

https://manara.edu.sy/

1

Robot Operating System

Using ROS parameter Server

Lecture No. 10

Dr. Eng. Essa Alghannam

1 Introduction:

1.1 rosparam:

rosparam allows to store and manipulate data on the ROS Parameter Server. The Parameter

Server can store integers, floats, boolean, dictionaries, and lists. rosparam uses the YAML

markup language for syntax.

In simple cases, YAML looks very natural: 1 is an integer, 1.0 is a float, one is a string, true is

a boolean, [1, 2, 3] is a list of integers, and {a: b, c: d} is a dictionary.

1.2 ROS Parameter Server:

The ROS Parameter Server is a fundamental component of the Robot Operating System (ROS)

that provides a centralized, shared, and dynamic storage system for parameters. It is a global

dictionary or a shared blackboard where all ROS nodes can store and retrieve configuration

data. The Parameter Server gives us the possibility to store data in a central location.

Key Characteristics and Concepts:

1- Centralized and Shared: All ROS nodes connected to the same ROS Master can access the

Parameter Server. This means a parameter set by one node or a launch file can be read by

any other node.

2- Dynamic: Parameters can be set, retrieved, and modified at runtime (while nodes are

running) without needing to recompile or restart nodes. This allows for flexible

configuration and dynamic adjustment of robot behavior or algorithm tuning.

https://manara.edu.sy/

https://manara.edu.sy/

2

3- Hierarchical (Namespaces): Parameters are organized in a tree-like structure, similar to a

file system. They have namespaced paths (e.g., /robot_description/wheel_radius,

/camera/image_topic, /planner/costmap/resolution). This helps prevent naming conflicts

and organizes related parameters.

4- Key-Value Store: Each parameter consists of a unique key (its name/path) and an associated

value. Values can be different data types: integers, floats, Booleans, strings, lists, or

dictionaries (YAML structures). The Parameter Server uses XMLRPC data types for

parameter values, which include the following:

• 32-bit integers

• Booleans

• Strings

• Doubles

• Lists

• Base 64-encoded binary data

• ISO 8601 dates

5- Persistence (during roscore uptime): Once a parameter is set, its value persists on the server

until: 1- It's explicitly deleted. 2- Its value is explicitly changed. 3- The roscore process is

stopped.

The Parameter Server is crucial for:

1- Configuration Management: Instead of hardcoding values (like robot dimensions, sensor

offsets, algorithm constants) directly into the C++ or Python code, we can store them on

the Parameter Server. This makes the code more generic and reusable.

2- Flexibility and Tunability: we can easily modify how the robot behaves or how an

algorithm operates simply by changing parameter values, without needing to recompile

code. This is invaluable during development, testing, and even for adaptive behavior in

deployed systems.

3- Sharing Information: Common values that multiple nodes need (e.g., the base frame

name, a global speed limit) can be stored once and accessed by all relevant nodes.

4- Debugging and Experimentation: we can inspect current parameter values using

command-line tools (rosparam get). We can temporarily change a parameter value

(rosparam set) to test its effect on a running system.

5- Simplified Launching: ROS launch files can load an entire set of parameters from a

YAML file onto the server, making it easy to set up complex configurations at startup.

1.3 Interact with the Parameter Server:

1. Command Line (rosparam): rosparam has many commands that can be used on

parameters, as shown below:

• rosparam list: Lists all currently set parameters in the server.

• rosparam get <param_name>: Retrieves or gets the value of a specific parameter.

• rosparam set <param_name> <value>: Sets or updates a parameter's value.

https://manara.edu.sy/

https://manara.edu.sy/

3

• rosparam delete <param_name>: Removes a parameter.

• rosparam dump <file.yaml> [namespace]: Saves (dumps) current parameters to a

YAML file.

• rosparam load <file.yaml> [namespace]: Loads parameters from a YAML file on the

Parameter Server.

