

https://manara.edu.sy/

1

Introduction to Robot Operating System (ROS 1)

Dr. Essa Alghannam

RViz can visualize data:

1. Robot models (URDF/SDF): a robot model position and orientation can be

visualized in RViz. need to launch the robot description and a

`robot_state_publisher`.

2. Point clouds: Visualize 3D point clouds from sensors like lidar.

3. Laser scans: Visualize data from laser range finders.

4. Odometry: Show the estimated pose of the robot.

5. Camera images: Display images from cameras.

To visualize these DATA, we need to write ROS nodes that publish the

appropriate ROS messages and configure RViz accordingly.

First Exapmle: Running RViz and a node:

1. Open a terminal and run `roscore` to start the ROS master.

2. In another terminal, run `rqt_graph`

3. In another terminal, navigate to the workspace 'mycatkin_ws‘ and run `rviz`.

Output:

[INFO] [1734184718.596195559]: rviz version 1.14.25

[INFO] [1734184718.596349632]: compiled against Qt version 5.12.8

[INFO] [1734184718.596412848]: compiled against OGRE version 1.9.0 (Ghadamon)

[INFO] [1734184718.620233275]: Forcing OpenGl version 0.

Commented [EA1]: URDF (Unified Robot Description

Format) and SDF (Simulation Description Format) are both

XML-based file formats used in robotics to describe robots

and their environments.

URDF is used to describe the kinematic and dynamic

properties of a single robot for use within the ROS (Robot

Operating System).

oKinematics: Defines how joints connect links and the

resulting degrees of freedom.

oDynamics: Can include inertial properties (mass,

inertia tensor) for basic physics calculations.

SDF: To describe everything in a Gazebo simulation

environment, including robots, static objects, sensors, lights,

and various physics properties.

https://manara.edu.sy/

https://manara.edu.sy/

2

[INFO] [1734184719.842820826]: Stereo is NOT SUPPORTED

[INFO] [1734184719.843075946]: OpenGL device: llvmpipe (LLVM 12.0.0, 256 bits)

[INFO] [1734184719.843144009]: OpenGl version: 3.1 (GLSL 1.4).

4. Navigate the scr folder of the workspace 'mycatkin_ws‘. And run:

essa@essa:~/mycatkin_ws$ catkin_create_pkg rvizpkg std_msgs rospy

roscpp

5. go back to the workspace folder and run:

essa@essa:~/mycatkin_ws$ catkin_make

6. Add the following code named "markerpublish.py" to the src folder of the

package: ~/mycatkin_ws/src/rvizpkg/src

~/mycatkin_ws/src/rvizpkg/src/markerpublish.py

1

2

3

#!/usr/bin/env python3

import rospy

from visualization_msgs.msg import Marker, MarkerArray

Commented [EA2]: ROS node that publishes a red sphere

to the /visualization_marker topic, which RViz can then

display.

Commented [EA3]: Shebang tells that Python 3 interpreter

is used in the user's environment.

Commented [EA4]: This line imports

the Marker and MarkerArray message types from

the visualization_msgs package. These messages are used to

define and publish visual markers for display in RViz.

https://manara.edu.sy/

https://manara.edu.sy/

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

def publish_marker():

 rospy.init_node('rviz_marker_publisher', anonymous=True)

 pub = rospy.Publisher('/visualization_marker', Marker, queue_size=10)

 rate = rospy.Rate(10) # 10hz

 marker = Marker()

 marker.header.frame_id = "world" # Or robot's base frame

 marker.header.stamp = rospy.Time.now()

 marker.id = 0

 marker.type = Marker.CUBE

 marker.action = Marker.ADD

 marker.pose.position.x = 0

 marker.pose.position.y = 0

 marker.pose.position.z = 0

 marker.pose.orientation.x = 0.0

 marker.pose.orientation.y = 0.7

 marker.pose.orientation.z = 0.7

Commented [EA5]: `/visualization_marker` is a ROS topic

for publishing markers visualized in RViz. It's common to

display simple geometric shapes (spheres, cubes, cylinders,

etc.), text, and other visual elements in a 3D environment.

