نحن بحاجة لاستخراج الميزات من النص "تعتبر هذه الميزات الدخل ذو المعنى والذي يعبر عن العلاقات

 logistic regressionأو طبيعة النص المدخل الى عملية التصنيف

 لاستخراج الميزات من النص هو قاموس يحتوي أزواج تمثل الكلمة وتواجدها في جملة إيجابية أو سلبية. هخرج التابع الذي سنستخدم

 كمثال على ذلك:

{(bad,1):2,(bad,0):20} المقصود هنا أن كلمةbad مرة وفي جملة إيجابية مرتين 20تكررت في جملة سلبية

من أجل تحليل المشاعر في جملة ما وفقا للتابع المستخدم فإن الميزة هنا تشير الى تصنيف سلبي bad عند الاعتماد على كلمة

 للجملة.

def build_freqs(tweets, ys):

 """Build frequencies.

Input: tweets: a list of tweets ys: an m x 1 array with the sentiment label of each tweet (either 0 or 1)

Output: freqs: a dictionary mapping each (word, sentiment) pair to its frequency """

 # Convert np array to list since zip needs an iterable.

The squeeze is necessary or the list ends up with one element.

https://manara.edu.sy/

https://manara.edu.sy/

Also note that this is just a NOP if ys is already a list.

 yslist = np.squeeze(ys).tolist()

 # Start with an empty dictionary and populate it by looping over all tweets # and over all processed

words in each tweet.

 freqs = {}

for y, tweet in zip(yslist, tweets):

 for word in process_tweet(tweet):

 pair = (word, y)

 if pair in freqs:

 freqs[pair] += 1

else: freqs[pair] = 1

 return freqs

المشاعر أي بتصنيف الجمل إلى لتحليل logistic regressionبالاستفادة من التابعين السابقين يمكننا الان من تطبيق

 وتابع يمثل التصنيف 1و 0وهو تابع خرجه بين sigmoidإيجابية وسلبية لذلك حاليا نحن بحاجة الى تعريف تابعين

Gradient descent . والذي يمثل عملية تدريب المصنف

 مجموعة البيانات المستخدمة هنا هي مجموعة البيانات ذاتها في الجلسة السابقة.

def sigmoid(z):

''' Input: z: is the input (can be a scalar or an array)

 Output: h: the sigmoid of z '''

 ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code)

calculate the sigmoid of z

 h = 1 / (1 + np.exp(-z))

return h

https://manara.edu.sy/

https://manara.edu.sy/

def gradientDescent(x, y, theta, alpha, num_iters):

 ''' Input: x: matrix of features which is (m,n+1)

 y: corresponding labels of the input matrix x, dimensions (m,1)

theta: weight vector of dimension (n+1,1)

alpha: learning rate

num_iters: number of iterations you want to train your model for

Output: J: the final cost theta: your final weight vector Hint: you might want to print the cost to

make sure that it is going down. '''

 ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code)

get 'm', the number of rows in matrix x

 m = len(x)

for i in range(0, num_iters):

 # get z, the dot product of x and theta

 z = np.dot(x, theta)

 # get the sigmoid of z

h = sigmoid(z)

 # calculate the cost function

 J = (-1 / m) * (np.dot(y.T, np.log(h)) + np.dot((1 - y).T, np.log(1 - h)))

 # update the weights theta

 theta = theta - (alpha / m) * (np.dot(x.T, (h - y)))

 ### END CODE HERE ###

 J = float(J)

return J, theta

 predict سيتم الان الاستفادة من التوابع السابقة من أجل تحليل المشاعر في جملة مدخلة عن طريق التابع

https://manara.edu.sy/

https://manara.edu.sy/

def predict_tweet(tweet, freqs, theta):

''' Input: tweet: a string freqs: a dictionary corresponding to the frequencies of each tuple (word,

label)

theta: (3,1) vector of weights

 Output: y_pred: the probability of a tweet being positive or negative '''

 ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code)

 ### # extract the features of the tweet and store it into x

 x = extract_features(tweet, freqs)

make the prediction using x and theta

 y_pred = sigmoid(np.dot(x, theta))

 ### END CODE HERE ###

return y_pred

Run this cell to test your function

for tweet in ['I am happy', 'I am bad', 'this movie should have been great.', 'great', 'great great',

'great great great',

 print('%s -> %f' % (tweet, predict_tweet(tweet, freqs, theta)))

I am happy -> 0.518562

I am bad -> 0.494329

this movie should have been great. -> 0.515312

great -> 0.515449

great great -> 0.530868

https://manara.edu.sy/