2. ROS Launch Files (<param> and <rosparam> tags):

• This is the most common way to load parameters when starting the ROS system.

• <param name="my_param" value="123" />: Sets a single parameter.

• <rosparam command="load" file="path/to/my_params.yaml" />: Loads multiple

parameters from a YAML file.

• Parameters can be loaded into the global namespace (default, /my_param) or

a node's private namespace (/my_node/my_param by placing <rosparam> inside

a <node> tag).

3. ROS Client Libraries (e.g., rospy for Python, roscpp for C++):

Nodes can programmatically get and set parameters. For example, in Python (rospy):

• rospy.get_param('param_name', default_value): Reads a parameter.

Use ~param_name for private node parameters.

• rospy.set_param('param_name', new_value): Sets a parameter.

• rospy.has_param('param_name'): Checks if a parameter exists.

• rospy.delete_param('param_name'): Deletes a parameter.

1.4 rosparam list:

In terminal 1, try roscore command and then in terminal 2 try rosparam list, the output will

be:

• /rosdistro

• /roslaunch/uris/host_essa__38837

• /rosversion

• /run_id

In terminal 2, try rosrun turtlesim turtlesim_node; then, in terminal 3, try rosparam list

again. The output will be:

• /rosdistro

• /roslaunch/uris/host_essa__38837

• /rosversion

• /run_id

• /turtlesim/background_b

• /turtlesim/background_g

• /turtlesim/background_r

In a terminal 3: essa@essa:~$ rosparam list /turtlesim. The output will be only the parameters

with the namespace called /turtlesim:

https://manara.edu.sy/

https://manara.edu.sy/

4

• /turtlesim/background_b

• /turtlesim/background_g

• /turtlesim/background_r

1.5 rosparam get and rosparam set commands:

essa@essa:~$ rosparam get /turtlesim/background_b

output: 255

essa@essa:~$ rosparam get /turtlesim/background_r

output: 69

essa@essa:~$ rosparam get /turtlesim/background_g

output: 86

After that, try:

essa@essa:~$ rosparam set /turtlesim/background_g 255

This changes the parameter value.

essa@essa:~$ rosparam get /turtlesim/background_g

output: 255

Now we have to call the clear service for the parameter change to take effect:

essa@essa:~$ rosservice call /clear

We can also use rosparam get / to show us the contents of the entire Parameter Server.

essa@essa:~$ rosparam get /

rosdistro: 'noetic

 '

roslaunch:

 uris:

 host_essa__38837: http://essa:38837/

rosversion: '1.17.0

 '

run_id: b1cdb880-4380-11f0-9238-4338e491ddf1

turtlesim:

 background_b: 255

 background_g: 255

 background_r: 69

https://manara.edu.sy/

https://manara.edu.sy/

5

1.6 Delete All Parameters (Clearing the Entire Server):

essa@essa:~$ rosparam delete /

CAUTION: Executing rosparam delete / will remove ALL parameters from the server,

including any default ROS parameters (like rosversion, rosdistro, run_id) that are

automatically set by roscore or roslaunch. While these core parameters are usually recreated

if roscore is still running and new nodes are launched. Only use this if we truly want a

completely blank slate for parameters.

Verification after deleting: we can use rosparam list or rosparam get / to see the current state

of the parameter server and confirm if parameters have been removed.

1- # Example: Delete a parameter named '/my_global_param'

rosparam delete /my_global_param

2- # Example: Delete a parameter in a node's private namespace (e.g., if we had

/my_node/param_a)

rosparam delete /my_node/param_a

3- # Example: Delete all parameters under '/my_node'

rosparam delete /my_node

4- # Example: Delete all parameters under '/sensors/camera'

rosparam delete /sensors/camera

1.7 rosparam dump:

When we run rosparam dump params.yaml, it connects to the currently running ROS Master

(which hosts the Parameter Server) and retrieves the values of all parameters currently stored

on the server. It then writes these parameters, along with their hierarchical structure, into the

specified YAML file (params.yaml in this case).

