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a=imread('nspsaturn.jpg);
figure, imshow(a)

[r c]=size(a);
af=zeros(size(a));

fori=3:r-3

for j=3:c-3
b=a(i-2:i+2,j-2:j+2);
b1=colfilt(b,[3 3],'sliding’,@mean);

b2=colfilt(b,[3 3] 'sliding’,@var);
d=b1(find(b2==min(min(b2))));

af(i,j):d; R W e O
end 25al0 U gdipa Gl s 3 il Sty hall gl (e (ggiad )50
end B = colfilt (A, [m n],block type,fun)

processes the image A by rearranging each m-by-n block of A into a column of a temporary matrix, and then

applying the function fun to this matrix.

https://manara.edu.sy/


https://www.mathworks.com/help/images/ref/colfilt.html#d122e32490
https://www.mathworks.com/help/images/ref/colfilt.html#d122e32362
https://www.mathworks.com/help/images/ref/colfilt.html#d122e32382
https://www.mathworks.com/help/images/ref/colfilt.html#d122e32426
https://www.mathworks.com/help/images/ref/colfilt.html#d122e32459
https://manara.edu.sy/

import cv2 Dﬁ\?

import numpy as np .
deoln
. . 9)lioll
# Load the image (replace 'nspsaturn.jpg' with your actualiimage path)
a = cv2.imread('nspsaturn.jpg’)
if a is None:
print("Error: Could not load image.")
exit()

# Convert to grayscale if it's not already
a = cv2.cvtColor(a, cv2.COLOR_BGR2GRAY)

# Display the image
cv2.imshow('Original Image', a)
cv2.waitKey(0)

# Get image dimensions
r, ¢ = a.shape

# Initialize the output array
af = np.zeros_like(a, dtype=np.float64)

https://manara.edu.sy/
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# Perform the local minimum variance filtering Pj
# foriin range(2,r - 2):
for jin range(2, c - 2): deoln

# Extract the 3x3 neighborhood 9ytiall
b=ali-2:i+2,j-2:+2]

# Calculate the mean and variance using OpenCV's boxFilter

bl = cv2.boxFilter(b, -1, (3, 3)) # Mean

# cv2.boxFilter  is a valuable tool for simple image smoothing

#-1": Same data type as the input image.

b2 = cv2.boxFilter((b - b1)**2, -1, (3, 3)) # Variance - manual calc for consistency

# Find the index of the minimum variance and assign it to the output
min_variance_index = np.unravel_index(np.argmin(b2), b2.shape)
affi, j] = b1[min_variance_index]

# Convert back to uint8 if needed for display

af = af.astype(np.uint8)

# Display the filtered image

cv2.imshow('Filtered Image', af)

cv2.waitKey(0)

cv2.destroyAllWindows()

#Save the image

2. ite('filtered nspsaturn.jpg’, af
Ve Imwrl e( nered_nsp P8 ) https://manara.edu.sy/
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First Order Derivative
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PA Sobel Filter J.»j.w E,&;J.o

deola Image Gradient
6jliall

oPY (oPY
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Ox oy

r ‘ ab
: , FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).
(b) Sobel
eradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)

Gradient magnitude ‘VP‘ -

4

A gradient image emphasizes edges

https://manara.edu.sy/ (Images from Rafael C. Gonzalez and Richard E.
Wood, Digital Image Processing, 2" Edition.
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clear all

close all

clc
a=imread('cameraman.tif');
a=im2double(a);
sx=[-101;-202;-101];
sy=[-1-2-1;000;121];
bx=imfilter(a,sx);
by=imfilter(a,sy);
b=sqrt(double(bx).A2+double(by).A2);
bt=im2bw(b,0.4);
e—edge(a, sobel’);

W

6jliall

figure;

subplot (3,4,5) ; imshow(a); title('Original Image’)
subplot (3,4,2) ; imshow(bx); title('Vertical Edges’)
subplot (3,4,10) ; imshow(by); title('Horizontal Edges’)
(3.4,7) ; imshow(b); title('All Edges’)

subplot (3,4,4) ; imshow(bt); title('Thresholded Edges’)
(

subplot (3,4,12) ; imshow(e); title('sobel function’)

subp ot

https://manara.edu.sy/
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import cv2

import numpy as np A
# Load the image gf'ﬂ” ]f'[
img = cv2.imread('Saturn.jpg’, cv2.IMREAD_GRAYSCALE) |
if img is None:

print("Error: Could not load image.")