Commented [EA6]: we can publish either

`visualization_msgs/Marker` (single marker) using

visualization_msgs/Marker or

`visualization_msgs/MarkerArray` (multiple markers) using

`visualization_msgs/MarkerArray`.

Commented [EA7]: This message contains all the

information needed to render the marker in RViz: its

position, orientation, shape, color, size, etc.

Commented [EA8]: frame_id: The coordinate frame that

the marker is relative to ("world" in this example).

This specifies the coordinate frame in which the marker's

position and orientation are defined.

Commented [EA9]: action: Action to perform

(Marker.ADD to create a new marker). Marker Action: The

`action` field specifies whether to add, modify, or delete a

marker.

https://manara.edu.sy/

https://manara.edu.sy/

4

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

 marker.pose.orientation.w = 0.7

 marker.scale.x = 0.5

 marker.scale.y = 0.5

 marker.scale.z = 0.5

 marker.color.r = 1.0

 marker.color.g = 0.0

 marker.color.b = 0.0

 marker.color.a = 1.0

 while not rospy.is_shutdown():

 pub.publish(marker)

 rate.sleep()

if __name__ == '__main__':

 try:

 publish_marker()

 except rospy.ROSInterruptException:

 pass

https://manara.edu.sy/

https://manara.edu.sy/

5

8 -----> 27 LINES

8. marker = Marker()

marker = Marker(): This line creates a new Marker object. This object will hold all

the properties of the marker (sphere in this case) that will be visualized.

The following lines set the properties of the marker object:

9. marker.header.frame_id = "world" # Or robot's base frame

Frame ID: The `header.frame_id` field in the `Marker` message is crucial. This

specifies the coordinate frame in which the marker's position and orientation are

defined. It should match a frame known to RViz (e.g., ̀ /map`, ̀ /odom`, ̀ /base_link`).

Incorrect frame IDs will result in the marker not appearing correctly or at all.

10. marker.header.stamp = rospy.Time.now()

stamp: Timestamp.

11. marker.id = 0

id: Unique identifier for this marker. Marker ID: The `id` field is used to identify

individual markers. If we're publishing multiple markers, each one should have a

unique ID. This allows us to update or delete specific markers later.

12. marker.type = Marker.SPHERE

type: The shape of the marker (Marker.SPHERE). Marker Type: The `type` field

determines the shape of the marker (sphere, cube, arrow, text, etc.).

13. marker.action = Marker.ADD

action: Action to perform (Marker.ADD to create a new marker). Marker Action: The

`action` field specifies whether to add, modify, or delete a marker.

14. marker.pose.position.x = 0

15. marker.pose.position.y = 0

Commented [EA10]: returns the current time according to

the ROS clock.

•RViz uses the stamp field to determine if a piece of data

is "fresh" enough to be displayed. If RViz receives a

marker with a very old stamp, it might ignore it or display

warnings because it considers the data stale.

•It ensures that different sensor readings or robot states

displayed in RViz are synchronized to a common timeline.

https://manara.edu.sy/

https://manara.edu.sy/

6

16. marker.pose.position.z = 0

17. marker.pose.orientation.x = 0.0

18. marker.pose.orientation.y = 0.0

19. marker.pose.orientation.z = 0.0

20. marker.pose.orientation.w = 1.0

pose: Position and orientation of the marker (set to origin in this example).

21. marker.scale.x = 0.5

22. marker.scale.y = 0.5

23. marker.scale.z = 0.5

scale: Size of the marker (0.5 x 0.5 x 0.5 meters).

For SPHERE:

 ⦁ marker.scale.x: Defines the radius of the sphere along its local X-axis.