1. Snapshotting/Backing Up Parameters: we can capture the current state of our system's

parameters at any given moment. This is invaluable for debugging, especially if we've

manually tweaked parameters using rosparam set during development. It creates a backup

of the configuration.

2. Inspection and Documentation: It's often easier to review the full set of active parameters

in a structured YAML file than using rosparam get / repeatedly or scrolling through the

output of rosparam list. The dumped file serves as an implicit form of documentation for the

system's configuration.

3. Portability and Reusability: If we've finely tuned parameters manually in a running

system, we can dump them to a file. This file can then be used later with rosparam load or

directly included in a roslaunch file to quickly restore that specific configuration. This is

crucial for replicating experimental setups.

https://manara.edu.sy/

https://manara.edu.sy/

6

4. Debugging Parameter Loading Issues: If we're having trouble with a roslaunch file not

loading parameters as expected, dumping the parameters after launching can show us

exactly what values ended up on the server, helping us pinpoint errors in the launch file or

YAML syntax.

In terminal 1: essa@essa:~$ roscore

In terminal 2: essa@essa:~$ rosrun turtlesim turtlesim_node

In terminal 3: essa@essa:~$ rosparam set /turtlesim/background_g 255

In terminal 4: essa@essa:~$ rosparam dump 1122.yaml

Or use

cat 1122.yaml

We can also specify a namespace to dump only parameters within that scope, for example:

In terminal 5: essa@essa:~$ rosparam dump 2233.yaml /turtlesim

Or use

cat 2233.yaml

2 Example:

 Suppose that we have all_params.yaml file and it contains:

/publisher_node:

 message_text: "Hello from param file!"

https://manara.edu.sy/

https://manara.edu.sy/

7

 publish_rate: 2.0

/rosdistro: "noetic"

/roslaunch:

 uris:

 host_example_param_pkg__publisher_node__63768: "http://the_machine_ip:the_port/"

 host_example_param_pkg__subscriber_node__63768:

"http://the_machine_ip:the_port/"

/rosversion: "1.15.14" # ROS version

/run_id: "run_id_string"

Notice that publish_rate and message_text are under /publisher_node. they should be loaded

into that node's private namespace using ~ in rospy.get_param('~publish_rate') and

the rosparam command="load" being inside the <node> tag in the launch file.

2.1 rosparam load to load parameters from a YAML file onto the

ROS Parameter Server, and use them:

There are two primary ways to load parameters from a YAML file onto the ROS Parameter

Server:

Suppose that we have yaml file and it looks like below:

~/catkin_ws/src/example_param_pkg/params/config.yaml

 /parameter_name_1: 10

/parameter_name_2: 'D'

2.1.1 Method A: Using rosparam load and get from the command line:
This is useful for quick tests, setting up parameters manually, or loading global configurations

before launching specific nodes.

Syntax: rosparam load <path_to_yaml_file> [namespace]

• <path_to_yaml_file>: The full path to the YAML file

(e.g., ~/catkin_ws/src/example_param_pkg/params/config.yaml).

• [namespace]: (Optional) If provided, all parameters from the YAML file will be loaded

under this namespace on the Parameter Server. If omitted, they are loaded into the global (/)

namespace.

2.1.1.1 Example 1:
First, ensure roscore is running

roscore

Load config.yaml into the global namespace

https://manara.edu.sy/

https://manara.edu.sy/

8

rosparam load ~/catkin_ws/src/example_param_pkg/params/config.yaml

Verify parameters are loaded (they'll appear under /)

rosparam list

Expected output might include:

/parameter_name_1

/parameter_name_2

2.1.1.2 Example 2:
Alternatively, load into a specific namespace (e.g., /my_settings)

rosparam load ~/catkin_ws/src/example_param_pkg/params/config.yaml /my_settings

Verify

rosparam list

Expected output might include:

/my_settings/parameter_name_1

/my_settings/parameter_name_2

To get the parameter value from

$ rosparam get /my_settings/parameter_name_1

2.1.1.3 Example 3:
Suppose we have the file 1122.yaml

essa@essa:~$ cat 1122.yaml

rosdistro: 'noetic

 '

roslaunch:

 uris:

 host_essa__38837: http://essa:38837/

rosversion: '1.17.0

 '

run_id: b1cdb880-4380-11f0-9238-4338e491ddf1

turtlesim:

 background_b: 255

 background_g: 255

 background_r: 69

rosdistro: 'noetic

https://manara.edu.sy/

https://manara.edu.sy/

9

 '

roslaunch:

 uris:

 host_essa__38837: http://essa:38837/

rosversion: '1.17.0

 '

run_id: b1cdb880-4380-11f0-9238-4338e491ddf1

turtlesim:

 background_b: 255

 background_g: 255

 background_r: 69

In terminal 1: essa@essa:~$ roscore

In terminal 2: essa@essa:~$ rosparam load 1122.yaml copy

In terminal 2: essa@essa:~$ rosparam get /

copy:

 rosdistro: 'noetic

 '

 roslaunch:

 uris:

 host_essa__38837: http://essa:38837/

 rosversion: '1.17.0

 '

 run_id: b1cdb880-4380-11f0-9238-4338e491ddf1

 turtlesim:

 background_b: 255

 background_g: 255

 background_r: 69

rosdistro: 'noetic

 '

roslaunch:

 uris:

 host_essa__37705: http://essa:37705/

rosversion: '1.17.0

 '

run_id: b1093710-444a-11f0-940b-83af93e8830b

In terminal 2: essa@essa:~$ rosparam get /copy/turtlesim/background_b

Commented [EA1]: Load this YAML file into new namespace,

e.g., copy in the Parameter Server

Commented [EA2]: show us the contents of the entire Parameter

Server

https://manara.edu.sy/

https://manara.edu.sy/

10

Output: 255

In terminal 2: essa@essa:~$ MY_VARIABLE=$(rosparam get

/copy/turtlesim/background_r)

In terminal 2: essa@essa:~$ echo $MY_VARIABLE

Output: 69

In terminal 2: essa@essa:~$ MY_VARIABLE=$(rosparam get /copy/turtlesim/)

In terminal 2: essa@essa:~$ echo $MY_VARIABLE

Output: background_b: 255 background_g: 255 background_r: 69

2.1.2 Method B: Using <rosparam> tag in a ROS Launch File and rospy.get_param() in python
(Recommended)

This is the standard and most robust way to manage parameters in a ROS system, as it ties

parameter loading directly to the system's startup.

2.1.2.1 Loading into the Global Namespace:
If we want the parameters to be accessible globally by any node (e.g., /publish_rate), we can

place the <rosparam> tag directly under the <launch> tag:

<?xml version="1.0" encoding="UTF-8"?>

<!-- File: ~/catkin_ws/src/example_param_pkg/launch/global_params.launch -->

<launch>

 <rosparam command="load" file="$(find example_param_pkg)/params/config.yaml" />

 <!-- Now, if we launch a node, it can access /publish_rate and /message_text -->

 <node pkg="example_param_pkg" type="publisher_node.py" name="publisher_node"

output="screen" />

 <node pkg="example_param_pkg" type="subscriber_node.py" name="subscriber_node"

output="screen" />

</launch>

2.1.2.2 Loading into a Node's Private Namespace (Most Common for Node-Specific Params):
This is typically preferred for parameters that are specific to a single node. The parameters will

be loaded under the node's name (e.g., /publisher_node/publish_rate). This prevents naming

conflicts if multiple nodes use similar parameter names.

https://manara.edu.sy/

https://manara.edu.sy/

11

<?xml version="1.0" encoding="UTF-8"?>

<!-- File: ~/catkin_ws/src/example_param_pkg/launch/node_private_params.launch -->

<launch>

 <!--

 The <rosparam> tag inside the <node> tag loads parameters

 into that specific node's private namespace.

