

https://manara.edu.sy/

1

Robot Operating System

ROS Launch

Lecture No. 9

Dr. Eng. Essa Alghannam

• `roslaunch` is a powerful command-line tool in the Robot Operating System (ROS) that

allows user to easily start and manage multiple ROS nodes simultaneously. Instead of

starting each node individually using commands like `rosrun`.

• `roslaunch`: specify all the nodes we need in a single XML file (a launch file).

A simple launch file (e.g., `my_launch.launch`) might look like this:

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <node pkg="my_package" type="node1" name="node1" output="screen"/>

 <node pkg="my_package" type="node2" name="node2" output="screen"/>

 <param name="my_parameter" value="10"/>

</launch>

[Start a node named "node1" from the executable `node1` in the `my_package` package,

sending the output to the screen.]

[Set a parameter named "my_parameter" to the value "10," which will be available to any

nodes that subscribe to it.]

1 Example:

• Inside the package, create a folder named “launch”.

• Inside the folder, create a file named `turtlesim.launch` (we can choose a different

name, but the `.launch` extension is important). The suitable location within the ROS

workspace should be, for example:

https://manara.edu.sy/

https://manara.edu.sy/

2

 `mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch`.

• Add the following content:

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <!-- Start the turtlesim node -->

 <node pkg="turtlesim" type="turtlesim_node" name="turtlesim"/>

 <!-- Optionally, start the keyboard teleop node -->

 <node pkg="turtlesim" type="turtle_teleop_key" name="teleop_turtle">

 <param name="scale_linear" value="2.0"/> <!-- Adjust speed -->

 <param name="scale_angular" value="2.0"/> <!-- Adjust turning speed -->

 </node>

</launch>
1- `<launch>` and `</launch>`: These tags enclose the entire launch file.

2- `<node>`: This tag defines a ROS node to be launched.

a) `pkg`: Specifies the ROS package containing the node (e.g., `"turtlesim"`).

b) `type`: Specifies the executable file within the package (e.g., `"turtlesim_node"`).

c) `name`: Assigns a unique name to the node. This is crucial for identification and

avoiding name conflicts.

3- `<param>` (optional): These tags are used to set parameters for the launched nodes. In this

case, they adjust the speed of the turtle controlled by the keyboard.

✓ scale_linear default value: 1.0

✓ scale_angular default value: 1.0

✓ linear_speed:Default Value: 1.0 (units/sec)

✓ angular_speed: Default Value: 1.0 (radians/sec)

These are scaling factors or multipliers that determine how aggressively the turtle_teleop_key

node translates the keyboard input (like pressing arrow keys) into movement commands for

the turtlesim turtle.

Finally, run it:

roslaunch myturtlepackage turtlesim.launch

In case of error, try:

chmod +x ~/mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch

2 Another Example:

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <node pkg="turtlesim" type="turtlesim_node" name="turtlesim"/>

 <node pkg="turtlesim" type="turtle_teleop_key" name="teleop_turtle">

 <!-- Base speeds for the node -->

 <param name="linear_speed" value="3.0"/> <!-- Default is 1.0 -->

https://manara.edu.sy/

https://manara.edu.sy/

3

 <param name="angular_speed" value="1.5"/> <!-- Default is 1.0 -->

 <!-- Scaling factors for keyboard input -->

 <param name="scale_linear" value="2.0"/>

 <param name="scale_angular" value="2.0"/>

 </node>

</launch>
3 Another example:

Create a file named `my_publisher.py` in the ROS package's `src` directory.

~/mycatkin_ws/src/myturtlepackage/src/my_publisher.py

#!/usr/bin/env python3

import rospy

from std_msgs.msg import String

def talker():

 rospy.init_node('my_publisher', anonymous=True) # Initialize the node

 pub = rospy.Publisher('my_topic', String, queue_size=10) # Create a publisher

 rate = rospy.Rate(1) # 1hz

 while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

 # rospy.get_time()returns the current time as a floating-point number

 #representing seconds since the ROS master started.

 rospy.loginfo(hello_str)

 pub.publish(hello_str) # Publish the message

 rate.sleep()

if __name__ == '__main__':

 try:

 talker()

 except rospy.ROSInterruptException:

 pass

~/mycatkin_ws/src/myturtlepackage/src/my_publisher.py

Edit CMAKELISTS.txt file

catkin_install_python(PROGRAMS src/ my_publisher.py

DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

Then

cd ~/mycatkin_ws/src/myturtlepackage /src

chmod +x my_publisher.py

Modify the launch file:
`mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch`.

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <!-- Launch turtlesim for visualization -->

https://manara.edu.sy/

https://manara.edu.sy/

4

 <node pkg="turtlesim" type="turtlesim_node" name="sim"/>

 <!-- Launch the Python publisher node -->

 <node pkg="myturtlepackage" type="my_publisher.py" name="my_publisher"

output="screen"/>

</launch>

• `output="screen"`: This option controls where the output of the node (standard output and

standard error streams) is directed. `screen` means the output (e.g., `rospy.loginfo`

messages) will be printed to the terminal where we run the `roslaunch`. Other options

include `log` (which sends the output to ROS log files) or `none` (which suppresses

output entirely).

Finally:

cd ~/mycatkin_ws

catkin_make

roslaunch myturtlepackage turtlesim.launch

4 Another example:

~/catkin_ws/src/

• myROSpackage/

❖ srv/

✓ AddTwoInts.srv

❖ src/

✓ add_two_ints_server.py

✓ add_two_ints_client.py

❖ launch/

✓ add_example.launch

❖ include

❖ CMakeLists.txt

❖ package.xml

https://manara.edu.sy/