exit()
_ ' ' # OpenCV's Sobel function
img = img.astype(np.float64) / 255.0 # Normalize to double e x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) # x-direction
e_Xx = np.abs(e_x) #Take the absolute value of the gradient
# Sobel operator kernels e y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) #y-direction

sx = np.array([[-1, O, 1], [-2, O, 2], [-1, O, 1]], dtype=np.float64)

e_y =np.abs(e_y)
sy = np.array([[-1, -2, -1], [0, O, 0], [1, 2, 1]], dtype=np.float64)

e = np.sqrt(e_x**2 + e_y**2)

_, e=cv2.threshold(e,0.4,1, cv2.THRESH_BINARY)
# Apply Sobel filters

bx = cv2.filter2D(img, -1, sx)
by = cv2.filter2D(img, -1, sy)

# Calculate magnitude of gradient
b = np.sqrt(bx**2 + by**2)

# Thresholding

_, bt =cv2.threshold(b, 0.4, 1, cv2.THRESH_BINARY) https://manara.edu.sy/
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# Display the images (using matplotlib for subplot functionality)

import matplotlib.pyplot as plt plt.subplot(3, 4, 7)

plt.imshow(b, cmap='gray')
p|t.figure(figsize=(12, 8)) plttltIE(lA” Edges (MagnitUde)')
plt.subplot(3, 4, 4)
plt.imshow(bt, cmap='gray')
plt.title('Thresholded Edges')

plt.subplot(3, 4, 5)
plt.imshow(img, cmap='gray')
plt.title('Original Image')

plt.subplot(3, 4, 12)
plt.imshow(e, cmap='gray')
plt.title('OpenCV Sobel')

plt.subplot(3, 4, 2)
plt.imshow(bx, cmap='gray')
plt.title('Vertical Edges')

plt.subplot(3, 4, 10) plt.tight_layout()
plt.imshow(by, cmap='gray') plt.show()
plt.title('Horizontal Edges')

https://manara.edu.sy/
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Laplacian Sharpening :How it
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Laplacian Sharpening :How it P,

works
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Laplacian Sharpening: How it PA

works deola
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close all PA

bt=im2bw(b,0.7);

clc 6)LioJl figure;
a=imread(‘cameraman.tif’); subplot (1,3,1) ; imshow(a); title ('Original Image’)
a=im2double(a); subplot (1,3,2) ; imshow(b); title (Edges’)

subplot (1,3,3) ; imshow(bt); title (‘Edges’)

L=[-1-1-1;-18-1;-1-1-1];
b=imfilter(a,L);

Original Image



https://manara.edu.sy/

% Load the image P
img = imread('cameraman.tif'); A % Sharpened image (unsharp masking)

deol sharpened = img + laplacian;
% Convert to grayscale if necessary GJU_OJ[
if size(img,3) > 1
img = rgb2gray(img); %Display Images
end figure;
subplot(1,3,1); imshow(img); title('Original’);
% Apply Laplacian filter subplot(1,3,2); imshow(laplacian); title('Laplacian’);
laplacian = imfilter(img, [-1 -1 -1; -1 8 -1; -1 -1 -1]); subplot(1,3,3); imshow(sharpened); title('Sharpened’);
Original Laplacian Sharpened

https://manara.edu.sy/
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import cv2 P
import numpy as np A
' t matplotlib.pyplot as plt dsols
import matplotlib.pyplot as p 5o
# Load the image in grayscale
img = cv2.imread('cameraman.tif', cv2.IMREAD_GRAYSCALE)
if img is None:

print("Error: Could not load image.")

exit()

# Apply Laplacian filter (using filter2D)
laplacian = cv2.filter2D(img, -1, np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]))

# Sharpened image (unsharp masking)
sharpened = np.clip(img + laplacian, 0, 255).astype(np.uint8) #Clip to 0-255 to avoid overflow

#Display the Images using matplotlib

plt.figure(figsize=(12, 4))

plt.subplot(1,3,1); plt.imshow(img, cmap='gray'); plt.title('Original’);
plt.subplot(1,3,2); plt.imshow(laplacian, cmap='gray'); plt.title('Laplacian’);
plt.subplot(1,3,3); plt.imshow(sharpened, cmap='gray'); plt.title('Sharpened’);

plt.show()
https://manara.edu.sy/
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Laplacian Sharpening

Mask for
VP
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1
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Mask for
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FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning

abc
O 1 O d e electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
https://manara.edu.sy/ (Images from Rafael C. Gonzalez and Richard E.