 If the node name is "publisher_node", then parameters like "publish_rate"

 from config.yaml will be loaded into the parameter server under "publisher_node"

namespace, and it will be accessible as /publisher_node/publish_rate.

 -->

 <node pkg="example_param_pkg" type="publisher_node.py" name="publisher_node"

output="screen">

 <rosparam command="load" file="$(find example_param_pkg)/params/config.yaml" />

 </node>

 <node pkg="example_param_pkg" type="subscriber_node.py" name="subscriber_node"

output="screen" />

</launch>

Key point about $(find package_name): This is a roslaunch substitution argument that

automatically resolves to the path of the specified ROS package.

2.1.2.3 Read Specific Parameters from the Parameter Server using python:

Once parameters are loaded onto the ROS Parameter Server (either via rosparam

load or roslaunch), we can read them within the ROS nodes using the client library

(e.g., rospy for Python, roscpp for C++). To do it in Python (rospy) we need to use a primary

tool or function rospy.get_param().

a. Reading a Global Parameter:

If publish_rate was loaded into the global namespace (e.g., /publish_rate):

import rospy

Initialize the node (essential before using parameters)

rospy.init_node('my_reader_node')

https://manara.edu.sy/

https://manara.edu.sy/

12

Read the global parameter

Full path starting with '/'

global_rate = rospy.get_param('/publish_rate')

rospy.loginfo(f"Global publish rate: {global_rate}")

b. Reading a Private Parameter (Recommended for Node-Specific Params):

If publish_rate was loaded into the current node's private namespace

(e.g., /publisher_node/publish_rate for a node named publisher_node):

import rospy

Initialize the node

rospy.init_node('publisher_node') # Node name should match the one in the launch file

Read the private parameter using '~' (tilde) prefix

The '~' refers to the node's private namespace

private_rate = rospy.get_param('~publish_rate')

rospy.loginfo(f"Private publish rate: {private_rate}")

c. Reading with a Default Value:

It's highly recommended to provide a default value. If the parameter is not found on the

server, rospy.get_param() will return the default value instead of raising a KeyError.

import rospy

rospy.init_node('my_node')

Try to get 'non_existent_param', if not found, use 5.0

param_with_default = rospy.get_param('~non_existent_param', 5.0)

rospy.loginfo(f"Parameter with default: {param_with_default}")

Example from the config:

publish_rate = rospy.get_param('~publish_rate', 1.0) # Will use 2.0 if found, else 1.0

message_text = rospy.get_param('~message_text', "Default fallback message") # Will use

"Hello..." if found

d. Checking if a Parameter Exists:

We can use rospy.has_param() to check for a parameter's existence before trying to retrieve it.

https://manara.edu.sy/

https://manara.edu.sy/

13

import rospy

rospy.init_node('my_node')

if rospy.has_param('/some_global_param'):

 value = rospy.get_param('/some_global_param')

 rospy.loginfo(f"Global param exists: {value}")

else:

 rospy.logwarn("Global param does not exist.")

if rospy.has_param('~some_private_param'):

 value = rospy.get_param('~some_private_param')

 rospy.loginfo(f"Private param exists: {value}")

else:

 rospy.logwarn("Private param does not exist.")

3 Example 0:

In example_param_pkg, the launch/param_example.launch file uses:

<?xml version="1.0" encoding="UTF-8"?>

<node pkg="example_param_pkg" type="publisher_node.py" name="publisher_node"

output="screen">

 <rosparam command="load" file="$(find example_param_pkg)/params/config.yaml" />

 </node>

This means publish_rate and message_text from config.yaml are loaded into the private

namespace of the publisher_node. So, they will be accessible on the parameter server as:

• /publisher_node/publish_rate
• /publisher_node/message_text

And in src/publisher_node.py, we correctly read them using the tilde (~):

 publish_rate = rospy.get_param('~publish_rate', 1.0) # Reads from

/publisher_node/publish_rate

 message_text = rospy.get_param('~message_text', "Default message from node if param

not found!") # Reads from /publisher_node/message_text

https://manara.edu.sy/

https://manara.edu.sy/

14

4 Example 1:

4.1 Package and files structure:

example_param_pkg/

• launch/

✓ example.launch

• params/

✓ config.param

• src/

✓ publisher_node.py

✓ subscriber_node.py

• CMakeLists.txt

• package.xml

• mkdir -p ~/ mycatkin_ws /src

• cd ~/ mycatkin_ws /src

• catkin_create_pkg example_param_pkg rospy roscpp std_msgs

• cd ..

• catkin_make

4.2 Create the .param file with parameters:

Use gedit to create the config.param in the path:

~/mycatkin_ws/src/example_param_pkg/params/config.param (YAML format)

publish_rate: 2.0

message_text: "Hello from param file!"

4.3 Create the publisher node:

Use gedit to create publisher_node.py in the path

~/mycatkin_ws/src/example_param_pkg/src/publisher_node.py

#!/usr/bin/env python

import rospy

from std_msgs.msg import String

def publisher():

 rospy.init_node('param_publisher_node')

 pub = rospy.Publisher('chatter', String, queue_size=10)

https://manara.edu.sy/

https://manara.edu.sy/

15

 # Load parameters from parameter server, provide default values just in case

 publish_rate = rospy.get_param('~publish_rate', 1.0)

"""

used to access parameters stored in the ROS parameter server.

the parameter server is a central repository for configuration settings in ROS.

This means the function will look for a parameter named publish_rate within the node's

private namespace. If the node is named 'param_publisher_node', the actual parameter

looked up on the server is /param_publisher_node/publish_rate. Using the private namespace

is generally the best practice to avoid naming collisions with parameters from other nodes.

If we omit the ~, it looks for a parameter globally.

1.0: This is the second argument to rospy.get_param(). It's the default value. If a parameter

named ~publish_rate is not found in the node's private namespace on the parameter server,

the function will return this default value (1.0 in this case).

"""

 message_text = rospy.get_param('~message_text', 'Hello Default')

 rate = rospy.Rate(publish_rate)

 rospy.loginfo(f"[Publisher] Publishing at {publish_rate} Hz: '{message_text}'")

 while not rospy.is_shutdown():

 pub.publish(message_text)

 rate.sleep()

if __name__ == '__main__':

 try:

 publisher()

 except rospy.ROSInterruptException:

 pass

chmod +x src/publisher_node.py

4.4 Create the subscriber node:

Use gedit to create subscriber_node.py in the path

~/mycatkin_ws/src/example_param_pkg/src/subscriber_node.py

#!/usr/bin/env python

import rospy

from std_msgs.msg import String

def callback(msg):

 rospy.loginfo(f"[Subscriber] Received: {msg.data}")

def subscriber():

 rospy.init_node('param_subscriber_node')

 rospy.Subscriber('chatter', String, callback)

 rospy.spin()

https://manara.edu.sy/

https://manara.edu.sy/

16

if __name__ == '__main__':

 subscriber()

chmod +x src/subscriber_node.py

4.5 Create a launch file:

Use gedit to create example.launch in the path

~/mycatkin_ws/src/example_param_pkg/launch/example.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <node pkg="example_param_pkg" type="publisher_node.py"

name="param_publisher_node" output="screen">

 <rosparam file="$(find example_param_pkg)/params/config.param" command="load"/>

 </node>

<!--

 The <rosparam> tag inside the <node> tag loads parameters

 into that specific node's private namespace.

 If the node name is "param_publisher_node", then parameters like "publish_rate" from

config.yaml will be loaded into the parameter server under "publisher_node" namespace,

and it will be accessible as /param_publisher_node/publish_rate.

