iz

Audl e e
Wlua pal sl ol (o Sl 2algs Gadas
1dadda

sbian g Azt Jeidl (0 Aegazme ymts o alaball juias e ol Sy Aulac Sy Joidl duaislgs
s (e Jedl ddran (ro3ll H95e an J93e "s i (3" Oganall Sy @oall Jobo (e gt 31,80 agasy alakall
31" el sl soipms o LelS ST (g nall Al il LelS alalall soiime)8 (guko b yan 3 Ragalil]

fitness s @1y Ogamall Jidad dele ao Sy cridslad! (nieadslasdd! § alad! mdl e 2l Joidl Aayl g5
bl juas slasly aill ey Bules S s

(P9 Sldee Sue Gudats pgdiw dudxll oda 3

‘aLa.Eﬂ)JLA.AdiA.?EJ.\M t@“wdﬂ.’ .L_ﬁ.‘}.’i L4

Oganall dad s @
import matplotlib.pyplot as plt

def distance(point1, point2):
return np.sqrt(np.sum((point1 - point2)**2))
Lea Lisg Ll duayslosedl HLSE lye sueg cdaidl sue galakall jolas sae ellassdl 2unjylgll aals
3 poeiaey dolaaq Ll o JUl plalall sime sLas ! 2lleis] lus 3 Ll wy (Dlolas
Ogonall dagd Julas

def ant_colony_optimization(points, n_ants, n_iterations, alpha, beta, evaporation_rate, Q):

n_points = len(points)

pheromone = np.ones((n_points, n_points))
best_path =None

best_path_length = np.inf

for iteration in range(n_iterations):

paths =[]

https://manara.edu.sy/

https://manara.edu.sy/

path_lengths =]

for antin range(n_ants):

visited = [False]*n_points

current_point = np.random.randint(n_points)
visited[current_point] = True

path = [current_point]

path_length=0

while False in visited:

unvisited = np.where(np.logical_not(visited))[0]

probabilities = np.zeros(len(unvisited))

fori, unvisited_pointin enumerate(unvisited):

probabilities[i] = pheromone[current_point, unvisited_point]**alpha /
distance(points[current_point], points[unvisited_point])**beta
probabilities /= np.sum(probabilities)

next point = np.random.choice(unvisited, p=probabilities)
next_point np.random.choice(unvisited, p probabilities)
path.append(next_point)

path_length += distance(points[current_point], points[next_point])
visited[next_point] = True

current_point = next_point

paths.append(path)

path_lengths.append(path_length)

if path_length < best_path_length:

best_path = path

best_path_length = path_length

pheromone *= evaporation_rate

for path, path_length in zip(paths, path_lengths):

foriin range(n_points-1):

pheromone[pathl[i], path[i+1]] += Q/path_length
pheromone[path[-1], path[0]] += Q/path_length

https://manara.edu.sy/

https://manara.edu.sy/