 ⦁ marker.scale.y: Defines the radius of the sphere along its local Y-axis.

 ⦁ marker.scale.z: Defines the radius of the sphere along its local Z-axis.

24. marker.color.r = 1.0

25. marker.color.g = 0.0

26. marker.color.b = 0.0

27. marker.color.a = 1.0

color: Color of the marker (red in this example: r=1.0, g=0.0, b=0.0, a=1.0 for full

opacity). Four floating-point values:

• `r`: Red component (0.0 to 1.0)

• `g`: Green component (0.0 to 1.0)

• `b`: Blue component (0.0 to 1.0)

• `a`: Alpha (transparency) component (0.0 to 1.0)

https://manara.edu.sy/

https://manara.edu.sy/

7

These values represent the intensity of each color channel, where 0.0 means no

intensity (absence of that color) and 1.0 means full intensity. The alpha value

controls transparency:

• `a = 0.0`: Fully transparent (invisible)

• `a = 1.0`: Fully opaque (completely visible)

• `0.0 < a < 1.0`: Semi-transparent (partially visible)

• `marker.color.r = 0.5; marker.color.g = 0.5; marker.color.b = 0.5;

marker.color.a = 0.5;` would create a semi-transparent gray marker.

NOTES

• Navigate the src folder of the package ~/mycatkin_ws/src/rvizpkg/src and to

make the code executable:

`chmod +x markerpublish.py`

• Edit the package `CMakeLists.txt` by modifing the lines 162-164:

catkin_install_python(PROGRAMS

 src/markerpublish.py

 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

• Run the node: In a third terminal, run: `rosrun rvizpkg markerpublish.py `

• In the RViz window, go to "Add" -> "By topic" and select `/visualization_marker`.

RViz will then subscribe to this topic and display the published markers.

https://manara.edu.sy/

https://manara.edu.sy/

8

• Modify fixed frame name "map“ to "world“ according to line 9 in the code:

https://manara.edu.sy/

https://manara.edu.sy/

9

1.1 Saving RViz configurations

• From the "File" Menu in the RViz window, we select "Save Config As…" or Save Config to

update a preloaded file.

• Choose a Location and Name: Save the .rviz file inside the ROS package, typically in a

dedicated config folder:

(e.g., ~/mycatkin_ws/src/rvizpkg/config/markers_view.rviz). This makes it easy

to manage and use in launch files later.

• Then we click Save.

1.2 ADD Launch file:

~/mycatkin_ws/src/rvizpkg/launch/launch.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <!-- Node to run Python marker publisher -->

 <node

 pkg="rvizpkg"

 type="markerpublish.py"

 name="marker_publisher_node"

 output="screen" />

 <!-- Node to launch RViz with a pre-configured setup -->

 <node

 pkg="rviz"

 type="rviz"

 name="rviz"

 args="-d $(find rvizpkg)/config/markers_view.rviz"

 required="true" />

</launch>
roslaunch rvizpkg launch.launch

Commented [EA11]: XML Declaration

This is the standard and often mandatory first line of any

XML document.

https://manara.edu.sy/

https://manara.edu.sy/

10

In RViz, `Marker`, and `MarkerArray` are both used to visualize data in 3D space,

but they differ in how they handle multiple visualizations:

Feature Marker MarkerArray

Number of Objects Single Multiple

Efficiency for many

objects

Inefficient Efficient

Message Size Smaller

cube, sphere, arrow, text,

line, etc.

a robot, a single obstacle, or

a specific point of interest

Larger (potentially)

point clouds, trajectories, or

collections of objects.

lidar sensor, plotting a

robot's path over time, or

showing the positions of

multiple detected objects

Use Case Single object visualization Many objects visualization

The choice between using `Marker` and `MarkerArray` depends on the nature of the data

we want to visualize:

• If we have a few independent objects, using individual `Marker` messages is simpler.