 -->

 <!-- Launch the subscriber node -->

 <node pkg="example_param_pkg" type="subscriber_node.py"

name="param_subscriber" output="screen" />

</launch>

4.6 Update CMakeLists.txt and package.xml:

In package.xml: (not required)

<build_depend>message_generation</build_depend>

<exec_depend>message_runtime</exec_depend>

<exec_depend>rospy</exec_depend>

<exec_depend>std_msgs</exec_depend>

In CMakeLists.txt:

a) Ensure scripts are installed (optional but good practice):

catkin_install_python(PROGRAMS

Commented [EA3]: This is a ROS launch file macro. find is a command

that searches for ROS packages. It looks for a package named

example_param_pkg in the ROS workspace.

https://manara.edu.sy/

https://manara.edu.sy/

17

 src/publisher_node.py

 src/subscriber_node.py

 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

4.7 Build the workspace & source & run:

cd ~/mycatkin_ws

catkin_make

source ~/mycatkin_ws/devel/setup.bash

roslaunch example_param_pkg example.launch

Terminal Output:

rosparam get /

https://manara.edu.sy/

https://manara.edu.sy/

18

roslaunch example_param_pkg example.launch publish_rate:=1

message_text:="88888888888hh"

It has no any effect. publish_rate remains 2.0khz and message_text remains “Hello from

param file!". Same as param file.

https://manara.edu.sy/

https://manara.edu.sy/

19

4.8 Modify Launch file:

1. Use gedit to create example1.launch in the path

~/mycatkin_ws/src/example_param_pkg/launch/example4.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <arg name="publish_rate" default="55"/>

 <arg name="message_text" default="hhhhhhhhhh"/>

 <!-- Remap parameters into the global namespace as needed -->

 <param name="publish_rate" value="$(arg publish_rate)"/>

 <param name="message_text" value="$(arg message_text)"/>

 <node pkg="example_param_pkg" type="publisher_node.py"

name="param_publisher_node" output="screen">

 </node>

 <!-- Launch the subscriber node -->

 <node pkg="example_param_pkg" type="subscriber_node.py"

name="param_subscriber" output="screen" />

</launch>

roslaunch example_param_pkg example4.launch

Commented [EA4]: These lines of XML code define

arguments for a ROS (Robot Operating System) node or

launch file. When the launch file is executed, these

arguments become variables that can be used within the

launched node(s).

Commented [EA5]: Remap parameters into the global

namespace

Commented [EA6]: publish_rate =

rospy.get_param('~publish_rate', 1.0)

message_text = rospy.get_param('~message_text', 'Hello

Default')

it gives the default values (the second args) to the parameters

because the function cannot find them in a local namespace

due to the use of ~.

The parameters in the global namespace getsm its value from

the launch file or command lines

https://manara.edu.sy/

https://manara.edu.sy/

20

rosparam get /

roslaunch example_param_pkg example4.launch publish_rate:=1

message_text:="88888888888hh"

Terminal Output:

Commented [EA7]: publish_rate =

rospy.get_param('~publish_rate', 1.0)

message_text = rospy.get_param('~message_text', 'Hello

Default')

it gives the default values (the second args) to the parameters

because the function cannot find them in a local namespace

due to the use of ~.

The parameters in the global namespace getsm its value from

the launch file or command lines

https://manara.edu.sy/

https://manara.edu.sy/

21

rosparam get /

2. Use gedit to create example1.launch in the path

~/mycatkin_ws/src/example_param_pkg/launch/example3.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <arg name="publish_rate" default="55"/>

 <arg name="message_text" default="hhhhhhhhhh"/>

 <node pkg="example_param_pkg" type="publisher_node.py"

name="param_publisher_node" output="screen">

 <!-- Remap parameters into the private namespace as needed -->

 <param name="publish_rate" value="$(arg publish_rate)"/>

 <param name="message_text" value="$(arg message_text)"/>

 </node>

 <!-- Launch the subscriber node -->

 <node pkg="example_param_pkg" type="subscriber_node.py"

name="param_subscriber" output="screen" />

</launch>

Commented [EA8]: These lines of XML code define

arguments for a ROS (Robot Operating System) node or

launch file.