Wood, Digital Image Processing, 2" Edition.
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The Canny Edge Detector
The process first order

derivatives For every phel For every pixel

Remowe noise of the Lalculatr:p F"nz»r’h::lrfnr"lF“l

# using Gaussian Image using Mon Madmal *| hysteresis

filter opermon suppression thresholdin
like Sobel oe g
operator

The Canny edge detection algorithm is composed of 5 steps:
1.Noise reduction;

2.Gradient calculation;

3.Non-maximum suppression;

4.Double threshold;

5.Edge Tracking by Hysteresis.
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Noise )

Dy

Reduction J

get rid of the noise.
image convolution
technique is applied
with a Gaussian
Kernel (3x3, 5x5,
7x7 etc...) to smooth
it.

Basically, the
smallest the kernel,
the less visible is the
blur.

Sobel filters for both direction (horizontal and vertical)

The edge direction angle is rounded to one of four angles representing

vertical, horizontal, and the two diagonals (0°,45°, 90°, and 135°).

SIS Gl mdiye adas Silghas

&)liaJl
- E
f Gradient Mal\)l(?r:um Double W I Tracliiiie b
Calculation . threshold . -y
Suppression Hysteresis

First order derivative of aN

image. It can be implemented
by convolving | with Sobel
kernels Kx and Ky, respectively:

-1 0 1 | 2 |
K.=|-2 0 2|,K,=| 0 0 0
-1 0 1 -1 =2 -l

IGl = [/ I# + 12, 90°
35 450

I 135¢
Kx,y) = arctan (f—‘) v i

x

Gradient intensity and Edge direction

The double threshold step aims
at identifying 3 kinds of pixels:
strong, weak, and non-
relevant:

Strong pixels are pixels that
have an intensity so high that
we are sure they contribute to
the final edge.

Weak pixels are pixels that have
an intensity value that is not
enough to be considered as
strong ones, but yet not small
enough to be considered as
non-relevant for the edge
detection.

Other pixels are considered as
non-relevant for the edge.

One strong pixel around

Based on the threshold results, the
hysteresis consists of transforming
weak pixels into strong ones, if and

https://manara.edu.sy/

only if at least one of the pixels around
the one being processed is a strong
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perform non-maximum suppression to thin out the ed'g-es.
The principle is simple: the algorithm goes through all the points on the gradient intensity matrix and

finds the pixels with the maximum value in the edge directions. aa> pe d))lsdl o3 1 larun T
ALl Silaleeil 3 Gouadll Aausll 13 JuSdl @i g asmig 7yl A8US 4898 a0 (§ 8392 6Ll LoLal

Non-Maximum Suppression
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Focus on the upper left corner red box pixel

If there are no pixels in the edge direction having more intense values, then the value of the current pixel is kept.
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% Load and convert to grayscale (as in Method 1) fo.ﬁ?
img = imread('cameraman.tif'); v

if size(img, 3) == E-vﬂu-[

img = rgb2gray(img); e

end

% Set sigma value for Gaussian smoothing Original Image | Canny Edges (Custom Sigma)

sigma = 2; % Adjust this value

% Apply Canny edge detection with sigma specification
edges = edge(img, 'canny’, [], sigma);

% Display the results (as in Method 1)
figure;

subplot(1, 2, 1);

imshow(img);

title('Original Image');

subplot(1, 2, 2);

imshow(edges);

title('Canny Edges (Custom Sigma)');
https://manara.edu.sy/
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import cv2 [:A

import numpy as np deol o
import matplotlib.pyplot as plt ool

# Helper function to display images side-by-side
def display_images(imgl, img2, titlel, title2):
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(imgl, cmap='gray')
plt.title(titlel)
plt.subplot(1, 2, 2)
plt.imshow(img2, cmap='gray')
plt.title(title2)
plt.show()

# Load the image (replace 'cameraman.tif' with your image)
img = cv2.imread('cameraman.tif', cv2.IMREAD_GRAYSCALE)
if img is None:

print("Error: Could not load image.")

exit()

https://manara.edu.sy/
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# Canny with custom thresholds
high_thresh = 100 # Adjust these values
low_thresh =50 # Adjust these values
edges2 = cv2.Canny(img, low_thresh, high_thresh)

display_images(img, edges2, "Original Image", "Canny Edges (Custom Thresholds)")

# Method 2: Canny with custom sigma (Gaussian smoothing before Canny)

#Note: OpenCV's Canny doesn't directly take a sigma value for pre-smoothing.
#You'll need to smooth the image separately using a Gaussian blur.

blurred = cv2.GaussianBlur(img, (5, 5), 2) # sigma = 2 (adjust as needed)
edges3 = cv2.Canny(blurred, 50, 150) #You can use custom thresholds here too.
display_images(img, edges3, "Original Image", "Canny Edges (Gaussian Blurred)")

https://manara.edu.sy/
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