• If we have many similar objects, such as points in a cloud or waypoints in a path, using

`MarkerArray` is much more efficient and cleaner. We can manage the visualization

more effectively by publishing a single updated message rather than multiple individual

messages.

https://manara.edu.sy/

https://manara.edu.sy/

11

Add a new python file to the scr folder of rvizpkg

~/mycatkin_ws/src/rvizpkg/src/publish_marker_array.py

#!/usr/bin/env python

import rospy

from visualization_msgs.msg import Marker, MarkerArray

from geometry_msgs.msg import Point

import math

def publish_marker_array():

 rospy.init_node('marker_array_publisher', anonymous=True)

 # Create a publisher for MarkerArray messages

 marker_array_pub = rospy.Publisher('/my_marker_array', MarkerArray,

queue_size=10)

 rate = rospy.Rate(2) # Publish at 2 Hz (2 times per second)

 rospy.loginfo("Starting MarkerArray publisher...")

 while not rospy.is_shutdown():

 marker_array = MarkerArray() # Create a new MarkerArray message

Commented [EA12]: # The topic name is crucial: /my_marker_array

(we will use this in RViz)

https://manara.edu.sy/

https://manara.edu.sy/

12

 # --- Marker 1: A moving cube ---

 marker1 = Marker()

 marker1.header.frame_id = "world"

 marker1.header.stamp = rospy.Time.now()

 marker1.ns = "moving_cube" # Namespace for this marker

 marker1.id = 0 # Unique ID within "moving_cube" namespace

 marker1.type = Marker.CUBE # Shape of the marker

 marker1.action = Marker.ADD # Add or modify the marker

 # Animate its position

 time_elapsed = rospy.Time.now().to_sec()

 marker1.pose.position.x = math.sin(time_elapsed) * 2.0

 marker1.pose.position.y = math.cos(time_elapsed) * 2.0

 marker1.pose.position.z = 0.5

 marker1.pose.orientation.w = 1.0 # No rotation

 marker1.scale.x = 0.3 # Size of the cube

 marker1.scale.y = 0.3

 marker1.scale.z = 0.3

 marker1.color.a = 1.0 # Alpha (transparency)

 marker1.color.r = 1.0 # Red

 marker1.color.g = 0.0 # Green

 marker1.color.b = 0.0 # Blue

https://manara.edu.sy/

https://manara.edu.sy/

13

 marker_array.markers.append(marker1)

 # --- Marker 2: A simple grid of spheres ---

 # Using a loop to create multiple markers efficiently

 for i in range(-5, 6): # -5 to 5

 for j in range(-5, 6): # -5 to 5

 marker2 = Marker()

 marker2.header.frame_id = "world"

 marker2.header.stamp = rospy.Time.now()

 marker2.ns = "grid_spheres" # Different namespace

 # Unique ID for each sphere in the grid

 marker2.id = (i + 5) * 11 + (j + 5) # (0 to 10) * 11 + (0 to 10)

 marker2.type = Marker.SPHERE

 marker2.action = Marker.ADD

 marker2.pose.position.x = float(i) * 1.0

 marker2.pose.position.y = float(j) * 1.0

 marker2.pose.position.z = 0.0

 marker2.pose.orientation.w = 1.0 # No rotation

 marker2.scale.x = 0.1 # Size of the sphere

 marker2.scale.y = 0.1

 marker2.scale.z = 0.1

https://manara.edu.sy/

https://manara.edu.sy/

14

 marker2.color.a = 0.7 # Slightly transparent

 marker2.color.r = 0.0

 marker2.color.g = 0.8

 marker2.color.b = 0.0

 marker_array.markers.append(marker2)

