A
Bl ol

Robot Operating System

ROS Launch

Lecture No. 9

Dr. Eng. Essa Alghannam

‘roslaunch’ is a powerful command-line tool in the Robot Operating System (ROS) that
allows user to easily start and manage multiple ROS nodes simultaneously. Instead of
starting each node individually using commands like ‘rosrun’.

e ‘roslaunch’: specify all the nodes we need in a single XML file (a launch file).

A simple launch file (e.g., 'my_launch.launch’) might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<launch>

<node pkg="my_package" type="node" hame="nodel"l Sutput=iScreent -
<node pkg="my package" type="node2" name="node2" output="screen"/>
<param name="my parameter" value="10"/>

</launch>

[Start a node named "-" from the executable "‘nodel " in the _ package,
sending the output to the screen. |

[Set a parameter named "my_parameter" to the value "10," which will be available to any
nodes that subscribe to it.]

1 Example:

e Inside the package, create a folder named “launch”.

e Inside the folder, create a file named “turtlesim.launch™ (we can choose a different
name, but the ".launch” extension is important). The suitable location within the ROS
workspace should be, for example:

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

‘mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch’.
e Add the following content:

<?xml version="1.0" encoding="UTF-8"?>
<launch>

<!-- Start the turtlesim node -->

<node pkg="turtlesim" type="turtlesim_node" Hame="turtlesim"~

<!-- Optionall
<node

, start the keyboard teleop node -->

type="turtle_teleop_key" Rame='telcop turtle’™
name="scale linear" value="2.0"/> <!-- Adjust speed -->
name="scale angular" value="2.0"/> <!-- Adjust turning speed -->

</node>

</launch>
1- *<launch>" and ‘</launch>": These tags enclose the entire launch file.
2- JEBEERN This tag defines a ROS node to be launched.

a) - Specifies the ROS package containing the node (e.g., "turtlesim"").
b) - Specifies the executable file within the package (e.g., ""turtlesim node™"").
c) ‘name': Assigns a unique name to the node. This is crucial for identification and
avoiding name conflicts.
3- _ (optional): These tags are used to set parameters for the launched nodes. In this
case, they adjust the speed of the turtle controlled by the keyboard.
v’ scale linear default value: 1.0
v’ scale angular default value: 1.0
v" linear_speed:Default Value: 1.0 (units/sec)
v' angular_speed: Default Value: 1.0 (radians/sec)
These are scaling factors or multipliers that determine how aggressively the turtle teleop key
node translates the keyboard input (like pressing arrow keys) into movement commands for
the turtlesim turtle.
Finally, run it:
roslaunch myturtlepackage turtlesim.launch
In case of error, try:

chmod +x ~/mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch

2 Another Example:

<?xml version="1.0" encoding="UTF-8"7>
<launch>

<node pkg="turtlesim" type="turtlesim_node" hame="furtlesim ~

BB pke="turtlesim" type="turtle_teleop key" name="teleop turtle">
<!-- Base speeds for the node -->
<param name="linear speed" value="3.0"/> <!-- Defaultis 1.0 -->

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

<param name="angular speed" value="1.5"/> <!-- Defaultis 1.0 -->
<!-- Scaling factors for keyboard input -->

<param name="scale linear" value="2.0"/>
<ﬁaram name="scale angular" value="2.0"/>

</launch>

3 Another example:

Create a file named ‘'my publisher.py" in the ROS package's “src’ directory.
~mycatkin_vs/svc FAMIGRAIIRS s EASHRNGERY

#!/usr/bin/env python3
import rospy
from std_msgs.msg import String
def talker():
rospy.init node('my_publisher', anonymous=True) # Initialize the node
pub = rospy.Publisher('my_topic', String, queue_size=10) # Create a publisher
rate = rospy.Rate(1) # 1hz
while not rospy.is_shutdown():
hello_str = "hello world %s" % rospy.get time()
rospy.get_time()returns the current time as a floating-point number
#representing seconds since the ROS master started.
rospy.loginfo(hello_str)
pub.publish(hello_str) # Publish the message
rate.sleep()

if name ==' main_ "
try:
talker()
except rospy.ROSInterruptException:
pass

~/mycatkin_ws/src/ijiIepackAge s c/ T NDUDISHEHDY

Edit CMAKELISTS.txt file

catkin_install_python(PROGRAMS SiCHMyNpUBISHCHDY

DESTINATION ${CATKIN PACKAGE _BIN DESTINATION})

cd ~/mycatkin_ws/src/iyUIICPACKARE /src
chmod +x S PUBNSHEHPY

Modify the launch file:

Then

‘mycatkin ws/src/myturtlepackage/launch/turtlesim.launch’.

<?xml version="1.0" encoding="UTF-8"7>
<launch>
<!-- Launch turtlesim for visualization -->

https://manara.edu.sy/

https://manara.edu.sy/

iz

6)liaJl

<node pkg="turtlesim" type="turtlesim node" name="sim"/>

<!-- Launch the Python publisher node -->
B e A —————

output="screen"/>
</launch>

e ‘output="screen" : This option controls where the output of the node (standard output and
standard error streams) is directed. “screen” means the output (e.g., ‘rospy.loginfo’
messages) will be printed to the terminal where we run the "roslaunch’. Other options
include ‘log" (which sends the output to ROS log files) or 'none’ (which suppresses
output entirely).

Finally:
cd ~/mycatkin_ws

catkin_make

roslaunch _ turtlesim.launch

4 Another example:

~/catkin_ws/src/

o myROSpackage/
% srv/
v' AddTwolnts.srv
s src/
v' add two ints server.py
v add two_ints_client.py
% launch/
v' add example.launch

X3

%

include
CMakelLists.txt
package.xml

X3

¢

X/
¢

https://manara.edu.sy/

https://manara.edu.sy/

