

https://manara.edu.sy/

 الغاية من الجلسة:

 أقصر مسافة من أجل إيجاد مل تطبيق خوارزمية الن

 : مقدمة

متجهة نحو مصدر ملتتحرك مجموعة من الن ر الطعام حيث نمل تحاكي عملية بحث النمل عن مصدخوارزمية ال

من هذه ستفيد النملي زول مع مرور الزمن ي "زمن بقاء" ن للفيرمون طريق ولكالطعام وتقوم بإفراز فيرمون على طول ال

 " أقرب أكبر كلما كان مصدر الطعام "الحلكلما كانت نسبة الفيرمون الخاصية في معرفة مدى قرب مصدر الطعام

 fitness تمثل ي بع نفس النهج السابق في الخوارزميتين السابقتين ولكن مع علمية تعديل للفيرمون والتخوارزمية النمل تت

 .عملية تحرك للنمل باتجاه مصدر الطعامعند كل

 الجلسة سنقوم بتطبيق عدة عمليات وهي: في هذه

 صادر الطعاممواضع محددة تمثل منمل ب توليد •

 طبيق تابع انتقال الى مصدر طعامت •

 تعديل قيمة الفيرمون •

import matplotlib.pyplot as plt

def distance(point1, point2):

return np.sqrt(np.sum((point1 - point2)**2))

هما ات تكرار الخوارزمية ألفا وبيتا وعدد مر و عدد النملاتتابع الخوارزمية الوسطاء: عدد مصادر الطعام

معامل يستخدم في qن يتم استخدامها في حساب احتمالية اختيار مصدر الطعام التالي ضمن المسار معاملا

 مون ة الفير تقليل قيم

def ant_colony_optimization(points, n_ants, n_iterations, alpha, beta, evaporation_rate, Q):

n_points = len(points)

pheromone = np.ones((n_points, n_points))

best_path = None

best_path_length = np.inf

for iteration in range(n_iterations):

paths = []

https://manara.edu.sy/

https://manara.edu.sy/

path_lengths = []

for ant in range(n_ants):

visited = [False]*n_points

current_point = np.random.randint(n_points)

visited[current_point] = True

path = [current_point]

path_length = 0

while False in visited:

unvisited = np.where(np.logical_not(visited))[0]

probabilities = np.zeros(len(unvisited))

for i, unvisited_point in enumerate(unvisited):

probabilities[i] = pheromone[current_point, unvisited_point]**alpha /

distance(points[current_point], points[unvisited_point])**beta

probabilities /= np.sum(probabilities)

next point = np.random.choice(unvisited, p=probabilities)

next_point np.random.choice(unvisited, p probabilities)

path.append(next_point)

path_length += distance(points[current_point], points[next_point])

visited[next_point] = True

current_point = next_point

paths.append(path)

path_lengths.append(path_length)

if path_length < best_path_length:

best_path = path

best_path_length = path_length

pheromone *= evaporation_rate

for path, path_length in zip(paths, path_lengths):

for i in range(n_points-1):

pheromone[path[i], path[i+1]] += Q/path_length

pheromone[path[-1], path[0]] += Q/path_length

https://manara.edu.sy/