 # --- Marker 3: Line list (efficient for drawing many lines) ---

 marker3 = Marker()

 marker3.header.frame_id = "world"

 marker3.header.stamp = rospy.Time.now()

 marker3.ns = "line_square"

 marker3.id = 0 # Unique ID

 marker3.type = Marker.LINE_LIST # Important: LINE_LIST type

 marker3.action = Marker.ADD

 marker3.scale.x = 0.05 # Line width (only x component is used for line

types)

 marker3.color.a = 1.0

 marker3.color.r = 0.0

 marker3.color.g = 0.0

 marker3.color.b = 1.0

https://manara.edu.sy/

https://manara.edu.sy/

15

 # Define points for lines (each pair of points forms a line)

 marker3.points.append(Point(1.0, 1.0, 0.0))

 marker3.points.append(Point(1.0, 2.0, 0.0))

 marker3.points.append(Point(1.0, 2.0, 0.0))

 marker3.points.append(Point(2.0, 2.0, 0.0))

 marker3.points.append(Point(2.0, 2.0, 0.0))

 marker3.points.append(Point(2.0, 1.0, 0.0))

 marker3.points.append(Point(2.0, 1.0, 0.0))

 marker3.points.append(Point(1.0, 1.0, 0.0))

 marker_array.markers.append(marker3)

 # --- Marker 4: center sphere ---

 marker4 = Marker()

 marker4.header.frame_id = "world"

 marker4.header.stamp = rospy.Time.now()

 marker4.ns = "center" # Namespace for this marker

https://manara.edu.sy/

https://manara.edu.sy/

16

 marker4.id = 0 # Unique ID within "moving_cube" namespace

 marker4.type = Marker.SPHERE # Shape of the marker

 marker4.action = Marker.ADD # Add or modify the marker

 marker4.pose.position.x = 0.0

 marker4.pose.position.y = 0.0

 marker4.pose.position.z = 0.0

 marker4.pose.orientation.w = 1.0 # No rotation

 marker4.scale.x = 0.2 # Size of the cube

 marker4.scale.y = 0.2

 marker4.scale.z = 0.2

 marker4.color.a = 1.0 # Alpha (transparency)

 marker4.color.r = 1.0 # Red

 marker4.color.g = 1.0 # Green

 marker4.color.b = 0.0 # Blue

 marker_array.markers.append(marker4)

 # Publish the MarkerArray

 marker_array_pub.publish(marker_array)

https://manara.edu.sy/

https://manara.edu.sy/

17

 rospy.loginfo("Published MarkerArray with %d markers",

len(marker_array.markers))

 rate.sleep()

if __name__ == '__main__':

 try:

 publish_marker_array()

 except rospy.ROSInterruptException:

 pass

• In the RViz window, go to "Add" -> "By topic" and select `/my_marker_array`.

RViz will then subscribe to this topic and display the published markers.

• Modify fixed frame name "map“ to "world“ according to the code:

Saving RViz configurations

• From the "File" Menu in the RViz window, we select "Save Config As…" or Save Config to

update a preloaded file.

• Choose a Location and Name: Save the .rviz file inside the ROS package, typically in a

dedicated config folder:

(e.g., ~/mycatkin_ws/src/rvizpkg/config/markers_view2.rviz). This makes it

easy to manage and use in launch files later.

• Then we click Save.

Add a new launch file:

https://manara.edu.sy/

https://manara.edu.sy/

18

~/mycatkin_ws/src/rvizpkg/launch/launch2.launch

<?xml version="1.0" encoding="UTF-8"?>

<launch>

 <!-- Node to run the Python marker publisher -->

 <node

 pkg="rvizpkg"

 type="publish_marker_array.py"

 name="marker_publisher_node"

 output="screen" />

 <!-- Node to launch RViz with a pre-configured setup -->

 <node

 pkg="rviz"

 type="rviz"

 name="rviz"

 args="-d $(find rvizpkg)/config/markers_view2.rviz"

 required="true" />

</launch>

roslaunch rvizpkg launch2.launch

https://manara.edu.sy/

https://manara.edu.sy/

19

https://manara.edu.sy/