Commented [EA9]: Remap parameters into the private

namespace

https://manara.edu.sy/

https://manara.edu.sy/

22

roslaunch example_param_pkg example3.launch

rosparam get /

https://manara.edu.sy/

https://manara.edu.sy/

23

roslaunch example_param_pkg example3.launch publish_rate:=1

message_text:="88888888888hh"

Terminal Output:

rosparam get /

https://manara.edu.sy/

https://manara.edu.sy/

24

3. Use gedit to create example1.launch in the path

~/mycatkin_ws/src/example_param_pkg/launch/example2.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <rosparam file="$(find example_param_pkg)/params/config.param" command="load"/>

 <!-- Load parameters globally from the .param file -->

 <arg name="publish_rate" default="55"/>

 <arg name="message_text" default="hhhhhhhhhh"/>

 <!-- Launch the publisher node -->

 <node pkg="example_param_pkg" type="publisher_node.py" name="param_publisher"

output="screen">

 <!-- Remap parameters into the private namespace as needed -->

 <param name="publish_rate" value="$(arg publish_rate)"/>

 <param name="message_text" value="$(arg message_text)"/>

 </node>

 <!-- Launch the subscriber node -->

 <node pkg="example_param_pkg" type="subscriber_node.py"

name="param_subscriber" output="screen" />

</launch>

roslaunch example_param_pkg example2.launch

Terminal Output:

Commented [EA10]: Load globally to the parameter

server

Commented [EA11]: Define parameters

Commented [EA12]: Remap the defined parameters into

the private namespace

https://manara.edu.sy/

https://manara.edu.sy/

25

rosparam get /

roslaunch example_param_pkg example2.launch publish_rate:=1

message_text:="88888888888hh"

Terminal Output:

https://manara.edu.sy/

https://manara.edu.sy/

26

rosparam get /

4. Use gedit to create example1.launch in the path

~/mycatkin_ws/src/example_param_pkg/launch/example1.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <arg name="publish_rate" default="55"/>

 <arg name="message_text" default="hhhhhhhhhh"/>

 <node pkg="example_param_pkg" type="publisher_node.py"

name="param_publisher_node" output="screen">

 <rosparam file="$(find example_param_pkg)/params/config.param" command="load"/>

 <!-- Remap parameters into the private namespace as needed -->

 <param name="publish_rate" value="$(arg publish_rate)"/>

 <param name="message_text" value="$(arg message_text)"/>

 </node>

 <!-- Launch the subscriber node -->

 <node pkg="example_param_pkg" type="subscriber_node.py"

name="param_subscriber" output="screen" />

5. </launch>

roslaunch example_param_pkg example1.launch

Commented [EA13]: Define parameters

Commented [EA14]: Load privatly to the parameter server

Commented [EA15]: Remap the defined parameters into

the private namespace

https://manara.edu.sy/

https://manara.edu.sy/

27

Terminal Output:

rosparam get /

roslaunch example_param_pkg example1.launch publish_rate:=1

message_text:="88888888888hh"

https://manara.edu.sy/

https://manara.edu.sy/

28

Terminal Output:

rosparam get /

https://manara.edu.sy/

https://manara.edu.sy/

29

5 Changing parameter after node launch:

If we change the parameter value while the Python script and the launch file are running,

the currently running script will not update its parameter value automatically.

rospy.get_param() reads the parameter only once on startup in previous examples.

To make it dynamic, we'd need to re-read the parameter inside the handle function, or in a loop,

or use a dynamic reconfigure server (more advanced). For this example, it reads it only on node

startup.

In a dynamic reconfigure server, it is possible to configure nodes while they're running or to

change the working of the nodes.

https://manara.edu.sy/

